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Itis proved that if an anisotropic medium has an open set of singular directions, then this
medium has two slowness surfaces that completely coincide. The coinciding slowness sur-
faces form one double singular slowness surface. The corresponding anisotropic medium
is an elliptical orthorhombic (ORT) medium with equal stiffness coefficients c,y=c55=c¢¢
rotated to an arbitrary coordinate system. Based on the representation of the Christoffel
matrix as a uniaxial tensor and considering that the elements of the Christoffel matrix
are quadratic forms in the components of the slowness vector, a system of homogeneous
polynomial equations was derived. Then, the identical equalities between homogeneous
polynomials are replaced by the equalities between their coefficients. As a result, a new
system of equations is obtained, the solution of which is the values of the reduced (density
normalized) stiffness coefficients in a medium with a singular surface. Conditions for the
positive definite of the obtained stiffness matrix are studied. For the defined medium, the
Christoffel equations and equations of group velocity surfaces are derived. The orthogonal
rotation matrix that transforms the medium with a singular surface into an elliptic ORT
medium in the canonical coordinate system is determined. In the canonical coordinate
system, the slowness surfaces S| and S, waves coincide and are given by a sphere with a

radius 0;41/2 . The slowness surface of ¢gP waves in the canonical coordinate system is an
ellipsoid with semi-axes a” e, c;;/z . The polarization vectors of §; and S, waves can
be arbitrarily selected in the plane orthogonal to the polarization vector of the gP wave.
However, the gP wave polarization vector can be significantly different from the wave
vector. This feature should be taken into account in the joint processing and modelling
of S and gP waves. The results are illustrated in one example of an elliptical ORT medium.

Key words: singular point, singular surface, phase velocity, Christoffel matrix, ellipti-
cal orthorhombic medium.

Introduction. Singular points (directions) in an anisotropic medium are the directions along

which the phase velocities of plane waves of different types coincide. Usually, these points are
located discretely on the slowness surface, and their number does not exceed 32 [Darinskii,
1994; Vavrychuk, 2005; Roganov et al., 2019]. There are many works devoted to the descrip-
tion of properties and classification of discretely located singular points. An overview of these
works can be found, for example, in the article [Stovas et al., 2023b].

According to the differential topology, there are three types of slowness surfaces in the
vicinity of a singular point: conical, wedge, and tangential [Alshits, Lothe, 1979; Alshits et al.,
1985; Shuvalov, Every, 1997; Shuvalov, 1998; Stovas et al., 2022]. Conical singular points are
located discretely and stable with respect to perturbations in the stiffness coefficients. In the
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vicinity of these points, the directions of the polarization vectors of the corresponding waves
rapidly change [Alshits, Shuvalov, 1984]. Wedge and tangential singular points are unstable
with respect to perturbations in the stiffness coefficients. They can be located discretely and
belong to singular lines or singular surfaces. In articles [Roganov et al., 2022; Stovas et al.,
2023b], the properties of orthorhombic media with singular lines are studied. The singular lines
are also present in pathological media [Musgrave, 1985; Boulanger, Hayes, 1998]. Pathologi-
cal media are orthorhombic media with some of the values ¢ ,+cq4, ¢131C55 and cy3tcyy €qual
to zero, where c;jare the stiffness coefficients [Roganov et al., 2023; Stovas et al., 2023a].

At the singular point p=(p, s, Prs, P35): the Christoffel equation F(py, p,, p3)=0 has multiple

roots in all variables py, p,, p3. Hence, F(p; g, pyg P35)=0 and Flﬁk (plS,pzs,p3S ) =0,4=1...3. There-
fore, the decomposition of function F(p, p,, p3)=0 in the Taylor series in the vicinity of a point

pg begins with the quadratic term 12Ap"KAp, where K; :Fp/i;/_ (Pls:P2s>P3s) is the matrix of
second-order derivatives, p=(p, p,, p3) and Ap=p—pg. If the symmetric matrix K has a rank one
or two, then the singular point is, respectively, a point of tangential or wedge type. If the matrix
K is non-degenerate and has both positive and negative eigenvalues, the singular point is a
point of conical type. If K=0, the singular point is a triple singular point.

In this paper, we prove that if an anisotropic medium has an open set of singular directions,
then two slowness surfaces coincide in all directions, and the medium is defined as a rotated
elliptical orthorhombic medium with equal stiffness coefficients c44=cs5=cq4. The converse
statement was proved in [Stovas et al., 2021].

Theory. Let us consider an anisotropic triclinic medium with a set of singular directions

n=(n, n,, n3) containing an open set U on the unit sphere n12 +n22 +n32 =1. Then, for each di-
rection (ny, n,, ny)eU, the following relations R;=0, £=1,...,7 are valid according to [Alshits,
Lothe, 1979; Roganov et al., 2019]. The relations R;(ny, n,, n3)=0, k&=1,...,7 are the criterion for
the existence of singularity point in direction n=(n, n,, n3). The expressions R;(n;, n,, ny) are
given by homogeneous polynomials of the sixth degree in the variables n|, n,, ny. From ho-
mogeneity of Ry, it follows that R (An, An,, Anzy)=R(n;, ny, n3)=0 for any A and (n, n,, n3)eU. Set
of points (Any, an, kn3) at A>0 and (n, n,, n3)eUis an open set U in three-dimensional space:
(Ap1, Apy, Apy)e U cR? . Because the R, =0 on open setin R’, all coefficients of these polynomials
R, are equal to zero. Therefore, R\ (n, n,, n3)=0 for any direction n=(n,, n,, ny), i.e., all direc-
tions on the unit sphere are singular. In other words, for this medium, two slowness surfaces
identically coincide and form one singular surface.

The elastic properties of this medium are determined by specifying a positive definite
Christoffel matrix A, written in terms of the slowness vector components p=(py, p,, p3) and
reduced (density normalized) stiffness coefficients Cijp 1y j=1...6 as:

a9 43
A=la, ay ay|, (1)

di3 Qy3 Az
where

an = 0111912 + C66p§ + 0551?32 +2¢16p1P5 + 201513 + 2656 P2 D3

(y) = Cos Py +Coa D3 +Caa Py + 20261 Py + 2046 Py D3 + 2024 Py D3

a3 = Cssplz +Chypi + C33P32 +2¢45 PPy + 20350103 + 20340213,
ap = 0161912 + 02617% + 0451732 +diypipy +dyypip3 +dasprps, (2)
a3 = ClsPl2 + 046P§ + C35P32 +dyypipy +di3p1 D3 + ds6 D2 P35

2 2 2
dy3 =CseDi +CouPy +Cups +dyspipy +dze i p3 +dyspapss
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and dy,=cytCge d137C137Cs50 d147C147Cs6 dp3=Co3tCaqr drs=Corstese d36=C36tCys:

If the components p, p,, p; of the slowness vector belong to the singular surface, then at
this point, the matrix A has a double eigenvalue 1. The matrix A, at singular points, can be
represented as [Fedorov, 1968]:

A=gff’ +1, (3)

where I is identity matrix, ¢ is a number, f=(f; ,fz,f3)T is a vector, and 1+qu fis the third eigen-
value of the matrix A. After renormalizing the vector f by multiplying it by \/m , We can as-
sume that g==1.

The case with g=1 and a,,#0, a;3#0, a,;#0.

From representation (3), it follows that the following equations

ap =Nt az=hf an =15 (4)
2
ay = fi7 =ay - fz =das3 — f3 ' )
are satisfied on the singular surface. From these equations, we can obtain,
2 _ 413 2 _ Gpdys 2 _ G139y
Sr=— fi=""" fi=—" (6)
0k} a3 ap

and
ay3ds3 (azz - an) =dp (a§3 - a123 ) )
ay2073 (033 _all):al3 (053 —alzz), ()
2413 (a33 —dap ) =dy3 (a123 - a122) .

Relations (7) are homogeneous in variables p, p,, p3, and, therefore, valid for any point
(p1> Py, p3) in space R’. Consequently, the polynomials from the left and right sides of equa-
tions (7) coincide as elements of the ring R[p;, p,, p3]. Therefore, in equations (7), we can enjoy
properties of divisibility. It follows that a,; divides both a12a123 and a122a13 . Therefore, a,; can
also divides the greatest common divisor GCD(alzza13,a12a123) = ay,a,3. From equations (6), we
get that flz is a homogeneous second-degree polynomial. Similar statements are valid for
the f5 and fi.

On the other hand, all polynomials a,,, a;3, a,; are homogeneous polynomials of the se-
cond degree. Therefore, on the right-hand sides of the equalities (6), there are only two cases
of divisibility of polynomials: either f, f,, f; from (4) are linear forms in variables p, p,, p3, or
all polynomials ay,, a3, a,; are proportional. In the first case, polynomials ay,, a3, a,; from
equations (2) can be decomposed into the linear forms f, 5, f3 from formulas (4).

The case with components |, /,, f; of vector f are linear forms in variables p,, p,, p; and

g=1.
In this case, the relations (4)—(7) are homogeneous and satisfied for every p,, p,, p5. There-
fore, the Christoffel matrix A and the equation F=0 can be represented as

A=+ (e - )1, (8)
F:(a11+f22 +f32 —1)(a11 _f12 _1)2 =0. 9

Christoffel matrix (8) hasasingle eigenvalue A, = a;, + f5 + f; with eigenvector f = (£, f5. f3 )T

and double eigenvalue A, =a;; - f12 with eigenvectors, perpendicular to the vector f.
To obtain the stiffness coefficients for this medium, we use the formulas for the elements
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of the Christoffel matrix (2) and introduce linear forms:

Si=xp+ X0, + X33,
S2=npi+ Y2+ 1305, (10)
Ss=21p1 + 2305 + 233,

where x;, y; z;, i=1,2,3 are some numbers.

By equating the coefficients of polynomials at p12 , pf , p32 in equations (4), we obtain the
values of nine stiffness coefficients:

Cle =X V1> Ca6 =X2V2, Ca5 = X3)3,
Cis = X121, Ca =X2Zp, C35 =X3Z3, (11)
Cs6 = V121> Coa = VoZp, €34 = V32Z3.

By equating the coefficients of polynomials at p,p,, p\p3, pop; in equations (5) and substi-
tuting variables according to the formulas (2), (10) and (11), we obtain a system of equations
(22 =») (3 +32) =0,

(x3—zl)(x1+z3)=0, (12)
(¥3—=25)(¥2 +23)=0.
This system has a solution
X =V X3 =21, )3 =2;. (13)

The relations (13) are necessary and sufficient to determine all the stiffness coefficients
for which the polynomials in (4) and (9) are identical.

Substituting variables from equation (13) into equations (4), (5) and equating the coef-
ficients at monoms PPy ij=1...3, i#j, we get all the stiffness coefficients, expressed through
seven numerical parameters ¢, Xy, ¥y, Vo, 211 29, 23°

= = +x>+ =—c +x>+ = = =
Cl1 =01 Cp = =€ T X T XV, C3 = =€ T X T X123, Gy = X1Z), C15 = X121, C16 = X1 )15

_ 2., .2 _ 2 _ _ _
Cpp =€ =X + )7, Co3 =—C T X + V223, Cp4 = V225, Co5 = V221, Cog = 1 )2s

_ 2 2 _ _ _
C33 =01 —X) T23,C3 = 2523, C35 = 2123, C36 = V23,

, (14)
Caq =C11 =X + 23, Cy5 = 212, Ch6 = V122,
- S R
Css =€ — X T 21, C56 = V1215
_ 2, .2
Ce6 =Cr11—X +)1-
The stiffness matrix for this medium has the form,
2 _ 2 _
Cir X tX)V =€ X TXZ3 =y X2y X121 XN
2 2 2
—X| TV Oy X Yz ¢y Y22Zy Nz W
2, .2
X tZ3 0 Z37; 237 2941
C= . . (15
X tz; ¢y ZyZy 0
2, .2
Xtz oy In
2, .2
=X+ Ty

ISSN 0203-3100. Geophysical Journal. 2024. Vol. 46. Ne 1 19



YU.V.ROGANOV, A.STOVAS, V.YU. ROGANOV

According to Sylvester's criterion, the matrix C is positive defined if and only if ¢;;>0 and
all the corner minors m k=det(cl-j), ij=1,...,k, 2<k<6, are positive. In our case,

m, = (c11 —xz)(x1+yz)2 >0,

my = _4(011 )(Cn X=X, - X123 — 2Z3) >0,
3
my = (Cll ) (C —X1Yy = X123 — VrZ3 t Z%) >0, (16)
ms =—4(c11 )4 (c” —X;Vy — X123 — V223 +212+222)>0,
Mg = _4(011 ) (011 XYy T XZ3 Yzt )’12 + 212 + Z%) >0.

The system of inequalities (16) is equivalent to double inequality

2 2 2 2 2
X <O <X XV, ¥ XZ3+ V23—V — 4 — 4. (17)
Consequently, the matrix C is positive defined if and only if the inequalities (17) are valid.
For relation with g=—1 and components f], IZ’ /3 of vector f expressed as linear forms in py, p,,
D3, we can calculate of the elasticity matrix C in a similar way. Technically, the matrix C can
be obtained from the expression (15) for matrix C by replacing variables xy, y,, 3.2y, 25, 23 With

pure 1mag1nary values ixy, iy, iyy, iz}, i2y, iz3, ( == ) After this replacement, the elements
of the matrix ff from (3) change the sign to opposite, i.e., we obtain the case with g,=—1. The
elements of the elasticity matrix C remain real. However, at ¢ 11>0, the angular 2x2 — minor

of the matrix C is a negative number —(c“ +x12)(x1 + ¥, )2. Consequently, the medium with
the g,=—1 and linear forms f, f,, /3 in p{, p,, p3 does not exist.
Let us continue the case with g=1.

N4 N P
Let usintroduce variables, M=|y, y, 2z, |, f=| f, |, p=| p, |. Obviously, we have f=Mp.
21 5 7 /3 P3

The Christoffel equation (9) can be represented as

F:PQZ, (18)

where Q=(cn—x12)prp—1 and P=p'M?p+0.

Equations O=0 and P=0, respectively, define the sphere of radius 1/ Ve — x12 and a rotated
ellipsoid. The polarization vector of a single wave is determined by the formula f=Mp, and
the two polarization vectors of the double wave are perpendicular to the vector f.

Matrix M? has non-negative eigenvalues, i.e., it is positive semi definite. Hence, pT szZO
for any vector p, and the surface defined by the equation P=0 is inside the surface defined
by the equation 0=0. Therefore, the equation P=0 defines the slowness surface of gP waves,
and the equation 0=0 defines double slowness surface of §;, S, waves. These surfaces can be
tangent in two points or along a circle if the rank of the matrix M is 2 or 1, respectively.

The slowness surfaces P=0, 0=0 in the region of group velocities v=(v1,v2,v3)T respectively
correspond ellipsoid Gp=1 and sphere GQ=1, where

-1 -1
GP=VT(M2+(cH—x12)I) v, Gy=(c-af) V'v. (19)
The symmetric matrix M can be diagonalized by the orthogonal matrix R,
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M’ =RMR’ = diag(xl/,yé,zé) ) (20)
. / JAAAY . Il .
In the coordinate system p° = ( Pi> P2» p3) =Rp, the equations y; =z =z, =0 are valid, and
the Christoffel equation has the form £ l=p Q/ -0 , Where

/ 1202, 2 02 22 /
P Z(xl Pty Ptz ps )+Q .

0" =(cli =) (p” + 12> +p5) 1. (21)

In the new (canonical) coordinate system, the relations (14) can be represented as

A
Cqq = Cs5 = Cgg5

2 RV 2 /A 2 AV
X;T=c mCu =0y, Yy =0 —Cy =A%, 23T =033 =0y = Ay,

01/2+Ca/14:d1/2:x1/)’£:\/m5 c{3+024=d{3=x{24=\/m, (22)
Cés + 04/;4 = d£3 = )’ézé =4 A/24Ag4 ,
01/4 = 01/5 = 01/6 = C£4 = Cés = Céé = C§4 = Cés = Cés = Ca/ts = cé/t6 = Céé =0,
where A; =c) - c.i.-,- .
From (22), it follows that the polarization vector of ¢P waves for this medium is defined as

T
a;p =( pl/ \/A{4,pé \/A/z , p§\1A24) , and it is different in orientation from the slowness vector

T
/ VA . VA . . . .
p = ( P1>P2» p3) . Since the values ¢, ¢35, ¢33 are different, the stiffness matrix in the canonical
. . . . VA
coordinate system is determined by four independent parameters ¢, ¢y, ¢33, C44 and takes

the form,

/N VN / AN /

cr AAY —Cyy DAy —cyy 0 00
/ N /

€22 A3y =cy 00 0

/
¢y 0 0
64/‘4 0
/
Cyq
The Christoffel equation for this medium is represented as I r=p Q/ 2 =0, where
Pl=c/\p{* +cppy’ +eispl’ =1, Q' =ciy(pf> + pi* + pi7) 1. (24)

The Bond transform by matrix R transforms the stiffness matrix (15) into the stiffness ma-
trix (23).
Matrix C’ is positive definite if and only if

/o /oo I
Cl1 > Cag> €2 > Ca4» €33 > Cays
/ N N N
0<cy < \/A14A24 + \/A14A34 + \/A24A34 )

and the corresponding medium is an orthorhombic elliptic medium [Stovas et al., 2021] with

(25)

/ / / . . .
parameters ¢y = Css = Cg4 . For this medium, the slowness surface for §;, S, waves is a sphere
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with radius 1/ \ 04/‘4 , and the slowness surface for gP waves is an ellipsoid with semi-axes 1/ \ 01/ .

1/ \/z , 1/ \/E . The slowness surface for gP waves is located inside the slowness surface for
S S, waves.
Let us consider the case when ¢g=1 and elements a,, a3, a,; of matrices A are proportional.
In this case, for some non-zero values ¢, /, the system of equations has a form,

a13 = alzt, (123 = alzh, a22 = all + a12 (ht_] _th_l ), a33 = an + alz (th _th_l) . (26)

Equalities (26) are valid for any values of p, p,, p; since they are equalities between the
homogeneous polynomials of the second degree.
Using the relations (2) and equating the coefficients of the polynomials in (26), we obtain

a system of equations. The solution of this system is all stiffness coefficients ¢, ,, expressed
through ¢y, ¢15, ¢;¢ and numbers ¢, A:
t(n* -1 -1
s =lc, Csq=he, Css =0y +Tclé’ Co6 = C11 +7616’ (27)
2 1 —1)
_ t (2 _ v 7
014—f(011+012)_zcléa 013—(f 1)011+f012 p Ci6>
== ey van) - e )
26 =5\t 2, e
2 2\ L4 2
c ——t2+h2(c +c )+—(t —h ) 2 c c —t(h _1)(0 +c )+t2+h2_t2h2+h4c (29)
25 o\t i 16> C45 o 11t YE 16
t(h2+1) RIS
ey =———(c +e) - 3 Cles Cag =1Crg, Cog =hCys, €35 =1Cys, C34 =heys,(30)
2h 2h
e t(h* -1 t(h* -1 2

1
Cys. (31)

Cy =Ceg +—th Cy6> €33 =Cs5 +—h C455 C44 =Ceg +—h Cr6> Cp3=Cpp+

However, an anisotropic medium with stiffness coefficients (27)—(31) does not exist since
the stiffness matrix C for this medium is not positive definite. Indeed, according to the Sylves-
ter's criterion, for a positive definite matrix C, the determinant must be positive, but in our case,

2
(h(2h2+t2)cll+clzht2_t(3h2+t2)cl6)
det C=— T X
164"t
4
(e =Dy +he(E +1)e, (08 +6* 41> = )ey )
x — <0. (32)
165"

Let us consider the cases where some of the off-diagonal elements a|,, a5, a,; of matrix
A are zero. From representation (3), it follows that there maybe two cases: when two elements
from a,,, a3, a,5 are zero or when all three of these elements are zero.

If two elements are zero, we assume for definiteness that a,,#0, a;3=0, a,3=0. Then,

ay —ds3 app 0
A = alz azz - a33 0 + a33I, (33)
0 0 0
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where I is an identity matrix. Then, for some number f#0, we obtain the equations,

-1
ay—ay =1 an, ap-ays=fa,. (34)

After substituting in (34) the values aj; from (2) and equating the coefficients of monomi-
als in variables py, p,, p;, we obtain a system of linear equations for determining the stiffness
coefficients c,,,. With free parameters ays, a4, agg, /, this system of equations has a solution,

-1 £2
€11 = Co6 ~Cr6f (f _1)7 e =2f(c16—C4s)=Coer 13 =Ci6f —Ce5> C13=0, ¢5=0,

2 1l 2 4\ 1 2
Cp = Ce6 + C16f(f _1)_045f (f _1) s €3 =—CostCi6f —Casf (f —1),
€4 =0, ¢5=0, (35)
2 2 -1
Cre =Cef " HC16f —Cys (f —1), C33=Co6 —Ciof —Casf s 034=0, 35=0, c36=—0ys,

-1 2
C4q = Co6 —C16S —Casf (f _1)’ 46 =0, Cs5=—Cief +C5> C56=0.

However, the determinant of C with elements from (35) is not positive,

detC=—4/7" (016f2 —Ce.f +Cas )2 (c16/ = casf = o6 )4 <0. (36)

Therefore, the matrix C is not positive definite, and the case defined above is not physi-
cally realizable.

Let us consider the last case, when a,,=0, a,3=0, a,;3=0. For such a matrix A, in order to
have a double slowness surface, some of its diagonal elements must coincide. For definite-
ness, we will assume that a,,=a,,. After substituting in equation a,;=a,, the values aj; from (2)
and equating the coefficients at different degrees p,, p,, p;, we obtain a system of equations
for determining c,,,. This system has a solution,

C11=C20=Co6=C2> C44~C55=C13=C3 (37

where the others ¢,,=0. However, all angular determinants of the corresponding stiffness
matrix C are not positive. Therefore, the matrix C for this medium is not positive definite, and
this case is not physically realizable.

Therefore, we have proved that if an anisotropic medium contains an open set of singular
directions, then this medium has a double singular surface, and the anisotropic medium is a
rotated elliptical orthorhombic medium with the equal stiffness coefficients c,y=c55=cqq [Stovas
et al., 2021]. The stiffness matrix of this medium is determined by the expression (15) and is
positive definite if the inequalities (17) are valid.

Numerical example. In the numerical example and corresponding figures, the reduced
stiffness coefficients will be given in km?/s?, and the velocities are given in km/s.

To illustrate the above statements, we consider an anisotropic medium with the reduced
stiffness coefficient matrix satisfied the relation (15),

¢ =8.208, x,=2.492, 3 =0.158, y,=2.566, z =-0.360, z,=0.153, z,=2.373.(38)

The reduced (density normalized) stiffness coefficient matrix of this medium has the form,

8208 4.392 3912 0.382 -0.897 0.395
8.582 4.088 0.394 -0.924 0.407
7.631 0.364 -0.855 0.376

€= 2024 —0.055 0.024 | (39)
2130 —0.057
2.025
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For this stiffness matrix C value ¢;;>0 and angular minors (16) are also positive:
m, =51.150, my=262.280, m,=523.807, ms=1039.315, my=2075.415. (40)

Therefore, the matrix C is positive definite and satisfies the criterion of positive definite
(17). In our example, the matrix
2492 0.158 -0.360
M=| 0.158 2.566 0.153 |. (41)
-0.360 0.153 2.373

Multipliers P, O from expression (18), which define the slowness surfaces for gP and S, S,
waves, respectively, are given by the formulas:

P=8363p} +8.631p; +7.784p3 +1.492 p, p, —3.455p, p; +1.401p, p; — 1,
0=2(p} +p3+p3)-1.

Maximum angle between vectors ap and p achieved at p;=-0.021, p,=-0.247, p;=0.662 is
equal to 9.82°. Polarization vectors of S|, §, waves are in a plane perpendicular to the vector
a,p. They are not perpendicular to the slowness vector p.

The slowness surfaces of gP and S, S, waves (42) correspond to the group velocities surfaces:

(42)

Gp =0.127v} +0.118v5 +0.136v3 —0.027v,v, +0.059v,v; —0.027v,v; —1,
43
G =0.5(v +3 +v7 ) -1. (43)

The matrix M defined by expression (41) is reduced to a diagonal form by the orthogonal
similarity transformation M’ = RMR’ , Where

0.127 0927 0.353 2646 0 0
R=|-0.780 —0.127 0.612|, M'=| 0 28 0 |. (44)
0.612 —0.354 0.707 0 0 1984

The Bond transform using an orthogonal matrix R transforms the stiffness matrix C into
a canonical coordinate system. In this system, the coordinate planes coincide with the sym-
metry planes of the elliptical orthorhombic medium, and the stiffness matrix has the form,

90 5408 325 0 0 O
5408 984 3556 0 0 0
C = 3.25 3.556 5.9375 0 0 0 45)
0 0 0 2 0 0
0 0 0 020
0 0 0 0 0 2

The free parameters in (38) were initially chosen so that in the matrix (45) the values of

diagonal elements ¢/, =9.0, ¢5, =9.84, ¢}; =5.9375, ¢, =2.0 coincide with the values of the
corresponding elements of the stiffness matrix of a standard orthorhombic medium [Schoen-
berg, Helbig, 1997]. The remaining elements of this matrix satisfy the expression (23), and
hence, the matrix (45) defines an orthorhombic elliptic medium [Stovas et al., 2021] with
coinciding slowness surfaces of §; and S, waves.

Fig. 1, a shows the slowness surface of a gP wave, which is a rotated ellipsoid, and the slow-
ness surfaces of §; and $, waves that coincide with each other and are a sphere. The rotation
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is done using the matrix R from (44). Fig. 1, b shows the images of these slowness surfaces
in the group velocity region, which are also a rotated ellipsoid for gP waves and are a sphere
for §; and §, waves.

by 0

0,6

p,

a b

Fig. 1. Slowness surfaces (a) and group velocity surfaces (b) of gP and S;, S, waves for a medium with the stiffness
matrix (39). The slowness surfaces of §; and §, waves coincide and are a double sphere. The slowness surface of
gP wave is a rotated ellipsoid. Similarly, the group velocity surfaces of §; and §, waves coincide and are a double
sphere, and the group velocity surface of gP wave is a rotated ellipsoid.

Conclusions. The paper proves that there is only one class of anisotropic media contai-
ning an open set of singular directions — these are elliptic orthorhombic media with stiffness
coefficients ¢ y=css=c¢( in different coordinate systems. We found equations for the stiffness
coefficients of these media in an arbitrary coordinate system and studied the conditions for
the positive definite stiffness matrix. We derive equations for slowness and group velocities
surfaces for these media. It is shown that in the canonical coordinate system, the slowness
surfaces of S| and §, waves of these media coincide with each other and are a sphere with a

. -1/2 . . . . .
radius ¢y4 ~. The slowness surface of ¢4p wave in the canonical coordinate system is an ellip-

. . . -2 -1/2 -1/2
soid with semi-axes ¢;; 7, ¢y 7, 33

This paper is purely theoretical and devoted to the definition of anisotropic models with
isotropic §; and S, waves (with the same velocity) and anisotropic (elliptic) gP wave. The
polarization vectors for §; and §, waves can be arbitrarily selected in the plane orthogonal to
the polarization vector of gP wave. However, the gP wave polarization vector can be signifi-
cantly different from the wave vector. This feature should be taken into account in the joint
processing and modelling of S and gP waves.
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AHI30TpOIIHI cepepAOBHUIIIA 3 CUHTYASIPHUMHA
IMOBEPXHSIMU IMMOBIABHOCTI

IO.B. POF&HOBI, A. CTOBEICZ, B.IO. POI‘&HOB3, 2024

!Tesseral Technologies Inc., Kuis, Ykpaina
ZHOpBe3BKI/Iﬁ VHIBEPCUTET 3 IPUPOAHNYNX | TEXHIUHUX HayK, TpoHxenmM, Hopseria
SIHCTI/ITYT kibepreruku iMm. B.M. I'nymkosa HAH Ykpainu, Kuis, YKpaina

VY cTaTTi AOBEAEHO, 11O B @HI30TPOIIHOMY CEPEAOBUINI 3 BIAKDUTOIO MHOKHHOIO CHH-
TYASPHUX HAIIPSAMKIB iCHYIOTH ABI IIOBEPXHI ITIOBIABHOCTI, IKi HOBHICTIO 30iraroThcs. Bia-
IIOBiAHE aHI30TPOITHE CePeAOBUIIE € eAIlNTUYHUM opTopoMOigHuM (OPT) cepepoBuirieM
3 OAHAKOBHAMM KOEILIEHTAMHU IIPYKHOCTI C44=C55=Cqg.

Ha miapcTaBi 300pa>xeHHa mMaTpulli Kpictodeasa y BUTAIAL OAHOBICHOTO TeH30pa Ta
BpaxyBaHH{, 1110 eneMeHTaMu MaTpulii Kpictodeasa e kBappaTudHi (popMu Bip KOMIIOHEHT
BEKTOPA ITOBIABHOCTI, CKAQAEHO CUCTEMY OAHOPIAHUX ITOAIHOMIAABHUX PIBHSAHB, CIIPABEA-
AUBUX AAS BCIX BEKTOPIB MOBIABHOCTI. TOTOKHY PIBHICTE ITIOAIHOMIB Yy CUCTEMI PiBHAHB
3aMiHEeHO Ha PiBHICTB iX KoeiIieHTiB. Y pe3yAbTaTi OTPUMaHO HOBY CUCTEMY PiBHSAHB,
KOPEeHSIMMU SKOI € 3HaUeHHS 3BepAeHUX KoeilieHTiB IIPY’KHOCTI. AOCAIA’KEHO YMOBH IIO-
3UTUBHOTO BU3HA4YeHHSA OTPHUMAHOI MATPHUIli IIPY’KHOCTI. AAd 3HAMAEHOrO aHi30TpOIl-
HOTO CepeAOBHUIlla BUBEAEHO PiBHAHHA KpicToeasa Ta piBHAHHSA IIOBEPXOHb IPYIOBUX
IIBUAKOCTEeN. BU3HaUeHO OPTOrOHAABHY MATPHUIIIO MOBOPOTY OTPUMAHOI'O €AIITUYHOTO
OPT-cepepoBullla B KAHOHIUHY CUCTEMY KOOPAMHAT. [ToKa3aHo, I1T0 B KQHOHIYHIN CUCTeMi
KOOPAMHAT IIOBEPXHI ITOBIABHOCTI §1- Ta S)-XBUAB 30iraloThCst MiXK CO00I0 Ta € cheporo

3 papiycoM c;:/z . IToBepxHs MOBIABHOCTI gP-XBUAI AAST ITHOTO CEPEeAOBUIIA B KAHOHIUHIN
CHCTeMi KOODAMHAT € eNTcoipoM 3 miBocsmu ¢, ¢, , ¢33 . BekTopm moasipu3artii S - i
S,-XBUAb MOKHA AOBIABHO BUOMPATH B IIAOIIMHI, OPTOIOHAABHIN BEKTOPY IIOASIPU3ALLI ¢ -
xBUAL. [TpoTe BeKTOP MoAsipu3allii ¢P-XxBUAI MOJKe iCTOTHO BIAPI3HSATHCS Bip XBUABOBOTO
BeKTOpa. LIt0 0COOAMBICTE CAip BPaXOBYBaTH B pasi CIIiABHOI OOPOOKHU Ta MOAEAIOBAHHS
S- 1 gP-xBUAB. Pe3yAbTaTu CTaTTi IPOAEMOHCTPOBAHI Ha OAHOMY IIPUKAAAL €AIIITUYHOTO
OPT-cepepoBuiiia.

KAr040Bi cAOBa: CUHTYASIPHA TOYKA, CUHTYASIPHA IIOBEPXHS, Pa30Ba IMIBUAKICTb, MaT-
putisg Kpicrodeas, exinTuuHe opTopoMOiuHe cepepoBUIIIE.
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