ПЕРЕРІЗИ РОЗСІЯННЯ ЕЛЕКТРОНІВ НА АТОМІ Sr

Є.А. Нодь

Ужгородський національний університет вул. Волошина, 54, 88000, Ужгород

Метод *R*-матриці з *B*-сплайнами використаний для розрахунків *ab initio* пружного і повного перерізів розсіяння електронів на атомі стронцію в області енергій до 10 еВ. Для точного представлення хвильових функцій мішені використовувався багатоконфігураційний метод Хартрі-Фока з неортогональними орбіталями. Розклад сильного зв'язку включав 31 зв'язані стани атома стронцію, від основного стану аж до стану $5s4f^{-1}F^{\circ}$. Отримано хороше узгодження розрахованого повного перерізу з експериментальними даними.

Вступ

Атом Sr, на відміну від інших лужноземельних елементів – Mg, Ca, Ba, ϵ порівняно слабо вивченим. Вимірювання повного інтегрального перерізу (III) розсіяння електронів на атомі Sr, виконані Romanyuk *et al.* [1] в інтервалі енергій від 0.1 до 10 eB, ϵ єдиним експериментальним дослідженням його енергетичної залежності і резонансної структури. Будь-які вимірювання диференціальних перерізів (ДП) розсіяння електронів на Sr наразі відсутні. Хіба що в роботі Казакова та ін. [2] представлена енергетична залежність струму пружного розсіяння електронів на кут 90°.

З теоретичних досліджень відзначимо розрахунки Фабриканта [3] у наближенні сильного зв'язку (close-coupling) двох каналів, 2CC, розрахунки Szmytkowski and Sienkiewicz [4] у наближенні релятивістських поляризованих орбіталей та Yuan *et al.* [5] у методі кореляційно-поляризаційного потенціалу, – всі вони стосувалися повних ІП при енергіях до 10 еВ. Релятивістські розрахунки Yuan and Zhang [6] та Yuan [7] є джерелом даних про ДП пружних зіткнень електронів із Sr при цих же енергіях.

У роботі Yuan [8], з використанням методів сильного зв'язку 11 станів та 21 станів у рамках *R*-матричної схеми, було здійснено дослідження резонансів і припорогових структур при взаємодії електронів з атомами Sr та Ba, відповідно. Представлено результати з розсіяння електронів низьких енергій на Sr та фоторозщеплення від'ємних іонів. Набір диференціальних і повних (інтегральних) перерізів, перерізів переносу імпульсу та функцій Шермана для пружного розсіяння електронів на атомах Ва та Sr при енергіях нижче 1 кеВ представлено Adibzadeh and Theodosiou [9]. Розрахунки виконані у відносно простому напівемпіричному наближенні з одним підгоночним параметром.

Недавно Felfli *et al.* [10] у рамках методу полюсів Редже здійснили розрахунки енергій спорідненості для атомів Ca, Sr та Ce і представили ряд результатів з характеристик розсіяння для вказаних атомів. Так, для атома Sr приведена енергетична залежність інтегрального та парціальних перерізів пружного розсіяння в ультрахолодній області енергій до 0.25 eB з вузьким резонансним піком при 0.054 eB.

Зі сказаного вище ясно, що детальні розрахунки характеристик розсіяння (Ш та ДП, ефективних сил зіткнення, параметрів Стокса і т.д.) для всього спектру елементарних переходів у атомі Sr під дією електронного удару є актуальними. Вибір і тестування методів для здійснення вказаної програми є ціллю даної роботи.

У рамках комплексного дослідження лужноземельних атомів нещодавно нами, разом зі співавторами, були здійснені детальні розрахунки ІП та ДП зіткнення електронів з Mg [11-12]. Розрахунки розсіяння були виконані у *R*-матричному наближенні з *B*-сплайнами – *B*-spline *R*-matrix (BSR) [13]. Для розрахунків структури мішені використовувався як пакет BSR [13] – наближення BSR37 у роботі [11], так і пакет MCHF [14-15] – наближення MCHF-BSR29 у роботі [12]. Порівняння з наявним експериментом (див. детальніше [11-12]) показало на хорошу точність обох використовуваних нами наближень. Це підтверджують і більш ранні розрахунки методом BSR розсіяння е+C [16] та е+Ca [17-19].

У даній роботі нами представлені перерізи повного та пружного розсіяння електронів на атомі Sr, розраховані в наближенні MCHF-BSR31.

Методи розрахунку

Ми застосовуємо до розрахунку лужноземельного атома Sr методику, апробовану на атомних системах Mg [11-12] та Ca [17-19]. Як і у роботі [19] для атома Ca та у роботі [12] для атома Mg, у даному дослідженні розрахунки структури мішені Sr здійснені за допомогою пакету MCHF [14, 15]. Загальна теорія BSR-розрахунків розсіяння та опис комп'ютерних програм пакету BSR наведені в [13]. Особливості застосування методу MCHF-BSR до розрахунку атомів Ca та Mg, багато в чому подібних по будові до Sr, викладені, відповідно, у недавніх роботах [19] та [12].

Даний розклад сильного зв'язку включав 31 нижні спектроскопічні стани Sr, аж до стану 5s4f ¹ F^{o} . Розмір *a* "боксу" *R*-матриці приймався рівним *a* = 80 *a*₀ (де a_0 =0.529×10⁻¹⁰ м, – борівський радіус). Збереження суттєвих каналів у розкладі сильного зв'язку дозволило нам додатково врахувати частину валентної кореляції, у той час як корвалентна кореляція була включена шляхом використання багатоконфігураційного розкладу для станів мішені Sr у виді

$$\phi(4p^{6}nl\,n'l') = a_{nl}\phi_{HF}(4p^{6}nl\,n'l') + \sum_{\bar{n}l\bar{n}'l'}b_{\bar{n}l\bar{n}'l'}\chi(4p^{5}5s\bar{n}l\,\bar{n}'l'), \quad (1)$$

де хартрі-фоківські хвильові функції φ_{HF} ($4p^6nl n`l`$) були покращені кореляційними функціями χ при 4p-збудженому корі. Кореляційні орбіталі $\overline{n}l$ були оптимізовані для кожного стану окремо.

У дані розрахунки ми включили 119 В-сплайнів порядку 8. У кінцевому розкладі станів мішені ми зберігали тільки конфігурації з коефіцієнтами розкладу більшими за 0.004, і отримані розклади містять від 50 до 270 конфігурацій для кожного стану.

Таблиця 1

Енергії збудження (в еВ) для 31 нижніх спектроскопічних станів мішені Sr. Теоретичні значення E_{theor} порівняні з даними Moore [20]^{*)}. Тут $\Delta E = E_{\text{Moore}} - E_{\text{theor}}$

N⁰	Стан		E _{Moore}	Etheor	ΔE
			[20]		
1	$5s^2$	^{1}S	0.0	0.0	0.0
2	5s5p	${}^{3}P^{\circ}$	1.8231	1.8471	-0.0240
3	5s4d	^{3}D	2.2635	2.2723	-0.0089
4	5s4d	^{1}D	2.4986	2.4797	0.0188
5	5s5p	${}^{1}P^{0}$	2.6906	2.6731	0.0175
6	5 <i>s</i> 6s	^{3}S	3.6008	3.6325	-0.0316
7	5 <i>s</i> 6s	^{1}S	3.7934	3.7142	0.0791
8	4d5p	$^{3}F^{\circ}$	4.1731	4.1109	0.0622
9	4d5p	$^{1}D^{\circ}$	4.1945	4.1961	-0.0015
10	5s6p	$^{3}P^{\circ}$	4.2067	4.2218	-0.0151
11	5 <i>s</i> 6p	${}^{1}P^{0}$	4.2282	4.2411	-0.0129
12	5s5d	^{1}D	4.3062	4.3107	-0.0045
13	5 <i>s</i> 5 <i>d</i>	^{3}D	4.3437	4.3613	-0.0176
14	$5p^2$	^{3}P	4.4057	4.4076	-0.0019
15	4d5p	$^{3}D^{\circ}$	4.5187	4.5680	-0.0493
16	$5p^2$	^{1}D	4.5831	4.4989	0.0843
17	$5p^2$	^{1}S	4.6079	4.5897	0.0182
18	4d5p	$^{3}P^{\circ}$	4.6277	4.7673	-0.1395
19	5s7s	^{3}S	4.6407	4.5786	0.0621
20	4d5p	$^{1}F^{0}$	4.7130	4.9440	-0.2310
21	5 <i>s</i> 7 <i>s</i>	^{1}S	4.7671	4.9537	-0.1866
22	5 <i>s</i> 4 <i>f</i>	$^{3}F^{\circ}$	4.8054	4.7335	0.0719
23	5s7p	${}^{1}P^{0}$	4.8245	4.8095	0.0149
24	5s7p	$^{3}P^{\circ}$	4.8908	4.8853	0.0055
25	5 <i>s</i> 4 <i>f</i>	${}^{1}F^{\circ}$	4.9028	4.7540	0.1488
26	5 <i>s</i> 6d	^{3}D	4.9223	4.8845	0.0377
27	5 <i>s</i> 6d	^{1}D	4.9269	4.8591	0.0679
28	5 <i>s</i> 8 <i>s</i>	^{3}S	5.0544	5.0080	0.0464
29	5 <i>s</i> 8 <i>s</i>	^{1}S	5.0905	5.2155	-0.1249
30	5 <i>s</i> 4 <i>f</i>	${}^{3}F^{o}$	5.1294	5.0492	0.0802
31	5 <i>s</i> 4 <i>f</i>	$^{1}F^{0}$	5.1483	5.1402	0.0082

*) енергії триплетів усереднені по терму

Стани мішені, включені в дані розрахунки розсіяння, наведені в табл.1, де розраховані енергії збудження порівняні з експериментальними значеннями [20]. Узгодження з експериментом є достатньо хорошим, з похибками, в цілому, меншими за 0.1-0.2 eB (а подекуди й 0.01 eB), за винятком стану 4d5p ¹ F° (див. табл. 1).

Розрахунки (N+1)-електронної задачі розсіяння e+Sr у внутрішній області ($r \le a$)

подібні до виконаних нами для Mg [11-12]. Як і при розрахунку структури, ми використали 119 В-сплайнів порядку 8, з R-матричним радіусом $a=80 a_0$. Парціально-хвильові вклади розраховувалися до L=50. Перерізи обчислювалися за стандартною R-матричною схемою, з використанням для зовнішньої області пакету FARM [21].

Результати і обговорення

На рис. 1 зображені повні і пружні ІП розсіяння e+Sr. Поряд з оригінальними ІП [1], представлені калібровані (зі зсувом вправо на 0.98 eB) та нормовані (фактором 1.2) нами інтегральні перерізи, рис. 1а. Калібрування та нормування проводилися з метою якнайкращого візуального узгодження виміряних в [1] і розрахованих нами перерізів. Зокрема, - максимально точного збігу малих піків у ІП вище порогу збудження стану $5^{3}P^{\circ}$. На рис. 1а показані також 2СС-перерізи Фабриканта [3] та дані наближення релятивістських поляризованих орбіталей Szmytkowski and Sienkiewicz [4], які майже не відтворюють резонансну структуру ІП в області енергій до 2.5 еВ.

На рис. 1b представлені калібровані нами дані [1], без нормування. Наші перерізи MCHF-BSR31 порівнюються з RM11перерізами Yuan [8], які практично збігаються з нашими даними вище ~3 eB. Що стосується приведеного у роботі Felfli *et al.* [10] резонансного піку в III пружного розсіяння при енергії 0.054 eB, то ця структура нами не підтверджується. Навпаки, висновок Yuan [8] щодо обумовленості піку в околі 0.8 eB резонансом форми ²D і наявності меншого піку вище порогу збудження 5³ Р^о узгоджується з нашими даними.

На рис. 2 та 3 приведені кутові залежності ДП пружного розсіяння е+Sr для енергій 0.05, 0.1, 1.0, 1.6, 2, 3, 5 та 10 еВ. Дані MCHF-BSR31 порівняні з даними Yuan and Zhang [6], Yuan [7] і Adibzadeh and Theodosiou [9]. Наші ДП якісно узгоджуються з даними [6-7] для всіх енергій, крім 0.05 еВ, однак дещо відрізняються по величині. Перерізи, отримані в [6-7] при енергії 0.05 еВ, мають два локальні мінімуми, що навряд чи вірно для таких малих енергій. Результати Yuan [7] у наближенні Дірака-

Рис. 1. Повний і пружний перерізи розсіяння електронів на атомі Sr в області енергій до 10 еВ.

Вікно (а): (—о—) –експеримент Romanyuk *et al.* [1]; (···••···) –експеримент [1], дані калібровані зі зсувом вправо на 0.98 еВ та нормовані фактором 1.2; даний розрахунок: (——) – MCHF-BSR31, повний переріз; (——) – MCHF-BSR31, пружний переріз; інші розрахунки: (×) – 2CC, Фабрикант [3]; (-·-·) – Szmytkowski and Sienkiewicz [4]. Вікно (b): (□) –експеримент [1], дані калібровані зі зсувом вправо на 0.98 еВ, без нормування; даний розрахунок – як у вікні (а); інші розрахунки: (•••••) – RM11, Yuan [8], повний переріз; (·····) – RM11, [8], пружний переріз.

Рис. 2. Диференціальні перерізи пружного розсіяння e+Sr. (——) – MCHF-BSR31, даний розрахунок; (……) – RM11, Yuan and Zhang [6]; (- -) – Dirac-Fock, Yuan [7]; (- \cdot – \cdot –) – Adibzadeh and Theodosiou [9].

Рис. 3. Диференціальні перерізи пружного розсіяння e+Sr. (——) – MCHF-BSR31, даний розрахунок; (- -) – Dirac-Fock, Yuan [7]; (- · - · –) – Adibzadeh M. and Theodosiou [9].

Фока, за винятком енергій 0.05 і 0.1 еВ, близькі до даних MCHF-BSR31. Кутова залежність напівемпіричних ДП [9] для енергії 1.0 еВ якісно відрізняється від обох *R*-матричних результатів та даних [7]. З ростом енергії результати [9] дещо зближуються з нашими даними, рис. 3.

Висновки

Ми представили ІП та ДП зіткнення електронів з атомом Sr при енергіях до 10 еВ, розраховані методом *R*-матриці з *B*сплайнами [13]. Структура мішені розраховувалася за допомогою пакету МСНГ [14-15] у рамках методики, апробованої на атомах Са [19] та Mg [12]. У розкладі сильного зв'язку враховувалися 31 нижні стани атома Sr. Нами підтверджено висновок Yuan [8] стосовно необхідності калібрування даних експерименту [1] зі зсувом вверх по енергії на 0.98 eB (у Yuan [8] – на 0.84 eB) та обумовленості піку в околі 0.8 eB резонансом форми ^{2}D і наявності меншого піку в околі енергії ~2.1 eB, трохи вище порогу збудження $5^{3}P^{\circ}$. Спрощені наближення [3, 4] не відтворюють резонансної структури ІП у цій області енергій.

Нами представлені також кутові залежності ДП пружного розсіяння e+Sr при енергіях 0.05, 0.1, 1.0, 1.6, 2, 3, 5 та 10 еВ. Результати порівняні з розрахунками [6-7] та [9], очевидна необхідність проведення відповідних експериментів.

Автор висловлює подяку своєму науковому керівнику Гедеону В.Ф., д-ру Зацарінному О.І. та проф. Лазуру В.Ю. за допомогу у проведенні досліджень, що привели до появи даної роботи.

Література

- Romanyuk N.I., Shpenik O.B., Zapesochnyi I.P. The electron impact cross sections and features an calcium, strontium and barium atoms // Pis'ma Zh. Eksp. Teor. Fiz. – 1980. – V.32. – Iss. 7. – P. 472–475.
- Казаков С.М., Романюк Н.И., Христофоров О.В., Шпеник О.Б. Резонансные явления, наблюдаемые при взаимодействии медленных электронов с атомами стронция // Опт. и спектр. – 1985. – Т. 59, вып.1. – С. 38–43.
- 3. Фабрикант И.И. Столкновение медленных электронов с атомами щелочноземельных элементов // В сб. «Атомные

процессы», редактор Петеркоп Р.К. – Рига: Зинатне, 1975. – С. 80–123.

- Szmytkowski R. and Sienkiewicz J.E. Elastic scattering of electrons by strontium and barium atoms // Phys. Rev. A. – 1994. – V.50. – No 5. – P. 4007–4012.
- Yuan J., Zhang Zh., and Wan H. Elastic scattering of low-energy electrons with Sr atoms // Phys. Rev. A. – 1990. – V.41. – No 9. – P. 4732–4739.
- 6. Yuan J. and Zhang Z. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape

resonance regions // Phys. Rev. A. – 1993. – V.48. – No 3. – P. 2018–2023.

- Yuan J. Intra-atomic relativistic effects on the spin polarization in low-energy electron scattering from Ca, Sr, Ba, and Yb atoms // Phys. Rev. A. – 1995. – V.52. – No 6. – P. 4647–4655.
- Yuan J. The resonance structures of electron interaction with Sr and Ba atoms: low-energy electron scattering and photodetachment of the negative ions // J. Phys. B: At. Mol. Opt. Phys. – 2003. – V.36. – No 10. – P. 2053–2071.
- Adibzadeh M. and Theodosiou C.E. Elastic electron scattering from Ba and Sr // Phys. Rev. A. – 2004. – V.70. – No 5. – P. 052704 (11 pp).
- 10. Felfli Z., Msezane A.Z and Sokolovski D. Simple method for electron affinity determination: results for Ca, Sr and Ce // J. Phys. B: At. Mol. Opt. Phys. – 2008. – V.41. – No 4. – P. 041001 (6pp).
- Zatsarinny O., Bartschat K., Gedeon S., Gedeon V., Lazur V., and Nagy E. Cross sections for electron scattering from magnesium // Phys. Rev. A. – 2009. – V.79. – No 5. – P. 052709 (10pp).
- Гедеон В., Гедеон С., Зацарінний О., Лазур В., Нодь Є. Диференціальні перерізи розсіяння електронів на атомі магнію // Наук. вісник Ужгородського ун-ту. Серія Фізика. – 2008. – № 23. – С. 23–35.
- Zatsarinny O. BSR: B-spline atomic Rmatrix codes // Comput. Phys. Commun. – 2006. – V.174. – No 4. – P. 273-356.

- 14. Froese Fischer C. The MCHF atomic-structure package // Comput. Phys. Commun. 1991. V.64. No 3. P. 369–398.
- 15. Froese Fischer C., Brage T., Jonsson O. Computational Atomic Structure. An MCHF Approach // London: Institute of Physics Publishing. – Bristol. – 1997. – 279 p.
- 16. Zatsarinny O., Bartschat K., Bandurina L., and Gedeon V. Electron-impact excitation of carbon // Phys. Rev. A. – 2005. – V.71. – No 4. – P. 042702 (9pp).
- Zatsarinny O., Bartschat K., Gedeon S., Gedeon V., Lazur V. Low-energy electron scattering from Ca atoms and photodetachment of Ca⁻ // Phys. Rev. A. – 2006. – No 5. – V.74. – P. 052708 (10pp).
- Zatsarinny O., Bartschat K., Bandurina L., Gedeon S. Electron-impact excitation of calcium // J.Phys. B: At. Mol. Opt. Phys. – 2007. – V.40. – No 20. – P. 4023–4031.
- Гедеон С., Лазур В. Розрахунки перерізів розсіяння електронів на атомі Са // Наук. вісник Ужгородського ун-ту. Серія Фізика. – 2009. – №25. – С. 130–140.
- 20. Moore C.E. Atomic Energy Levels as Derived from the Analysis of Optical Spectra // in Natl. Stand. Ref. Data 35, Vol III (Reprint of NBS Circ. 467, Vol. III, 1958), 245 pp. (Nat. Bur. Stand., U.S., 1971).
- 21. Burke V.M. and Noble C.J. FARM: The atomic R-matrix program // Comp. Phys. Commun. 1995. V.85. No 3. P. 471-500.

THE CROSS SECTIONS OF ELECTRON-IMPACT SCATTERING ON Sr

E.A. Nagy

Uzhhorod National University, 54 Voloshyna str., Uzhhorod, 88000

The B-spline R-matrix method is used to *ab initio* calculations of elastic and total electron scattering cross sections from neutral strontium in energy range up to 10 eV. The multiconfiguration Hartree-Fock method with non-orthogonal orbital sets is employed for an accurate representation of the target wavefunctions. The close-coupling expansion includes 31 bound states of neutral strontium, covering all states from the ground state to 5s4f ${}^{1}F^{\circ}$. The present calculations of total cross sections yield good agreement with the experimental data.

СЕЧЕНИЯ РАССЕЯНИЯ ЭЛЕКТРОНОВ НА АТОМЕ Sr

Е.А. Нодь

Ужгородский национальный университет, ул. Волошина, 54, 88000 Ужгород, Украина

Метод *R*-матрицы с *B*-сплайнами использован для расчетов *ab initio* упругого и полного сечений рассеяния электронов на атоме стронция в области энергий до 10 эВ. Для точного представления волновых функций мишени использовался многоконфигурационный метод Хартри-Фока с неортогональными орбиталями. Разложение сильной связи включало 31 связанные состояния атома стронция, от основного состояния и до состояния $5s4f^{1}F^{0}$. Получено хорошее согласие рассчитанного полного сечения с имеющимися экспериментальными данными.