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QUASICLASSICAL THEORY OF TUNNEL IONIZATION
OF AN ATOM BY PARALLEL ELECTRIC AND
MAGNETIC FIELDS

The method of quasiclassical localized states is developed for the stationary Schro-
dinger equation with an arbitrary axially symmetrical electric potential of barrier
type and potential of uniform magnetic field directed along the symmetry axis. Us-
ing this method in classically forbidden and allowed regions quasiclassical wave-
functions for an arbitrary atom in the parallel uniform electric and magnetic fields
are constructed. The general analytical expressions for leading term of the asymptot-
ic (at small intensities of electrostatic and magnetic fields) behaviour of ionization
rate of an atom in such electromagnetic field are found.
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Introduction

The problem of an atom in an electro-
magnetic field plays the fundamental role in
quantum mechanics and atomic physics and
has many applications (see, for example, [1-3]
and the references therein). Since the twenties
[4] of the previous century, properties of an
energy spectrum of hydrogen atom and other
atoms in external fields of various configura-
tions were intensively studied in the frame-
work of the Schrddinger equation.

In order to construct a consistent theory
of tunnel ionization of atoms, one should
solve the problem of electron motion in the
field created by nucleus and external electro-
magnetic field. In the case of parallel electric
and magnetic fields, the Schrodinger equation
does not permit complete separation of varia-
bles in any orthogonal system of coordinates.
Therefore, the given problem has no exact an-
alytical solution, and numerical methods are
still demand significant computational efforts.

The quasiclassical theory of atomic par-
ticles decay elaborated in sixties (see for in-
stance [3]) has allowed obtaining useful ana-
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Iytical formulae for ionization rate which are
asymptotic in the limit of “weak” fields. Both
neutral atom [1, 5, 6, 7] and negative ions like

H™, J™ etc. [5, 8] (the first of these problems
is more complicated due to necessity of taking
into account the Coulomb interaction between
outgoing electron and atomic core) were con-
sidered.

Subsequently (see papers [9, 10] and
references therein), the imaginary time meth-
od (ITM) was elaborated for study ionization
of atoms by electric and magnetic fields
where classical trajectories used but with im-
aginary time. Although this method is physi-
cally obvious, it is not able to take into ac-
count the Coulomb interaction between an at-
om and outgoing electron consequently. Sec-
ond limitation of this method is accounting
only s-states.

Among the relatively new quantum-
mechanical methods for studying the process-
es of interaction of atomic particles with elec-
tric and magnetic fields, 1/n expansion meth-
od (n — principal quantum number), which is
quite effective for highly excited (Rydberg)
states of atoms and molecules, including the
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consideration of effects in strong external
fields (see, for instance, [11]) occupies a spe-
cial place.

Additionally, of practical interest is the
case when the intensities of the external elec-
tric and magnetic fields are much smaller than
the intensity of the characteristic atomic
fields. If this condition is satisfied the breakup
of the atomic particle occurs slowly compared
to the characteristic atomic times and the
leaking out of the electron takes place primar-
ily in directions close to the direction of the
electric field. Therefore, in order to determine
the frequency of the passage of the electron
through the barrier it is convenient to solve
the Schrddinger equation near an axis directed
along the electric field and passing through
the atomic nucleus. This idea was used for
solving the relativistic two-centre problem at
large intercentre distances [12], for calculat-
ing the leading term (in intensity of electric
field F ) of the tunnel ionization rate of an
atom in a constant uniform electric field in
non-relativistic [5, 13] and relativistic [14-17]
cases, and first two terms in non-relativistic
case [18]. In our papers, such method called
“the method of quasiclassical localized
states” (MQLYS) is shown to be free from the
limitations of ITM.

In the present paper, our aim is to apply
the MQLS to solving the problem of an arbi-
trary atom in the constant uniform electric and
magnetic fields being parallel between them-
selves.

The paper is organized as follows. In
section 2, the method of quasiclassical local-
ized states is developed for the problem of at-
om in the barrier-type axially symmetrical
electrostatic and constant uniform magnetic
fields. In section 3, we analytically solve the
Schrédinger equation for an atom in the paral-
lel electric and magnetic fields in sub-barrier
region. In section 4, we find the wavefunction
in classically allowed range, calculate the
leading term of tunnel ionization rate, and
compare our results with ones of other authors
in some limiting cases. In the last section of
the paper, we discuss advantages of the elabo-
rated method and further perspectives con-
cerning its extension.
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The MQLS in the problem of an atom in
the axially symmetrical electrostatic and
constant uniform magnetic fields

The Hamiltonian for an electron in the
electromagnetic field is (m, =|e|=7 =1)

1)

where p=-iV, A and V are the vector and

electrostatic potentials, respectively, [7: yB§
Is the spin magnetic moment, ug =1/2c.

Consider the magnetic field directed
along the negative z axis:

J=00-H) A=[Hy,_-H
H=(0,0-H), A (zy, 2x,0j. )

If the potential V is axially symmetrical, the
Hamiltonian (1) can be rewritten in the form

2 2

~_ 1z, H Hp
H==p*>+—(m +2m)+—=——+V, (3
> P 2C( | ) 5o? ©)

where p=x*+y?, m =0,£142,...+1, |

and m, are respectively the orbital quantum

number and its projection onto z axis,
m, = +1/2 is the spin quantum number.

The spectrum of such quantum mechan-
ical problem is a quasistationary. The energy
of an electron is complex

E. = E-il/2, 4)
where E gives a position of a quasistationary
level, ' =w/#a is its width, w is the rate of
ionization.

Taking into account all the above men-

tioned, we obtain the following wave equa-
tion:

AY +2[E-V —(H/2ckm, +2m, ¥ =0, (5)

where V =V +(H?/8c? )p?.



Hayxkoswuii BicHuk Ykropojacekoro yHiBepcuteTy. Cepist dizuka. Ne 42, — 2017

Since the potential V(z,p) is axially

symmetrical, the Hamiltonian (3) commutes
with the operator of projection of total angular
momentum of the electron onto a potential
symmetry axis z, and equation (5) allows us
to separate the azimuthal angle ¢. For this

purpose, we represent the solution of (5) in
the form

Y = w(z,p)eim'¢, (6)

where y(z, p) is a new unknown function.
Having substituted (6) into (5), we ob-
tain the differential equation

2 -\ H m?
Ay +|—\E-V )]——(M, +2M.)—— | =0,
lr// |:h2 ( ) hC ( | s) ,02 i|l//
(7)
where the Planck constant 7 is renewed, and
m=|m|.

We seek a solution of equation (7) in
the form of the WKB expansion:

W = eslhihngo(n).

n=0

(8)

Having substituted (8) into (7) and equated to
zero the coefficients of each power of 7, we
arrive at the hierarchy of equations

@sf=q> q*=2V-E) 9)

2VSV p®© {As —%(ml + 2ms)}o(°) =0; (10)

2VSV "V +[AS —ﬂ(mI +2m, )}go(”ﬂ) =
c

= (Mm?/p?)p™ - Ap™, (11)

where n=0,1,2,.... Unfortunately, equations
(9)-(11), similarly to the initial equation (5),
do not permit exact separation of variables. In
order to solve this problem, we use the idea of
the localized states consisting in the follow-
ing.

There are many cases when for solving
quantum mechanical problem it is sufficient
to find a wavefunction not in the whole con-
figurational space but in the neighbourhood of
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manifold M of less dimension. States de-
scribes by such wavefunctions are called “lo-
calized states”. In the sub-barrier region, un-
like for the classically allowed range, the
wavefunction is localized in the vicinity of the
most probable tunnelling direction. It is natu-
ral to expand all the quantities in inseparable
equations including their solutions, in the vi-
cinity of the z axis. This idea was founded by
Fock and Leontovich [19] and employed at
solving diffraction problems [20] (the bound-
ary-layer method), some quantum mechanical
problems [21] (the parabolic equation meth-
od), and, finally, in the MQLS [14, 17]. Here
we generalize the MQLS on equation (5).
Consider equation (9) and assume that

V(z,p)=V,(2) +V,p° +V,(2) p* +...,
v =1 8"V(z,0).

k E Gka (12)

Solution of equation (9) can also be rep-
resented in the form of an expansion in pow-
ers of coordinate the p:

S(z,p)=5,(2) +5,(2) p* +5,(2)p* +.... (13)

By inserting (13) into (9) and equating
to zero the coefficients of each power of p,
we obtain

(36)2 = qg, 0o = \/2(\/0 - E); (14)
2

sis; +2s2 =V, + ey (15)

sis, +8s,5, =V, —%(sl’)z; (16)
l k-1

SoSk +4ks;s, =V, —=Dsls, -
2 j=1

k-2 . .
— 2 (I + (k= )s s ;- 17)

=1

It is easy to show that in the sub-barrier re-
gion the solution of equation (14) is

So =— J. q,dz + const. (18)

Equation (15) is the nonlinear Riccati
differential equation and are not solvable ana-
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Iytically in a general case. By making the sub-
stitution

(19)

-840 150_ot)

200(2) o(2)

one can proceed from (15) to the linear sec-
ond-order equation

2
g
4\ G

which after substitution g, — tip, coincides

with the equation obtained by Sumetskii with-
in the parabolic equation method [21].
All the equations for s,, s,,... are line-

ar, of first order and integrated in quadratures:
S
o <% {I—[( D’
o' lPad| 2

q k-1
Sk = (_j {J. k+l|: Zl SkJ

k=2

+2 (J+1)(k = i)s s =V

=1

-V, }dz + const}, (21)

}dz +

+const}. (22)

The solutions of the equations (10), (11)
are sought in the form

o™ =p" > o @)p*.

k=0

(23)

By substituting (23) into the corresponding
equations and equating to zero the coeffi-
cients of each power of p, we obtain the sys-
tem of ordinary first-order linear differential
equations solvable in quadratures.

The leading term of the wavefunction in
the sub-barrier region is:

o) ] 3 _ H(m +2my)
‘P—G[G J exp{ J'{qo(x) 2600 () }dx+

il
+hy(2)p? +imig) (24)
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The MQLS in the problem of an atom in
the parallel constant uniform electric and
magnetic fields

If an arbitrary (not H-like) atom is
placed in the constant uniform electric field,

then an interaction potential at r>>27/y?

(y =+—2E)is

V(z, p) :—%— Fz. (25)

The leading term Vy(z) =-Z/z—Fz of

expansion of (25) in powers of p? has a form
of barrier (see Figure 1).

&)

2 Z 23

[~

Fig. 1: The “potential”

Vo(z2)=V(z,0); z,, z, are

=4/Z/F is the maxi-

roots of equation qy(z) =0, z,
mum point.

If F < y° then the sub-barrier region is
quite wide (z, < z < z,). There is the range
Z, 1L 1, wWhere

Y ~

Zl<<Z<<Zm

P, (26)

Here ¥ is the asymptotics (when z>>z,)

of the unperturbed atomic wavefunction.

Using the MQLS elaborated one can
find the quasiclassical localized wavefunction
Y in the sub-barrier region z, < z<z, un-
der the boundary condition (26). However, for
this purpose we should solve the Riccati equa-
tion (15) writing
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H2
+—.

—2qps; +4sf == e

(27)

We seek a solution of (27) in the form

$,(2)=s,0(2) +s,(2) +..., (28)
where s;,;(z)/s;(z) ~1/z. Then in zero ap-
proximation

2

H
— 20,51 +455 = —.
0510 10773

(29)
The replacement s,,(z) = H/4c+ y,(2)
leads (29) to the Bernoulli equation for y,(z)

which is solved analytically. Finally, the solu-
tion of (29) under the condition (26) is of the
form

H Gt dx
30
j WJ (30)

In the sub-barrier region, we obtain the
wavefunction

H
S,(z) = ——coth
PR

C”pmeim|¢

LIIII -

dx

- H s m+1 x
| ot

X exp{— j[qo (x)— M}dx +

2¢q, (X)
+5,(2)p%), (31)
where normalization constant
m+1 Zly
Z
=a
Cu \/_(ZC]/J (ZyzeJ *
m|+m
1) 2 |
><( 1) 21 +1 (I +m)., (32)
2" m! 4z (1 -m)!

a is the asymptotic coefficient of asymptotic
behaviour (at r>>2Z/y?) of unperturbed ra-
dial wavefunction:
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R*(r)=ar? e, (33)

The wavefunction in the classically allowed
region. The ionization probability

Continuing ¥,, to classically allowed
region z >z, we find

2c 24

s

xp" exp{— iTpo(x)dx +5,(2)p* + im,¢}, (34)

C, exp{— J, +

el

H(m, +2m,) , in}

where

Po(2) =0y (2) = \/272+2F2—72, (35)

H ¢odx
= —coth
s,(2) = co IZC( 2+|2[ ~

)

(37)

z

) 2
3, = [a,()dz, 3, = |

ol q

dz
d,(2) .

Here J, is the so-called “barrier integral”.

As it is known [1], the ionization proba-
bility (rate) is equal to

Z(Tlllv\ylll \va\Pm) (38)

W:ﬁd§,]
S

Here S is a plane perpendicular to axis z and
crossing itat z > z,.
Substituting ¥, into the formula one

can obtain the leading term of the ionization
rate

R +m)( Z 22”)(
O mid-mye 2y

exp|:_ 2‘]1 + M J
C

m+1

zj

2
(407/ sinh HJ

2] (39)

H C
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After asymptotical (when F < »°) cal-
culation of the integrals J, and J, we obtain
the following result

o @@+ A+mf HfcF m“X
2™ mly™ (1 —m)!| sinh(Hj/cF)

5\ 2Zy-m-1 3
y 2y expl 2y N Hy(m, +2m,) .
F 3F cF

(40)

In the case of s-states (I =m=0), after ne-
glecting the electron spin (m, =0) formula
(40) coincides with the result [22] obtained by
ITM.

When H — 0 the expression (40) is
transformed into the well-known result of
Smirnov and Chibisov [5] for ionization rate
of an atom in electrostatic field.

In order to find the tunnel ionization

rate of singly charged negative ions (i.e. H™,
J7, etc.), in (40) it is necessary to put Z =0.
If the particle is in weakly bound states in the
central field with small radius of action r,
then beyond this radius the asymptotic behav-
iour of the unperturbed (F =0) radial wave-
function is of the form [1]

R®) =are™", (41)

where a is determined by means of normali-
zation. When yr, <1 the behaviour of the

wavefunction within the potential well
0<r<r, is inessential because the particle

stands basically beyond the well. This gives

o &) (+m)! H m”x
mly™ (I —m)!| 2cysinh(Hy/cF)
y _ 2y Hy(m, +2m,)
exp{ 3F + = } (42)

In the case of s-states (I =m=0), after ne-
glecting the electron spin (m, =0) formula

(42) coincides with the result [22] obtained by
ITM or (when H — 0) with the known result
of Demkov and Drukarev [1, 8].

Conclusions

The method of quasiclassical localized
states is elaborated to solve asymptotically the
Schrodinger equation with barrier-type poten-
tials which do not permit a complete separa-
tion of variables. It is based on physically
clear ideas, applicable to arbitrary states (not
only s-states as ITM) and takes into account
the Coulomb interaction between the outgoing
electron and atomic core during tunneling
correctly. This method has allowed us to ob-
tain for the first time the wavefunctions and
general analytical expression for leading term
of the asymptotic behaviour of ionization rate
of an arbitrary atom (and negative ion) in the
parallel electric and magnetic fields whose in-
tensities F and H are much smaller than in-
tensity of intra-atomic field.

Our next tasks are to generalize MQLS
on other configurations of electric and mag-
netic fields (perpendicular, of arbitrary orien-
tations, ununiform, non-stationary, laser fields
of various polarizations, etc.) and to obtain
higher orders of ionization probability expan-
sion in powers of F and H in both the non-

a~+2y and the ionization rate relativistic and relativistic cases.
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KBA3UKJIACCUYECKASA TEOPUA TYHHEJBHOM
NOHU3ALUN ATOMA ITAPAJIVIEJIBHBIMHA
QJEKTPUYECKUM U MATHUTHBIM ITOJIAMMU

Merto/i KBa3UKJIACCHYECKUX JIOKAIN30BAHHBIX COCTOSHHN pa3paboTaH Jyisi CTalHo-
HapHoro ypaBHenwus LlIpeauHrepa ¢ MPOM3BOJIbHBIM OCECHMMETPHYHBIM DIIEKTPHYE-
CKUM TIOTEHIMAJIOM 0apbepHOrO THIA M MOTEHLUAIOM OJHOPOJHOIO MArHHUTHOTO
TOJIs1, HAMPABICHHOTO BIOJb OcH cuMMeTpuH. C TIOMOIIBIO 3TOT0 METO/a MOCTPOoe-
Hbl KBa3HMKJIACCHMYECKUE BOJIHOBbIE (DYHKIUHM B KJIACCHYECKH 3aMpelIeHHON U pa3-
pelIeHHON 00TacTsIX IS MPOU3BOJILHOTO aTOMA B MAPAJICIBHBIX AICKTPUUCCKOM H
MAarHUTHOM moJisix. HaiineHsl oOIIMe aHATMTUYECKHUE BBIPAKCHHS Ui TJIABHOTO
YJieHa aCUMITOTHYECKOTO (110 HANPSHKEHHOCTSIX AIEKTPOCTATUICCKOTO M MarHUTHO-
TO0 TOJICH) Pa3I0KEeHUS BEPOSITHOCTH HOHHU3AIMY aTOMa B TAKOM TOJIE.
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KBA3IKJIACUYHA TEOPIS TYHEJBHOI IOHI3ALIII
ATOMA NMAPAJIEJBHUMMU EJIEKTPUYHUM TA
MATHITHUM ITOJIAMH

Merto/ KBa3iKIIaCUYHMX JIOKAJIi30BaHUX CTaHiB PO3pOOJIEHO ISl CTAI[IOHAPHOTO PiB-
usHHs [Ipesinrepa 3 JOBIIBHUM aKCiadbHO-CUMETPUYHUM CJICKTPUYHUM MOTCHIIIA-
JIOM 0ap'epHOr0 THUMY Ta MOTEHINAJIOM OJHOPIAHOTO MArHITHOTO MOJsI, HAMPSIMIIC-
HOT'O B3/IOBXK OCi cUMeTpii. 32 JOMOMOI0I0 IIbOr0 METOy MOOYA0BaHO KBa3iKJIaCHY-
Hi XBUJIBOBI (DYHKIIT B KIIACHYHO 3a00pOHEHIH Ta T03BOJICHIM 00MaCTAX IS JOBIIb-
HOTO aToMa B MapaliefibHUX eJIEKTPUYHOMY Ta MarHiTHOMY moiisix. OTpUMaHo 3ara-
JIbHUIT aHANITUYHUNA BUpPa3 VIS TOJIOBHOTO WIEHA ACHMIITOTHYHOTO (32 HalpyKeHO-
CTSIMHU €JIEKTPOCTATUYHOTO Ta MArHITHOTO TOJIiB) PO3KIaAy WMOBIpHOCTI i0oHi3alrii
aToMa B TaKOMY IIOJTi.

KurouoBi cioBa: TyHenbHa ioHizalis, epekr [lltapka, KBa3ikiacuaHe HAOIMKEHHSI.
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