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Результата мОжнародного проекту "Геолопя без кордошв" беззастережно подтвердили 
наявшсть системи розломОв у  кристалзчнш кор! басейну Чорного моря, видАених за гравь 
тацшними i магштними даними. М тц я  розташування 135 з майже 150 розломОв на ii по- 
верхш, отриманих за даними аналОзу сейсмчних розрОзОв у  рамках цього проекту, повшс- 
тю збнаються з розломами видАено! системи. Вперше наведено докази вирОшально! рол! 
розломОв кристалОчно! кори у  розкритп басейну Чорного моря. Довготнуюча Одесько- 
Синопська зона розломОв докембршського закладення мала першорядне значення для цьо­
го процесу. Вона роздОлила предрифтову континентальну кору на два блоки, як! чгтко ви- 
значено комплексним геофОзичним аналОзом, з рОзною геолопчною структурою. ЗахОдно- 
та Сходночорноморсью западини розкрилися шд впливом двох рОзних мехатзматв. ЗахОд- 
на западина, за винятком ii сходно! частини, була розкрита позаду континентального фраг­
мента, який перетщувався на твденний сход уздовж двох паралельних зон глибинних роз- 
ломОв: ловосторонньо! Одесько-Синопсько! (сшльно Оз ЗахОднокримсько-Понтшським роз- 
ломом) О правосторонньо! Балкансько-Понтшсько!. 1нша частина басейну Чорного моря 
утворилася внаслОдок обертання проти годинниково! строки великого континентального 
блока, що зумовило утворення рифту в СхОдночорноморськОй западиш та формування зони 
розломОв Одесько-Синопсько-Орду. ПравобОчнО зсуви в цОй зонО зумовили утворення восьми 
пулл-апартових локальних басейшв у  твденно-сходнш частит ЗахОдночорноморсько! запа­
дини. Одесько-Синопська система розломОв як довгоОснуюча структура, можливо, контролюе 
змшу простягань ЗахОдних О СхОдних Понтид О сучасне розмщення шд гострим кутом одна 
до одно! основних рифтових осей чорноморських западин. ПОвденно-схОдне продовження 
Одесько-Синопського розлому фжсуе заходну межу докрейдяних вОдкладОв СхОдних Понтид.

Ключов! слова: Чорне море, консолОдована кора, розломи, мехашзм розкриття.

1. Introduction. The Black Sea opened as a 
back-arc basin related to the northward subduc- 
tion of the Neo-Tethys Ocean [Zonenshain, Le Pi- 
chon, 1986; Finetti et al., 1988; Okay et al., 1994, 
2014; Banks et al., 1997; Nikishin et al., 2003, 2013; 
Okay, Nikishin, 2015]. Although the timing and 
opening history of its sub-basins are still consi­
derably debated, there is growing agreement that 
their forming was diachronous [Okay et al., 1994, 
2014; Spadini et al., 1996, 1997; Nikishin et al., 
2003; Hippolyte et al., 2010; Starostenko et al., 2010, 
2015; Nikishin et al., 2013; Okay, Nikishin, 2015]. 
The East Basin back-arc extension occurred no 
earlier than the Late Cretaceous while the rifting 
of the W est Basin predated this event. Spadini 
et al. [1996] and Cloetingh et al. [2003, 2013] we­
re the first to explain the difference in the age of 
sub-basins formation by lateral variation of the in­

herited lithospheric rheology. Inherited lithosphe­
ric —  scale heterogeneities also control the large- 
scale temporal and spatial deformations of the Black 
Sea Basin [Espurt et al., 2014]. The pre-existing long- 
live Odessa-Sinop (O S ) deep fault zone was re­
sponsible for the initial separation of the future 
Black Sea into two sub-basins having dissimilar 
physical properties and distinct evolutionary trend 
[Starostenko et al., 2010, 2015]. Recently, a num­
ber of researchers brought into question the back- 
arc origin of the W est Black Sea Basin (W BSB ) 
[e. g. Schleder et al., 2015; Tari, 2015].

The model of Okay [Okay et al., 1994] for the 
opening of the WBSB hypothesizes the two ma­
jor strike-slip faults on its eastern and western 
sides to translate the Istanbul terrane from the 
Moesian Terrane to the Pontides. It involves the 
W est Crimea (W CF) sinistral strike-slip and the
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W est Black Sea fault (WBSF) dextral strike-slip 
respectivly.

However, this model accounting for southward 
movement of the Istanbul zone along the WCF and 
WBSF is problematic for several reasons. Reflec­
tion seismic data indicate that the W CF cut on­
ly sedimentary cover next to the western coast­
line of Crimea [Finetti et al., 1988]. Moreover, re­
cent Black Sea SPAN data [Kaymakci et al., 2014] 
did not ascertain any evidence for the WCF. One 
expects that a fault providing transportation of a 
large sliver of the continental crust must cut the 
entire lithosphere [Silvester, 1988]. As for the WBSF, 
its existence is controversial [Munteanu et al., 2013; 
Kaymakci et al., 2014]. Among other things, the 
WBSF and W CF bounding the Istanbul Block are 
significantly nonparallel to each other and con­
sequently one cannot classify them as transform 
faults in the terms of plate tectonics [e. g. Silves­
ter, 1988; Molnar, 2015]. In the alternative sce­

nario of opening the WBSB Banks and Robinson 
[1997] placed the eastern sinistral strike-slip fa­
ult along the western foot of the entire slope of 
the Mid-Black Sea High (M B SH ). However, the 
MBSH consists of the Andrusov and Archangel- 
sky Ridges with different origins and ages shift­
ed relative to each other by the OS deep fault zo­
ne [Starostenko et al., 2015].

Based on the idea of the separate origin of the 
W est and East Basins through different mecha­
nisms [Okay et al., 1994; Banks, Robinson, 1997], 
the aim of this paper is to present a new suppor­
ting information for similar geodynamic scenario 
from recent data on the crystalline crust faults and 
lithospheric structure of the region.

2. The faults of the crystalline crust in the 
Black Sea Basin. A  potential field data analysis 
produced a detailed map of the tectonic distur­
bances of different orders in the crystalline crust 
and upper mantle of the whole Black Sea [Staro-

Fig. 1. Map of the crystalline crust faults derived from the anomaly magnetic and residual gravity fields in an 
earlier version of the manuscript modified from [Starostenko et al., 2010, 2015]: 1 — boundary of the East Euro­
pean Craton; 2 — diagonal faults system of the first (a) and second (b) ranks; 3 — orthogonal faults system of 
the first (a) and second (b) ranks; 4 — transform faults [Shillington et al., 2009]; 5 — relative displacements 
along faults; 6 — direction of dip; 7 — 2 D reflection seismic lines [Graham et al., 2013; Nikishin et al., 2015 a; 
Amelin et al., 2014; Schleder at al., 2015; Tari, 2015]; 8 — locations of the faults on the surface of the crystalli­
ne crust from seismic data (black dots); 9 — deepwater sub-basins configuration. Faults: WBS — Western 
Black Sea, OS — Odessa-Sinop, OSO — Odessa-Sinop-Ordu, BP — Balkanide-Pontide, WCrP — Western- 
Crimea-Pontide, WBS — West Black Sea, AB — Alushta-Batumi. Abbreviations in the squares: EEC — East 
European Craton, NWSh — North-Western Shelf, WBSB — Western Black Sea Basin, EBSB — Eastern Black 
Sea Basin, TT — Tuapse Through, Sor — Sorokin Through, MBSH — Mid Black Sea High, Ar — Arkhangel- 
sky Ridge, An — Andrusov Ridge, ShR — Shatsky Ridge.
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Fig. 2. Density model for the Andrusov Ridge (a) [Starostenko et al., 2015] and geological interpre­
tation of seismic line BS-80 (b) [Nikisin, Petrov, 2013]: 1 — water; 2 — sediments; 3 — sedimentary 
rocks and granitoids; 4 — granodiorites of the upper crust; 5 — basic rocks; 6 — basic and ultra­
basic rocks; 7 — magmatic body [Scott, 2009]; 8 — bodies of increased magnetization; 9 — faults; 
10 — density in gcm-3 . See Fig. 1 for locations of the profiles. Both results unmistakably indicate 
a crystalline crust origin of the faults.
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stenko et al., 2004, 2010, 2015]. Here we only in­
troduce a brief characteristic of the main crustal 
faults without describing a procedure of their re­
vealing.

There are diagonal (NE and N W  strikes) and 
orthogonal (NS and WE strikes) major fault sys­
tems in the Black Sea (Fig. 1).

The diagonal system of the faults (NE 235— 
245° in the WBSB and N W  305— 325° in EBSB) 
controls the major tectonic units. The Western Black 
Sea (WBS) and Alushta-Batumi (AB) zones of the 
faults are the largest among them. The large OS 
fault zone of varying strike (140— 100°) also be­
longs to the diagonal system where it occupies a 
specific position.

Although there are nuances in the interpreta­
tions of the seismic results from the international 
"G eology without Limits" project [Graham et al., 
2013; Amelin et al., 2014; Nikishin et al., 2015a,b; 
Schlender et al., 2015; Tari, 2015] they generally 
agree with each other and mostly corroborate the 
set of the faults in Fig. 1. The locations of 135 from 
among ca. 150 faults on the surface of the crystal­
line crust derived from seismic sections (black dots 
on the lines in Fig. 1) completely coincide with tho­
se obtained from the potential field information.

The seismic-derived faults mostly penetrate the 
uppermost top of the ductile crystalline crust. M o­
reover, Tari [2015] recognized 30 faults in the crys­
talline crust up to the Moho boundary along the 
line 360 km long.

W e also provide the more detailed informati­
on to illustrate remarkable similarity between the 
tectonic settings from potential field and seismic 
data. Fig. 2, a, b present the cross-section from the 
gravity modeling [Starostenko et al., 2015] and the 
BS-80 seismic line [Nikishin et al., 2015 a] respec­
tively. Their comparison demonstrates that th lo­
cations and dip angles of the faults are identical 
although results derived from the independent geo­
physical methods used for studying the Andru- 
sov Ridge. Fig. 3 introduces another example of 
full corroborating the gravity and magnetic model 
of the OS fault zone by DSS results [Starostenko 
et al., 2015].

In Fig. 4 the depths of the seismic Moho dis­
continuity of the WBSB [Schleder et al., 2015] re­
flect the block structure of the bottom of the crys­
talline crust due to the hyper-deep faults. The fa­
ults of this study display the similar block struc­
ture of it. This figure also shows the zones of ste­
ep gradients in the Moho discontinuity, which de-

Fig. 3. Location of the faults in the crystalline crust from DSS and potential field data [Starostenko et al., 
2015]: 1 — velocity, km/s; 2 — EEC boundary; 3 — faults from DSS data; 4 — crystalline crust faults, see 
Fig. 4 (a — the first rank, b — the second rank). The DSS-derived faults clearly penetrate up to the Mo- 
ho discontinuity that supports a deep origin of the faults in this paper.
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Fig. 4. Depth of the seismic Moho discontinuity [Schlender et al., 2015] and crystalline crust faults 
(see Fig. 1). Dots denote steep gradients of the Moho topography.

lineate faults on the crust-mantle boundary. As is 
seen, the major strikes of the crystalline crust fa­
ults are completely supported by these zones in 
the bottom of the crust and change in the forms 
the relief of the crustal bottom, often displayed re­
lative to each other. The figure also exhibits a di­
stinct alternation of the M oho pattern from the 
central WBSB to the OS and OSO fault zones that 
is a direct independent evidence for their deep 
origin and reliability of their mapping from gravi­
ty and magnetic data.

Fig. 5 presents only diagonal system as it ma­
inly governs the tectonic setting in the Black Sea 
and plays a decisive role in our reconstructions. 
It includes the greatest OS (320—325° strike) with 
its major splays, Alushta-Batumi (AB) (295— 310°) 
and Western Black Sea (WBS) (235 °) deep fault 
zones. This system also incorporates the Balkani- 
de-Pontide (BP) (320°) and the complex zone of 
faults (245°) along the southwestern offshore of 
the Black Sea. The dextral slip faults of the N W

striking disturb this zone, which is sub parallel 
to the Intra-Pontide suture. Sub-Moho component 
of the gravity field distinctly portrays the great 
zones of the diagonal system fault zone (apart from 
the AB) that indicates their mantle origin [Staro- 
stenko et al., 2010, 2015].

The N W  OS fault zone of Precambrian initia­
tion is the direct submarine prolongation of the 
well-studied Proterozoic sinistral Talne deep fault 
on the Ukrainian Shield and on its southern slo­
pe. The Talne fault is a constituent part of the Go- 
lovanivska suture zone of the Ukrainian Shield, 
which separates two large continental domains 
with different deep structure and evolutionary his­
tory [Khain, Bogdanov, 1998; Gintov, 2005 among 
others].

The width of the OS zone is up to 100 km. It 
consists of the fragments of the same strike, dis­
placed by NE faults. In particular, the W C F is an 
inherited constituent of the eastern boundary of 
the OS fault zone and seismic reflection records
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Fig. 5. Faults in the crystalline crust in the Black Sea, diagonal system (modified from [Starostenko et al., 2010, 
2015]): 1 — faults continuation from interpretation of the Bouguer gravity anomaly map of Turkey [Ates et al., 
1999]; 2 — direction of moving along the shear strike-slip faults after rifting; 3—5 — location of the NAF (3 — 
[GkrMz, 2010], 4 — [Meijers et al., 2010], 5 — [Eyuboglu et al., 2012]); 6 — reverse and thrust faults (a), nor­
mal faults (b) [Meijers et al., 2010]; 7 — zones of Late Cretaceous volcanism [Nikishin et al., 2013]; 8 — sub­
basins axes. Abbreviations: NAF — North Anatolian Fault, EEC — East European Craton, WP — Western 
Pontides, CP — Central Pontides, EP — Eastern Pontides. See Fig. 1, 4 for other symbols and abbre-viations.

as mentioned above, documented it only in the 
sedimentary cover [Finetti et al., 1988]. To distin­
guish the deep fault from the shallow W C F we 
termed the former as the W est Crimea— Pontide 
(W C rP ) fault (see Fig. 1).

One can recognize the southern continuation 
of the OS fault zone in the steep gradients of the 
gravity and magnetic fields of the Turkish con­
tiguous onshore territory [Ates et al., 1999]. Fur­
ther to the southeast the zone changes its strike 
and prolongs as dextral fault into the eastern branch 
of the dextral North Anatolian Fault (N A F ) sepa­
rating the EP from the CP (Fig. 7). This is in line 
with recent speculation of [Nikishin et al., 2015b] 
about the Abana wrench fault between these tec­
tonic units.

The eastern branch of Late Cretaceous volca­
nic belt [Nikishin et al., 2013] extends along this 
zone, which strictly follows its strike and the wes­

tern segment is subparallel to the WBS deep fa­
ult. The OS fault also controls the obtuse angle 
(120°) between the western and eastern segments 
of the volcanic zone and the axes of the sub-ba­
sins.

Within the western part of the OS zone at sea 
and on land normal, reverse and thrust faults [Mei- 
jers et al., 2010] demonstrate clear tectonic con­
formity of their strikes (see Fig. 5). As is seen, the 
zone separates areas of different deformation ty­
pes: to the east normal faults occur and to the west 
—  reverse and thrust faults. Such a relationship 
between tectonic units with different ages and the 
OS deep fault of the Precambrian origin suggests 
the long activity and crucial role of this zone in 
forming the Late Cretaceous— Paleogene fold and 
thrust tectonic units.

As there is contradictory evidence for so cal­
led the shallow WBSF [Munteanu et al., 2013; Kay-
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makci et al., 2014], the diagonal BP deep fault 
zone striking 320 ° parallel to the OS fault is pro­
posed to be the best dextral railroad fault for ope­
ning the WBSB.

The western fault of this zone defines a boun­
dary between the Balkanides and Western Pon- 
tides. The gravity field in the coastal areas in Tur­
key [Ates et al., 1999] and Bulgaria [Georgiev, 2012; 
Trifonova et al., 2012] clearly trace this fault by ste­
ep gradients. It spatially coincides with the ma­
rine fragment of the W est Black Sea-Saros Fault 
[Nikishin et al., 2011] and is the borderline bet­
ween the rheologically stronger Balkanides— Mo- 
esian and weaker Pontide— W est Black Sea do­
main [Munteanu et al., 2013]. The trend of the BP 
zone is similar to that of the basement relief fea­
tures such as the Bourgas Basin [Georgiev, 2012], 
Paleo Bosporus Strait Basin and Kamchia Mari­
ne [Nikishin et al., 2015a]. It corresponds also 
to the general trend (315—320°) of the Teisseyre— 
Tornquist zone [Khain, Bogdanov, 1998]. The eas­
tern fault of the BP zone limits the domain of the 
Western Black Sea Basin and its rift magnetic ano­
malies belt [Starostenko et al., 2015]. The WBS, AB 
and OS fault zones are associated with the belts 
of the magnetic anomalies of different geometries: 
linear of the same strike and isometric. The mag­
netic anomalies of the AB fault zone resulted from 
the dykes of basic M iddle Jurassic rocks intru­
ded into the crust in an extensional setting [Shrei- 
der et al., 1997; Meisner et al., 2009; Meisner, 2010]. 
They appear to be imprint of rift-related process 
[Shreider et al., 1997; Besjutiu, Zugravesku, 2004].

3. Geodynamic implications. The rifting of the 
Black Sea commenced on the inhomogeneous con­
tinental lithosphere of an assemblage of various 
terranes formed by accretionary episodes from the 
Precambrian to the Early Mesozoic [Winchester 
et al., 2006; Pease et al., 2008]. Interpreting the 
BasinSPAN lines [Graham et al., 2013; Nikishin 
et al., 2015 a; Scheleder et al., 2015] revealed vast 
areas of the hyperextended continental crust in 
the Black Sea. There are some crustal fragments 
that one can classify them as suspect terranes [Ho­
well, 1989] because it is difficult to determine the­
ir original positions The continental lithosphere 
was separated into two large blocks by the Pre­
cambrian OS fault zone of the sub-Moho origin, 
which was repeatedly rejuvenated up to now [Krav­
chenko et al., 2003; Kutas et al., 2004]. The pre­
existing long-lived deep tectonic disturbance has 
catalyzed the individual evolution of the sub-ba­
sins in the Black Sea [Starostenko et al., 2010, 2015].

The opening of the western portion of the WBSB 
bounded on the east by OS fault (Fig. 6) took pla-

Fig. 6. WBS rifting in the mid-Cretaceous due to dext­
ral and sinistral movement along the OS and BP deep 
faults respectively. The OS fault zone of the crystal­
line crust separates two large continental domains. 
The BP fault zone in the west bounds the western do­
main. Within the Odessa shelf there exist pre-rift fault 
orthogonal to the OS and BP faults. The Karkinit rift 
is still closed. The movement of the Istanbul Terrain to 
the south-eastern direction ceased Intra Pontide Oce­
an: 1 — pre-rifting faults; 2 — incipient rift; 3 — Juras­
sic magmatic belt [Meisner, 2010]; 4 — direction of 
strike-slip movement; 5 — direction of the terrane mo­
vement; 6 — zone of overthrust an underthrust. See 
Fig. 1 for abbreviations.

ce in the mid-Cretaceous on the large block of 
the continental crust along the concave southern 
margin of the Eurasia on the Moesian Terrane [Go- 
lonka, 2004; Nikishin et al., 2011]. In pre-rift pe­
riod, the Istanbul Terrain was separated from the 
northwestern Moesian Terrane by the deep fault 
(later the WBS rift) of NE (235°) strike orthogonal 
to the OS and BP fault zones (Fig. 7). At that ti­
me, the Karkinit Trough did not yet exist within 
the block to the east of the OS fault. On the cont­
rary, the AB fault zone already occurred as a zo­
ne intruded by basic dykes and volcanoes of Mid­
dle-Upper Jurassic and Lower Cretaceous age res­
pectively [Shreider et al., 1997; Meisner et al., 2009; 
Meisner, 2010; Nikishin et al., 2015a,b].

The rifting of the incipient WBSB in the se­
cond half of the Early Cretaceous [Hippolyte et 
al., 2010; Graham et al., 2013; Okay et al., 2014; 
Kaymakci et al., 2014; Nikishin et al., 2015b; Okay, 
Nikishin, 2015] caused by the movement of the 
Istanbul Terrane towards the southeasterly direc­
tion of 140° along the OS and BP faults (see Fig. 7). 
This movement led to the pre-Santonian juxtapo­
sition of the Istanbul Terrane and Sakarya Zone,
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Fig. 7. Opening the EBSB in the Late Cretaceous due to anticlockwise rotation of the eastern continental 
domain: 1 — rift of the WBSB; 2 — Albian volcanoes [Nikishin et al., 2013], 3 — linear and isometric mag­
netic anomalies [Meisner, 2010]; 4 — rotation pole of the east domain [Okay et al., 1994]; 5 — rotation 
direction. TrF — Trabzon fault. See Fig. 1 for other symbols.

closure of the Intra-Pontide Ocean [Robertson, Us- 
taomer, 2004; Hippolyte et al., 2010; Ozcan et al., 
2012] and the formation of the west part of the 
WBSB bounded on the east by the western branch 
of the OS fault. In the entire OS zone and along 
the EEC boundary on the N W  Crimea there occur 
isometric or linear magnetic anomalies resulted 
from Cretaceous basic volcanic activity [Nikishin 
et al., 2013] in extension zones.

To the east of the OS fault, the EBSB and eas­
tern WBSB part within the OS fault opened after 
the WBSB unclosing due to the anticlockwise ro­
tation (about 30°) of a large continental block aro­
und the pole in North Crimea [Okay et al., 1994]. 
The rotation led to opening the Karkinit Trough, 
change in the sense of strikeslip motions along 
the eastern faults of the OS zone and displacement 
of the EEC southern boundary (see Fig. 7). This 
event produced opening the EBSB and originating 
arcuate —  like faults orthogonal to the trend of 
the present-day basin. It resulted in displacement 
of the AB zone of the magnetic anomalies (Juras­
sic rift?) to its present-day position, set of main­
ly arch-like sinistral strike-slip the AB zone, trans­
form faults (for example, Trabzon Fault) in the SE 
EBSB [Scott, 2009; Nikishin et al., 2015a] and ca­
used the triangular shape of the eastern sub-ba­

10

sin itself. The rotary motion also created the Si- 
nop— Ordu set of the faults with SE trend branch­
ing of the OS fault and forming the single OSO 
fault zone.

There exist no typical rift-related systems of 
the linear magnetic anomalies within the EBSB pro­
duced by basic dykes [ Starostenko et al., 2015]. 
Here are mapped only several linear and isomet­
ric anomalies. Such a pattern of the magnetic fi­
eld indicates aborted rift that agrees with crustal 
composition whose non-granitic area occurs only 
in the central sub-basin.

The southeastern part of the WBSB mostly oc­
cupies an area of a set of dextral slip faults of the 
SO fragment of the OSO fault zone, which comp­
letely coincides with those delineated in this work 
from seismic-derived basement topography [N i­
kishin at al., 2015a]. This domain does not seem 
to have been involved in forming the western part 
of the WBSB. Such a tectonic situation makes it 
possible to suggest that eastern part of the WBSB 
developed in pull-apart setting (Fig. 8) due to a 
set of dextral slip-strike faults. The SO segment 
of the OSO fault zone is associated with several 
linear magnetic anomalies produced by basic in­
trusions, which also support extensional environ­
ments [e. g. Molnar, 2015].
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Structural pull-apart sedimentary basins are 
w idely spread in strike-slip and extension set­
ting all over the world [Man, 2007]. Based on cur­
rent literature, Gtirbtiz [2010] meticulously sum­
marized their angular and dimensional characte­
ristics to obtain new empirical relations among the 
length and width parameters and to examine them 
along the N A F  zone. The pull-apart mechanism 
seems to be responsible for the origin of the Trab­
zon Basin [Nikishin et al., 2015b]. A  well-defined 
correlation is determined between length and width, 
whose average value is 3,2, with the acute ang­
les between the basins bounding faults clustered 
at 30— 35°.

W e attempted to estimate parameters of small 
pull-apart basins within the OSO fault zone in 
the southeastern domain of the WBSB whose ori­
gin resulted from dextral strike-slip faults due to 
the rotation of the EBSB. The rhomb- and trapezi­
um-like geometry of the basins is determined from 
the configuration of sub parallel master strike-slip

fault system and diagonal dipslip faults revealed 
by the present study in the seismic-derived base­
ment topography [Nikishin et al., 2015a]. Such 
an interpretation is rather illustrative because of 
the regional scale of the study. The separate de­
epest depression in this portion of the Black Sea 
arose from aggregate subsidence of eight distinct 
pull-apart smaller basins with higher rates of plun­
ge against to the surrounding area. The ratio of 
length/width is in the range of 2,4— 3,8 with an 
exception of the basins 1 and 7 where it is 1,7 and 
6,4 respectively. The acute angles between the mas­
ter faults of the basin margins and transfer faults 
are 30— 50°. These geometric parameters are ra­
ther well consistent with the characteristic of pull- 
apart basins [Gtirbtiz, 2010].

Two lines of evidence support the inference 
that the southeastern part of the WBSB is a com­
posite pull-apart basin. First, the age of sediments 
on its basement is the Upper Cretaceous while it 
is older to the west outside it [Nikishin et al., 2015 a].

Fig. 8. Pull-apart structures in the dextral shear OSO zone: 1 — faults (a — the first rank, b — accompa­
nying; 2 — overthrust faults [Rangin et al., 2002]; 3— 5 — NAF position (3 — [Gtirbtiz, 2010], 4 — [Meijers 
et al., 2010], 5 — [Eyuboglu et al., 2012]); 6 — derived from Bouguer gravity anomaly map of Turkey [Ates 
et al., 1999]; 7 — zones of Late Cretaceous volcanism [Nikishin et al., 2013], 8 — positive magnetic anoma­
lies; 9 — pull-apart structures; 10 — Andrusov Ridge; 11 — borders of sub-basins.

Геофизический журнал № 1, T. 39, 2017 11



O. M. RUSAKOV, I. K. PASHKEVICH

Second, main subsidence of this area occurred 
in the Aptian time [Hippolyte et al., 2010]. Besi­
des, the conclusion above allows us to negate the 
remark of Stephenson and Schelart [2010] that 
the cusp between the western and eastern sub-ba­
sins to the west of the MBSH represents a signi­
ficant complication for the back-arc models in­
volving diachronous oblique rifting if the cusp 
considered to be a pull-apart basin.

4. Discussion. There are two broad groups of 
geodynamic models to account for the Black Sea 
opening. The models of the first group incorpo­
rate one-stage mechanism with possible slightly 
different age of opening its sub-basins [e. g. Zo- 
nenshain, Le Pichon, 1986; Finetti et al., 1988; Ni- 
kishin et al., 2003, 2011; Stephenson, Schelart, 
2010]. The models of the second group involve a 
two-stage mechanism with clear time gap betwe­
en rifting in the western and eastern portions of 
the Black Sea [e. g. Okay et a!., 1994; Banks, Robin­
son, 1997].

Single entity models for the Black Sea open­
ing ignore principal differences between the two 
sub-basins in paleo-lithospheric rheology [Spadi- 
ni et al., 1996, 1997; Cloetingh et al., 2003, 2013] 
and inherited present —  day physical parame­
ters [ Starostenko et al., 2010, 2015]. The west­
ern part originated on the stable and cold con­
tinental lithosphere of 200 km thick in a back- 
arc setting while the eastern one developed on 
the pre-existing back arc-basin whose lithosphe­
re was thin (80 km) and warm [Spadini et al., 1996]. 
On the other hand, the two-stage models place 
the boundary between two sub-basins of the Black 
Sea along tectonic faults in the sedimentary co­
ver [Okay et al., 1994]. The notion about pre-exi­
stence of the OS fault zone of the sub-Moho ori­
gin allows us to avoid the significant controver­
sies of the above-mentioned models.

As the OS fault is the submarine continuation 
of the Ukrainian Shield Talne deep fault (secti­
on 2), the similar tectonic behavior is characteri­
stic of them. The sinistral Talne fault experienced 
multiple reactivations as dextral normal-reverse fa­
ult changing in a sense of strike-slip movements 
[Gintov, 2005]. This implies that the OS fault was 
also active tectonic feature prior to the Cretace­
ous time within the area where the future Black 
Sea basin will be formed. The multiple rejuvena­
tion of the OS fault zone and its land continua­
tion control the distribution of the volcanic and 
volcanic clastic rocks and tectonic displacements

in the Central and Eastern Pontides including 
(Fig. 9). This interregional deep fault separates 
the Upper Cretaceous volcanic and volcanic clas­
tic rocks from the turbidites of the forearc basin 
similarly as on the out-crop-based map in Fig. 9 
from [Okay, Nikishin, 2015]. Furthermore, in the 
post-Cretaceous time dextral slip movement dis­
placed these effusives along the OS fault zone 
that resulted in the geological setting of this area 
depicted on the above mentioned map.

The deepest basement depression in the wes­
tern sub-basin of the Black Sea occurs in its south­
eastern portion. The OS fault zone separates the 
basement into western and eastern parts where 
the morphology of its top is strongly distinct. The 
western domain displays simple slightly differen­
tiated linear configuration parallel to the WP. In 
contrast, the eastern part consists of local depres­
sions of different strikes whose formation is due 
to the dextral strike-slip during the EBSB rifting.

To the east of the OS fault zone, the Black Sea 
Basin opened because of the anti-clockwise ro­
tation of the large continental block around the 
pole situated in N. Crimea [Okay et al., 1994]. The 
rotation was responsible for the opening of the 
Karkinit Trough, change in the sense of strike- 
slip motions along the eastern faults of the OS zo­
ne, forming of the SO branch of it and the displa­
cement of the EEC southern boundary (see Fig. 7). 
This event produced opening the EBSB, origina­
ting arcuate-like faults orthogonal to the axis trend 
of the present-day basin. It resulted in displace­
ment of the AB Jurassic magmatic zone to the pre­
sent-day position, set of mainly arch-like sinistral 
strike-slip of this zone, transform faults (the Trab­
zon Fault, for example) in the SE EBSB [Scott, 2009].

Finally, the principal conclusions of this study 
are as follows.
1. The independent results of the international 

"G eology without Limits" project fully valida­
te the faults in the crystalline crust of the Black 
Sea from potential field data. The locations of 
135 from among ca. 150 faults on its surface 
derived from seismic sections in the frame of 
this project completely coincide with those of 
the present study.

2. Clear evidence is introduced for the crucial 
role of the crystalline crust faults in the open­
ing of the Black Sea among which the most im­
portant for this process were the OS and BP 
fault zones.

3. The Black Sea basin emerged on the two lar-
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Fig. 9. Relationship between the faults in the crystalline crust of the Black Sea (see Fig. 1) and onshore 
geological features after [Gbrbbz, 2010; Okay, Nikishin, 2015]: 1 — upper Cretaceous-Cenozoic strata; 2 — 
upper Cretaceous volcanic and volcaniclastic rocks; 3 — upper Cretaceous granitoids; 4 — ophiolitic me­
lange-accretionary complex with Triassic to Cretaceous basalt, chert, argillite; 5 — Pre-Cretaceous strata; 
6 — upper Cretaceous sandstone and shale-turbidite of the forearc basin; 7 — upper Cretaceous ophiolite, 
predominantly peridotite; 8 — late Cretaceous magmatic front. StM — Strandja massif; IAESZ — Izmir- 
Ankara-Erzincan suture zone. See Fig. 1, 4 for other abbreviations.

ge Precambrian blocks with district rheologi­
cal environment on both sides of the pre-exi­
sting Odessa-Sinop deep fault zone.

4. Two distinct mechanisms produced the Black 
Sea Basin opening. The western domain, except 
its eastern part, opened behind a continental 
fragment by orthogonal rifting due to the mo­
vement of the Istanbul Zone along two paral­
lel deep dextral (BP) and sinistral (O S) strike- 
slip faults. The rest of the Black Sea originat­
ed through the anticlockwise rotating of a lar­
ge continental block.

5. A  high obliquity of the major structural units 
and the dissimilarity in physical properties in 
the lithosphere of the Western and Eastern sub­
basins from the Precambrian to the present ti­
me decisively demonstrate that their opening

was diachronous on the two separate tectonic 
blocks with the post-rift auto-nomous and in­
dividual geological histories.

6. The deepest depressions in the southeastern 
part of the Western Black Sea are produced by 
aggregate effect of eight pull-apart small ba­
sins with higher rates of subsidence with res­
pect to the surrounding area in the belt of stri­
ke-slip faults within the OSO deep fault zone.

7. The southeastern prolongation of the OS fault 
forms the western boundary of the pre-Creta­
ceous strata of the EP and the Upper Cretace- 
ous— Cenozoic strata of the CP. 
Acknowledgments. Our thanks to Dr. B. Na-

tal'in, Prof. (Istanbul Technical University) for so­
me useful remarks in an earlier version of the ma­
nuscript.
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The decisive role of the crystalline crust faults 
in the Black Sea opening

©  O. M . Rusakov, I. K. Pashkevich, 2017

The results of the international "Geology without Limits" project unequivocally confirmed 
the faults pattern in the crystalline crust of the Black Sea delineated from gravity and magnetic 
data. The locations of 135 from among ca. 150 faults on its surface derived from the seismic 
sections of this project completely coincide with those of the present study used. For the first 
time, we introduced clear evidence for the decisive role of the crystalline crust faults in the ope­
ning of the Black Sea. The long-lived Odessa-Sinop (OS) fault zone of the Precambrian origin 
was of prime importance for this process. It separated the pre-rift continental crust into two 
blocks with a different geological structure definitely recognized by an integrated geophysical 
analysis. The West Black Sea and East Black Sea Basins opened by two distinct mechanisms. 
The western basin, except its eastern part, opened behind a continental fragment that orthogo­
nally rifted and moved towards the southeast along two parallel deep fault zones: the sinistral 
OS (together with the West Crimean — Pontides) and dextral Balkanides — Pontides (BP) fa­
ults. The rest of the Black Sea Basin has originated through the anticlockwise rotating of a large 
continental block that produced the breaking of the EBSB rift and forming Odessa-Sinop-Ordu 
(OSO) fault zone. The dextral strike-slip faults in this zone caused the opening of eight local 
pull-apart basins in the southeastern West Black Sea Basin. The OS fault system, as a long-term 
feature appears to control the strikes of the Western and Eastern Pontides and the present-day 
obliquity between the main rift axes of the Black Sea sub-basins. The direct southeastern pro­
longation of the OS fault forms the western boundary of the pre-Cretaceous strata of the Eastern 
Pontides.

Key words: Black Sea, crystalline crust, faults, opening mechanism.
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