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Chaos-Geometric approach to analysis of chaotic
attractor dynamics for the one-ring fibre laser
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Abstract Earlier we have developed new chaos-geometric approach to mod-
elling and analysis of nonlinear processes dynamics of the complex systems
systems. It combines together application of the advanced mutual information
approach, correlation integral analysis, Lyapunov exponent’s analysis etc. Here
we present the results of its application to studying low-and high-D attractor

dynamics of the one-ring fibre laser
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1. Introduction

Earlier [1]-[8] we have developed a new, chaos-geometrical combined ap-
proach to treating of chaotic low- and high-D attractor dynamics of complex
dynamical systems and forecasting its temporal evolution. Here we use this ap-
proach to carry out an analysis of nonlinear processes dynamics in the one-ring
fibre laser. Such systems has a great practicalk interest and is used in differ-
ent technical applications. Our approach combines together application of a few
techniques, namely, an advanced mutual information approach, correlation in-
tegral analysis, Lyapunov exponent’s analysis etc. Let us remind that during
the last two decades, many studies in various fields of science have appeared, in
which chaos theory was applied to a great number of dynamical systems, includ-
ing those are originated from nature [5]-[16]. The outcomes of such studies are
very encouraging, as they reported very good predictions using such an approach

for different systems.
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2. Chaos-geometrical approach to the one-ring fibre laser attractor

dynamics

In this work we study low-and high-D ttractor dynamics of the the one-ring
fibre laser. To speak more exactly, we make a detailes analysis of the output
voltage temporal variations series with two controlling parameters (the modu-
lation frequency f and dc bias voltage of the electro-optical modulator) and as
an analysis technique use the non-linear prediction approache and chaos theory
method (in versions) [1]-[8]. The output voltage temporal variations series for
the the one-ring fibre laser are described and listed in [9].

The fundamental aspects of our chaos-geometric approach version have been
in details presented earlier. So, below, we will give only ashort description of
the fundamental sapects, following to our papers [1]-[8]. As usually, one should
formally consider scalar measurements s(n) = s(tp+ nAt) = s(n), where
tp is a start time, At is time step, and n is number of the measurements. In
a general case, s(n) is any time series (f.e. atmospheric pollutants concentra-
tion). As processes resulting in a chaotic behaviour are fundamentally multi-
variate, one needs to reconstruct phase space using as well as possible infor-
mation contained in s(n). Such reconstruction results in set of d-dimensional
vectors y(n) replacing scalar measurements. The main idea is that direct use
of lagged variables s(n + 7), where 7 is some integer to be defined, results
in a coordinate system where a structure of orbits in phase space can be
captured. Using a collection of time lags to create a vector in d dimensions,
y(n) =[s(n),s(n + 7),s(n + 27),..,s(n +(d—1)7)], the required coordinates
are provided. In a nonlinear system, s(n + j7) are some unknown nonlinear
combination of the actual physical variables. The dimension d is the embedding

dimension, dg.

Let us remind that following to [1]-[8], the choice of proper time lag is important
for the subsequent reconstruction of phase space. If 7 is chosen too small, then
the coordinates s(n + j7), s(n +(j +1)7) are so close to each other in numerical
value that they cannot be distinguished from each other. If 7 is too large, then
s(n+j7), s(n+(j+1)7) are completely independent of each other in a statistical
sense. If 7 is too small or too large, then the correlation dimension of attractor
can be under-or overestimated. One needs to choose some intermediate position
between above cases. First approach is to compute the linear autocorrelation
function C'1(d) and to look for that time lag where C1(0) first passes through
0. This gives a good hint of choice for 7 at that s(n + j7) and s(n + (j + 1)7)
are linearly independent. It’s better to use approach with a nonlinear concept
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of independence, e.g. an average mutual information. The mutual information [
of two measurements a; and by is symmetric and non-negative, and equals to 0
if only the systems are independent. The average mutual information between
any value a; from system A and by from B is the average over all possible
measurements of [ 4p(a;, by). Earlier it was suggested, as a prescription, that

it is necessary to choose that 7 where the first minimum of I(7) occurs.

In [5]-[6] it has been stated that an aim of the embedding dimension determina-
tion is to reconstruct a Euclidean space R? large enough so that the set of points
d 4 can be unfolded without ambiguity. The embedding dimension, dg, must be
greater, or at least equal, than a dimension of attractor, d 4, i.e. dg > da.In
other words, we can choose a fortiori large dimension dg, e.g. 10 or 15, since
the previous analysis provides us prospects that the dynamics of our system
is probably chaotic. The correlation integral analysis is one of the widely used
techniques to investigate the signatures of chaos in a time series. If the time

series is characterized by an attractor, then correlation integral C(r) is related
to a radius r as d = lim 10%0(@
ogr

r—0,N — o0

, where d is correlation exponent.

3. Conclusions

As input data we have used detailed numerical data for time series of the output
voltage temporal variations series in depedence of with two controlling parame-
ters: the modulation frequency f and dc bias voltage of the electro-optical mod-
ulator [9]. In depending upon f and dc bias voltage V values there are realized
1-period (f = 75MHz, V = 10V and f = 60MHz, V = 4V), 2-period (f = 68
MHz, V = 10V or f = 60MHz, V = 6V), chaotic (f = 64MHz, V =10 V and f
= 60MHz, V = 10V) regimes in dynamics of the system. We are interested by a

chaotic regime, when there is realized chaotic attractor.

It table 1 we list the values of the autocorrelation function C; and the first
minimum of mutual information I,,;,1 for the output voltage amplitude of the
one-ring fiber laser system. Itis analyszed the time series of the output voltage
amplitude when the controlling parameter, namely frequency f of the electro-
optical modulator is changing (correspondingly, the dc bias voltage parameter

is constant). We call this regime as the chaos 1 one.

Table 1. Time lags (hours) subject to different values of C'r, and first minima
of average mutual information,/,,;,1, (time series of output voltage amplitude

of the one-ring fiber laser system).
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Series 1 | Series 2 | Series 3 | Series 4
Cp=0.1 | 78 96 124 138
Cr=0.5 | 11 13 9 22
Lyin 14 16 18 230

The values, where the autocorrelation function first crosses 0.1, can be chosen
as 7, but in [10]-[12] it’s showed that an attractor cannot be adequately re-
constructed for very large values of 7. So, before making up final decision we
calculate the dimension of attractor for all values in Table 1. The large values of
7 result in impossibility to determine both the correlation exponents and attrac-
tor dimensions using Grassberger-Procaccia method [12]. Here the outcome is
explained not only inappropriate values of 7 but also shortcomings of correlation
dimension method. If algorithm [4] is used, then a percentages of false nearest
neighbours are comparatively large in a case of large 7. If time lags determined by
average mutual information are used, then algorithm of false nearest neighbours
provides dg = 6.

Table 2 shows the correlation dimension (ds), embedding dimension (dg),
Kaplan-Yorke dimension (dy,), and average limit of predictability (Prqq., hours)
for time series of the output voltage amplitude in dependence of changing the
frequency f (dc bias voltage of the electro-optical modulator is fixed; chaos 1
regime) and changing dc bias voltage of the electro-optical modulator (frequency
f is constant; chaos 2 regime).

Table 2. The Time lag (7), correlation dimension (ds), embedding dimen-
sion (dg), Kaplan-Yorke dimension (d;) for time series of the output voltage
amplitude in dependence of changing the frequency f (dc bias voltage of the
electro-optical modulator is fixed; chaos 1 regime) and changing dc bias voltage

of the electro-optical modulator (frequency f is constant; chaos 2 regime).

Chaos 1 Chaos 2
T 6 6
(d2) | 3.0 3.1
(dg) | 4 4
dp, 2.85 2.88

Further the numerical calculation give the following positive values results for
two Lyapunov’s exponents (LE) A;, namely, one LE pair for chaos 1 regime:
0.168 and 0.0212 and for chaos 2 regime: 0.172 and 0.0215). It is obvious that the
positive confirm a chaotic feature of the system dynamics. Besides, we have found

that the time series of the output voltage amplitude in the chaos regimes have
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acceptable predictability than other time series, for example, in the hyperchaos

one.

So, in this paper we first have considered an application of an advanced chaos-

geometrical approach (combinatin of the advanced mutual information approach,

correlation integral analysis, Lyapunov exponent’s analysis etc) to numerical

modelling and analysis of an attractor dynamics of the one-ring fibre laser phase

space.
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