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Abstract. Role of gut microbiota in the pathogenesis of type 2 diabetes mellitus (literature review). Koval S.M.,
Snihurska 1.O. Type 2 diabetes mellitus is an extremely common disease that leads to the development of life-
threatening complications but its pathogenesis remains poorly understood. One of the promising directions in this area
is the study of disorders of gut microbiota. Literature data indicate that a number of quantitative and qualitative
changes in the composition of the gut microbiota are the most important factors in the pathogenesis of type 2 diabetes
mellitus. Bacteria of the genera Ruminococcus, Fusobacterium and Blautia are most involved in the pathogenesis of
this disease. The participation of the gut microbiota in the pathogenesis of type 2 diabetes mellitus is due to its
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metabolites, which play an important role in the regulation of the permeability and integrity of the intestinal wall, the
expression of specific intestinal receptors, incretin secretion, gluconeogenesis activity, chronic subclinical
inflammation, and even in adipose tissue remodeling. Further in-depth study of gut microbiota disorders is promising in
order to develop fundamentally new approaches to the treatment and prevention of type 2 diabetes mellitus.

Pegepar. Poap kumeynoii MUKpPOOHOTHI B MaTOreHe3e caxapHoro auadera 2 tuma (0030p JHUTepPaTypbl).
Korans C.H., Cuerypckas U.A. Caxaproui ouabem 2 muna — upe3ebluaiiHO pacnpoCcmapHeHHoe 3abojiesanue,
KOMopoe npusooum K passumuio JCU3HeONACHbIX OCIOHCHEHUU, 0OHAKO e20 NAmozeHe3 OCmaemcs He 00CmAamoyHo
gvisicHeHHbIM. OOHUM U3 NEePCREeKMUBHBIX HANPAGICHUL 8 YMOU 001acmu AGNAEMCs U3yYeHue HAPYWEeHULl KUUeyHOU
MUKpoOuomul. Januvie numepamypul c6UOEmenbCmeyom 0 mom, Ymo yenwlii psio KOIUYECMEEHHbIX U KAYeCNBEeHHbIX
UBMEHEeHUIl cOCMABa KUUEeUHOU MUKPOOUOMbL SGNACNCA BANCHETMUMU (AKMOPAMU NAMO2EHe3d CaxapHo2o duabema 2
muna. B naubonvweii cmenenu 6 namozene3 O0aHHO20 3a601e6aHUsA 806leUeHbl Daxkmepuu podog Ruminococcus,
Fusobacterium u Blautia. Yuacmue xuweynoli MUkpoouomel 8 namozeHese caxapHo2o ouabema 2 muna ob6ycio8ieHo
ee Memabonumamuy, KOMopvle USparom 6adCHyl0 pPOTb 6 pe2yiayul NPOHUYAeMOCMU U YEAOCMHOCIU CHEHKU
KUWEYHUKA, —IKCHpeccuu  cneyupuueckux peyenmopos KUUWeYHUKA, CeKpeyuu UHKPemuHos, —aKmueHOCmi
2NIIOKOHEO2eHe3d, XPOHUYECKO20 CYOKIUHUYECKO20 BOCNANEHUA U 0ddxce 6 PeMOOeTUPOSAHUU HCUPOBOL MKAHU.
Ilepcnekmusnvim  sersemcsa OdanvHeluiee yenyOneHHoe usyueHue HApYuweHUll KUWEeUHol MUKpOOUOmbvl ¢ Yeabko

Paspabomxu nPUHYUNUATLHO HOBBIX NOOX0008 K IeYEHUIO U NPODUIAKMUKE caxapHo2o duabema 2 mund.

Type 2 diabetes mellitus (DM) is a highly common
multifactorial disease that leads to the development of
life-threatening complications and premature death of
patients [46]. Given the great medical and social
importance of the problem of type 2 diabetes, intensive
studies of the main mechanisms of its pathogenesis are
carried out, including genetic predisposition to type 2
diabetes and candidate genes associated with this
disease [1, 4], insulin resistance (IR) [1, 4], disorders of
glucagon, incretins [4, 41], cytokines and adipokines
[20, 26, 27, 37], various neurohumoral factors [4, 35,
41]. However, despite this, the pathogenesis of type 2
diabetes remains unclear.

One of the promising areas of research on the
pathogenesis of type 2 diabetes is the study of the role
of gut microbiota (GM) disorders.

The purpose of this work is to review the literature
on the problem of studying the role of GM disorders in
the pathogenesis of type 2 diabetes.

The search for literature was carried out in scien-
tometric databases Google Scholar, PubMed, Web of
science, Scopus. Relevant scientific publications for
the period 2014-2020 were selected to determine the
state of GM in patients with type 2 diabetes and
changes in GM at the stage of prediabetes. The search
terms were: "gut microbiota", "sequencing", "type 2
diabetes", "pathogenesis".

GM, due to its multifaceted impact on the entire
metabolic system of the body, is recognized as a full-
fledged functional "organ" that plays an important role
in digestion, nutrition, immune regulation and
metabolism. It was found that more than 90% of GM
of a healthy person is represented by Bacteroidetes and
Firmicutes, including representatives of the genera
Lactobacillus, Clostridium and  Ruminococcus.
Actinobacteria, Verrucomicrobia and Fusobacteria are
also part of GM, but in much smaller quantities [3, 41].
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To date, the role of GM in the development of a
number of diseases and, above all, diseases of the
gastrointestinal and urogenital tract, skin, nasopharynx,
allergic, autoimmune and cancer diseases, as well as
obesity, atherosclerosis, hypertension and many others
received evidence [2, 3, 5, 41]. In recent years this list
also includes type 2 diabetes [10, 11, 16].

Studies show that already at the stage of prediabetes
the following changes in the composition of GM are
observed in comparison with healthy individuals:
decrease in the total content of bacteria of the
Clostridiales series against the background of in-
creasing content of such representatives as Dorea,
Ruminococcus, Sutterella and Streptococcus; reduction
in the number of bacteria that decompose mucin -
Akkermansia muciniphila, belonging to the type
Verrucomicrobia [6]. Most studies on changes of GM
in patients with type 2 diabetes have reported an
increase in bacteria of the genera Ruminococcus,
Fusobacterium, and Blautia, and a decrease in the
number of bacteria of the genera Bifidobacterium,
Bacteroides, Faecalibacterium, Akkermansia, and
Roseburia in the gut of these patients [11, 13, 33, 36].
However, there are conflicting data regarding the
association of Blautia bacteria with type 2 diabetes.
Thus, in the work of Tong X. et al. (2018) it is shown
that the number of Blautia bacteria in patients with
type 2 diabetes increases after a significant im-
provement in carbohydrate and lipid metabolism under
the influence of antidiabetic therapy [42].

A number of studies has shown a positive
correlation between Bacteroidetes / Firmicutes and
Bacteroides-Prevotella / Clostridium Coccoides-Euba-
cterium rectale with plasma glucose levels [10]. At the
same time, the analysis of data from 42 studies did not
confirm the association of the ratio of Bac-
teroidetes / Firmicutes with type 2 diabetes [36].
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Of interest are studies of the association of bacteria
of the genus Lactobacillus with impaired carbohydrate
homeostasis and type 2 diabetes. These bacteria are
gram-positive rod-shaped ones, facultative anaerobes
are the main part of the group of lactic acid bacteria
that convert sugar into lactic acid. An increase in the
number of these bacteria in the gut of patients with
prediabetes and type 2 diabetes compared to healthy
individuals has been shown [36]. However, the results
of the research are not homogeneous. Thus, in patients
with type 2 diabetes there is, on the one hand, an
increase in the number of Lactobacillus acidophilus,
Lactobacillus gasseri, Lactobacillus Salivarius, and on
the other — a decrease in the number of Lactobacillus
amylovorus [36]. There are also conflicting data on the
testing of some species of Lactobacillus as probiotics
and their effect on carbohydrate metabolism. Thus,
Lactobacillus sporo—genes, Lactobacillus casei Shi-
rota and Lactobacillus reuteri improve carbohydrate
metabolism in patients with type 2 diabetes [18, 19, 21,
41], but in most cases in combination with bacteria of
the genus Bifidobacterium [36]. In addition to studies
examining changes in the quantitative composition
of various bacteria, information on the main me-
chanisms by which GM affects carbohydrate
metabolism is important for understanding the role
of GM disorders in the pathogenesis of type 2
diabetes.

Bacterial production of short-chain fatty acids
(SCFA), which are produced in the human colon and
cecum after anaerobic fermentation of indigestible
dietary fiber with the help of sugar bacteria can be
one of the significant mechanisms of this effect of
GM. Their main representatives — acetate, pro-
pionate and butyrate make up 95% of SCFA and are
one of the most common compounds obtained with
the participation of GM. Studies show that the
deficiency of SCFA synthesis is associated with the
development of type 2 diabetes [16, 36]. However,
there is evidence that butyrate induces the
expression of genes involved in intestinal gluco-
neogenesis, and propionate itself is a substrate of
gluconeogenesis [16]. Zhao L. et al. (2018) showed
that not all, but only a small number of microbial
strains are involved in the production of SCFA [17].

An important feature of SCFA is the ability to
affect the permeability of the intestinal wall. It has
been suggested that increased intestinal permeability
may lead to damage to pancreatic B-cells due to
increased absorption of exogenous antigens. Ex-
perimental studies prove the ability of butyrate to
improve the integrity of the intestinal wall [16].
Thus, Xu Y.H. et al. (2018) showed that oral
administration of butyrate significantly reduced the
levels of HbAlc, inflammatory cytokines and
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lipopolysaccharides in plasma in db/db mice, and
after treatment with butyrate, local infiltration of
inflammatory cells decreased, intestinal integrity
increased and intercellular adhesion elevated [40].

The discovery of their receptors was important
for understanding the role of SCFA, which allowed
us to consider SCFA as important signaling mo-
lecules. Two GLC-activated G protein-coupled
receptors have been described and identified as
modulators of host-microbiota interaction: GPR41
and GPR43. These receptors are also known as
free fatty acid receptors: FFAR3 and FFAR2, res-
pectively. They have been found in the gut, sym-
pathetic nervous system, liver, white adipose
tissue, skeletal muscle, pancreas and immune
tissues [16, 25, 41].

Experimental studies have shown that SCFA,
mainly through GPR43 receptors (FFAR2), are able
to stimulate the secretion of a number of intestinal
peptide hormones, including incretin-glucagon-like
peptide-1 (GLP-1) [16, 44].

Incretins play an important role in the regulation
of insulin secretion and appetite. Incretins, in ad-
dition to GLP-1, include gastric inhibitory poly-
peptide (GIP). These hormones, released from
enteroendocrine cells, are secreted into the
bloodstream and rapidly stimulate insulin secretion
from B-cells in response to food intake [4].

Faerch K. et al. (2015) in a clinical study of 1462
people showed a decrease in GLP-1 secretion in
response to oral glucose loading in patients with
type 2 diabetes, as well as in patients with pre-
diabetes and obesity, compared with normal body
mass and normal glucose tolerance, which indicates
a disorder of GLP-1 secretion at the stage of
prediabetes [14].

It has also been shown that type 2 diabetes
mellitus develops specific dysbiosis that induces
resistance to GLP-1 [9].

One of the ways in which GM affects the
secretion of incretins is the increase in the number of
enteroendocrine L-cells in the gut. Experimental
studies have shown that the number of ente-
roendocrine L-cells doubled in the proximal colon of
rats treated with oligofructose, which contributed to
higher production of endogenous GLP-1 [10]. It has
also been shown that the addition of indigestible
carbohydrates, such as oligofructose, improves
glucose tolerance, reduces IP and food consumption,
which has been associated with increased plasma
GLP-1 levels [16].

There is also evidence that some GM bacteria
may affect the secretion of incretins through the
products of their own metabolism. Thus, it was
found that sulfate-reducing bacteria produce

Licensed under CC BY 4.0



MEJINYHI IIEPCIIEKTUBH / MEDICNI PERSPEKTIVI

hydrogen sulfide (H,S) in the colon, which can
directly stimulate the secretion of GLP-1 [33]. At the
same time, there is evidence of an inhibitory effect
of H,S on the release of GLP-1 in vitro [35], which
indicates the need for further research to clarify the
role of sulfate-reducing bacteria in complex glucose
metabolism.

As shown by experimental studies, another
metabolite of GM - indole, formed during the
dissimilation of tryptophan in GM, is able to
regulate the secretion of GLP-1 from enteroen-
docrine L-cells of the mouse colon: to increase — in
case of short-term exposure, but reduce — in the long
term, i.e. to play the role of a signaling molecule
through which GM can interact with enteroendocrine
cells and change the glycemic control of the host [16].

One of the mechanisms of GM's effect on
incretin secretion is mediated by its effect on the
intestinal nervous system — on nerve cells of the
myenteric plexus, which leads to decreased ex-
pression of GLP-1 receptor and stimulation of
gastrointestinal motility [24].

Thus, the regulation of incretin production by
modulating the parameters of GM can open a new
direction in the treatment of type 2 diabetes [9]. In
this regard, the possibility of direct effects on insulin
secretion and B-cell proliferation through FFA2 and
FFA3 receptors is very promising [15, 38].

Analyzing the possible ways of GM influence on
glucose metabolism in the human body, it is also
necessary to dwell on the bacterial metabolism of
bile acids (BA). It is known that primary BA (cho-
leic and chenodeoxycholic) are formed in the liver
from cholesterol, and secondary BA (deoxycholic,
lithocholic, alocholic and ursodeoxycholic) are
formed in the colon from primary ones under the
influence of GM. Thus, Bifidobacterium and Lac-
tobacillus produce bile salt hydrolases, which
convert primary conjugated bile salts into de-
conjugated (primary) BA, which are subsequently
converted into secondary ones [10].

BA regulate their own hepatic synthesis through
a negative feedback mechanism, which involves a
direct interaction between the BA and the farnesoid
X-receptor (FXR — farnesoid X receptor) in
hepatocytes and enterocytes of the ileum. The
expression of fibroblast growth factor-19 (FGF-19)
1s induced in the ileum, which enters the circulation
and further inhibits the synthesis of BA [10, 16].
FXR is expressed in a variety of metabolically active
tissues, including the liver, intestines, and white
adipose tissue. Conjugated and unconjugated BA
can interact with FXR, with henodeoxycholic acid
being their strongest activator, while other BA are
likely to be FXR antagonists [10, 16].
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BA are potent signaling molecules, mainly due to
their interaction with the FXR receptor and the
membrane-G protein-coupled receptor TGRS [10]. It
has been shown that BA, by activating FXR and
TGRS, are involved in the regulation of glucose
homeostasis and energy metabolism - activation of
intestinal FXR can both reduce and increase IR in
obesity [22, 23, 39]. In addition to FXR and TGRS,
FGF19, which stimulates glycogen synthesis in the
liver in the postprandial state, may be an important
regulator of blood glucose levels [10, 16].

The effect of GM on glucose metabolism can
also be carried out through the regulation of in-
flammatory processes, in particular in adipose tissue
[12, 45]. The association of chronic inflammation of
adipose tissue in obesity, IR and type 2 diabetes has
now been proven [16]. There is a strong and unique
metabolic interaction between the intestine and
peripheral white adipose tissue through compounds
and metabolites produced or induced by GM, which
affect the state of carbohydrate metabolism of the
host [45]. An association between intestinal bacteria
and inflammation has been identified through the
identification of intestinal bacterial lipopoly-
saccharide, an inflammatory factor that plays an
important role in the development of IR, obesity and
type 2 diabetes [10]. A number of studies have
shown that some representatives of GM are able to
inhibit the production of large amounts of pro-
inflammatory cytokines and chemokines. Thus,
Lactobacillus plantarum, Lactobacillus paracasei,
Lactobacillus casei can reduce the level of
interleukin (IL)-1f, protein-1 chemoattractant mono-
cytes, intercellular adhesion molecules-1, IL-8 and
C-reactive protein [8, 29]; Lactobacillus paracasei
and Bifidobacterium fragilis inhibit the expression
of IL-6 [28, 36]; Lactobacillus, Bacteroides and
Akkermansia inhibit the production of tumor
necrosis factor-o [7, 28, 36]; Lactobacillus
paracasei, Faecalibacterium prausnitzii and bacteria
that produce butyrate — Roseburia intestinalis and
Faecalibacterium, inhibit the activity of nuclear
factor NF-xB [28, 30, 36]; Lactobacillus casei and
Roseburia intestinalis reduce the production of the
proinflammatory cytokine interferon (IFN)-y [17]
and, in addition, Roseburia intestinalis inhibits the
synthesis of IL-17 [37].

There are also papers indicating the induction of
anti-inflammatory IL-10 synthesis by such bacterial
species as Roseburia intestinalis, Bacteroides fra-
gilis, Akkermansia muciniphila, Lactobacillus plan-
tarum, Lactobacillus casei, which is associated with
improved glucose metabolism [36]. Increased
expression of this cytokine in the muscles of mice
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has been shown to prevent the development of
aging-related IR [20].

Of great interest are the data that the components
of GM can regulate the energy metabolism of the
host by remodeling adipose tissue. Thus, Kim M. et
al. (2017) in an experimental study showed that
KetoA [10-0x0-12 (Z) -octadecenoic acid], a meta-
bolite of linoleic acid produced by intestinal lactic
acid bacteria, activates genes involved in the
functioning of brown adipocytes, including trans-
membrane protein thermogenin-1 in white adipose
tissue. This further increases energy expenditure in
mice and thus reduces metabolic disorders as-
sociated with obesity [43].

Another experimental study [31] showed an
increase in the amount of brown adipose tissue
under the action of GM products, which increased
tissue sensitivity to insulin, as well as reducing the
size of white fat and adipocytes in lean mice and in
various models of mice obesity. A significant
contribution to the above processes is made by the
LCDs described above, probably through the TGRS
receptor [16].

CONCLUSIONS

Thus, the data accumulated in the literature
suggest that a number of quantitative and qualitative
changes in the composition of the intestinal
microbiota are the most important factors in the
pathogenesis of type 2 diabetes. Bacteria of the
genera Ruminococcus, Fusobacterium and Blautia
are most involved in the pathogenesis of this disease.
The participation of intestinal microbiota in the
pathogenesis of type 2 diabetes is primarily due to
its metabolites, which play an important role in
regulating the permeability and integrity of the
intestinal wall, expression of specific intestinal
receptors, secretion of incretins, gluconeogenesis,
chronic subclinical inflammation and chronic sub-
clinical inflammation. adipose tissue remodeling.
Further in-depth study of GM disorders is promising
in order to develop fundamentally new approaches
to the treatment and prevention of type 2 diabetes.
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