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PECULIARITIES OF SOLITON EXCITATIONS IN
THE InsSes CRYSTAL

We present new investigations of the spatially localized excitations of soliton type in
the framework of the nonlinear Schrodinger equation. It is shown that the fourth -
order effects are crucial for the formation of solitary waves in the layered InsSes
crystal. The balance between the higher order dispersive terms and nonlinearity,
induced by lattice deformation, may lead to the different spatial localized excitations.
They can be stable or unstable depending on the parameters of the dispersion law and
the wave vector region. It is found that one- soliton and multisoliton solutions can be
realized in the InsSes crystal.  The parameters of soliton excitations (energy,
amplitude, velocity) have been determined. The time evolution of soliton was

investigated too.
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Introduction

Nowadays there are different equations
types for the investigation of the soliton
excitations in the nonlinear systems. As it is
known the Davydov’ soliton theory was more
widely developed for the one-dimensional
(quasi-dimensional) structures [1, 2] where
electron-phonon interaction is essential.
Solitons as solitary spatial localized
excitations were successively used for the
explanations of many physical and chemical
phenomena, in particular, the phenomena
related to the energy transfer in the biological
systems. Bisoliton model of the high-
temperature  superconductivity and  the
existence of the nonlinear waves, connected
with the electron-phonon interaction in the
layered crystal [3], were also based on the
simple models of the one-dimensional
molecular crystal. However, the autolocalized
state of soliton type can be formed in the
anisotropic two-dimensional structures at the
definite physical parameters too [4].

Traditionally, solitons in the condensed
state physics are studied on the base of the
nonlinear Schrodinger equation with the
spatial two-order derivatives. But there are the
real systems where the integral dynamical
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equations don’t give the adequate description
of the physical characteristics, for instance,
prediction of the ultrashort optical pulses in
solid-state lasers, optical solitons in Kerr’law
media, solitons in plasma, optical solitons in
the fibers [5-7]. For their explanations, it is
necessary to modify the nonlinear Schrodinger
equation by the means of the inclusion of
higher-order dispersion terms.

Itis of considerable interest to study the
nonlinear mechanics of the solitary waves in
the discrete atomic systems where the
frequency contains the higher orders of the
wave vector components that results in the
occurrence of the spatial fourth-order
derivatives in the nonlinear Schrodinger
equation. The peculiarities of dynamical
solitons in such nonlinear systems were
considered in the papers by Kosevich [8, 9].
The magnetic solitons within differential
equation with fourth —order term were also
investigated in [10].

It is shown that the higher dispersive
effects may cause significant qualitative
changes in the dynamics of nonlinear
structures. From this point of view, it is of
interest to investigate the soliton excitations in
the layered InsSes crystal, for which the
nonlinear Schrodinger equation with the
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fourth-order dispersion takes place owing to
the nonstandard dispersion law for charge
carriers [11-15]. Moreover, explanation of the
inherent in this crystal dynamical disordering
is related with the electron-phonon interaction
and possibility of the nonlinear wave
realization in the normal to layers direction
[16].

As it is known the InsSe3
semiconductor is a unique three-dimensional
periodic system with the interesting physical
properties [17-19]. The interaction between an
electron and the longitudinal acoustic phonon
leads to the localized electron state in the form
of condenson in this crystal [11, 20]. As
opposed to polar or ionic crystals, the
condenson states being the analogs excitations
of polarons arise, according to the theory by
Deigen and Pekar, in homopolar dielectrics
[21]. In other three-dimensional crystals whose
charge carriers are described by ordinary
parabolic dispersion law, the condenson state
cannot arise. The condition for the condenson
states is fulfilled in 3D- InsSes crystal due to its
peculiar dispersion law for charge carries,
which contains the second and fourth order
components of the wave vectors, and to the
peak-like density of electron states [11]. In the
first time, the concept of condenson states in
the three-dimensional InsSes crystal was used
for the explanation of the high thermoelectric
performance [22,23], which appeared to be
larger than 1.4 at 705 K [18]. Experimental
investigations of the charge and thermic

E(K)=—ak? — k] —ak? + BKS + Bk, + B

where B >>ca. 1=1,2,3. As follows from

(1), for the smallest wave vector IZ(to the
K, =i(ai 164 )1/2 point) the region of the

negative curvature is observed in the vicinity
of the Brillouin zone center, and the

parabolicity is restored with an increase of IZ :
The absolute extrema are displaced in the
Kom =%(ct; 1 23 )1/2 points and depth of the
band minimum is determined by the
expression E_ =—a/ / 43. Owing to such
complicated energy, dependence on the wave
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transport suggest the existence of the
condenson states in the InsSes layered crystal
[22, 23].

It is noted that the dispersion law with
low-energy non-parabolicity is also used for an
explanation of some peculiarities of the kinetic
[24] and optical [15,25] properties in the InsSes
crystal. In the [26] the scattering of the waves
by the planar defects in the semiconducting
crystals utilized the model dispersion law has
been studied. Due to the space dispersion, a
new effect of the wave total reflection from the
interfaces has been founded. It allows
considering the InsSes crystal as a promising
material for chalcogenide waveguides.

In the present study, we study the
possibilities of the appearance of the different
spatial localized excitations of soliton type and
analyze their spatial and time evolutions in the
InsSes crystal.

Hamiltonian system in the continual
approach and the nonlinear Schrodinger
equation with fourth-order dispersion

As it is followed from long-time our
investigations [11-15], the dispersion law for
the charge carriers in the InsSes crystal in the
vicinity of the band gap is characterized by the
low-energy non-parabolicity connected with
opposite sign of the coefficients at the second
and fourth order components of the wave
vectors:

1)

vectors the different energy ranges can be
utilized for the investigation of the soliton
excitations in the InsSes crystal.

Let us write the Hamiltonian for the
system taking into account the interaction
energy between the electron and local
deformation. It is assumed that the local
deformational interaction is strong and the
particle movement is accompanied by the
displacement atoms from the equilibrium
position. Then local displacement is the
potential well which holds the electron.

Following to Davydov* theory [1, 2] in
the continual approach Hamiltonian has the
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form:
H= Hel + Hel
where

H
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Here b are components of the deformation

potential tensor, A, are the elastic moduli,

M is a mass atom, U, is the displacement of i-
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atom, a—t'ls the velocity of i-atom,

def +H pot Hkin (2)
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deformation tensor components. Utilizing (2),
a functional E = <‘P| H |‘P> has the form:
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Variating (3) on ¥ -function and then on u, -
displacement we obtain two equations, which

determine the electron localized states in the
InsSes crystal:

ih%—aiviz AN +Zbi8i:|l}’ =

ou a’ ou ba 0
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ot " M Ox.0%, M OX

In the new coordinate system spreading along the definite direction, for

E=(x—vt)/a, n=ylb, g=z/c(ab
,C are the lattice parameters of the InsSes

instance, x-direction) the second equation of
(4) will be described by the expressions:

b, o°

crystal, v is the velocity of the excitation
Vi otV &
T2 az [T
a’ 0&2  a’ of
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¢ dc® ° Mc 8g2‘ |
, ﬂnaZ , 122b2 velocities in the general directions. From (5) it
Here Vo = M VIR is easy to determineg,, &, and &, which are
equal to
, A L A
Vg = are the sound longitudinal
M
2 b 2 b. 2
s= P =¥ o= 2o
2 v b*2y, C" A
a 111 1_7
V
01
Substituting these expressions into the first Schrodinger equation with the spatial fourth-
equation of (4), we obtain the nonlinear order derivatives:
. a 2 4 2
in——aV'-BV +G¥Y| |¥=0 (6)
ot
2 equal to the G =1eV.
2
where G|W|" =) be and G= '
Y ahe e 6ol
(for v<<V,) is the media nonlinearity Numerical simulation of the soliton
parameter connected with the electron-phonon excitations in the InsSescrystal
interaction. According to our valuation on the o o
basis of known parameters of the deformation For the numerical investigations of the

nonlinear equation with the fourth-order

otential b =10eV and the generalized ) ! . i
P : J dispersion, the different solitary wave ansatz

elastic moduli A =1.5-10%eV/m® [11], for has been proposed [5, 27]. In our investigation
the InsSes crystal, the nonlinearity parameter is we shall adopt the ansatz solution in the form:
P (x,t) = D(x,t)e" @)
where
A
D=— : (8)
ch’B(x—vt)
Let us illustrate further (similar to [27]) that successive substation (7) and (8) in equation
considered functions can be described the (6) leads to a system of the three equations
soliton solutions of nonlinear Schrodinger which allows determining the parameters of
equation in the spatial derivatives (6). The soliton excitations:
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{(E +ak® - pk*)+4B% (—a + 65k*) -16 fB*|

{—6(—a+6ﬁk2)+1zoﬂ52}

(-1208B* + GA?)

As follows from (9) soliton energy is defined

E =—ak?+ Bk* —4B*(—a + 6 Bk — 4 8B?)

and amplitude, frequency is described by the

4 2
A /120,88 B —a+6pk°
G 203

The soliton velocity is determined as

v=—2ak +48k* —16B2pk.

Using (11) and (12),

A i (kx—wt)
ch?B(x—vt)
different parameters of the dispersion law (1)
at the different wave vector and time values are
presented in Fig.1-5. The parameters of
dispersion law (1) are taken from papers [12,
13,15].

As it is shown in Fig.1 the soliton
solutions in the considered energy range with
the negative curvature are absent. The period
of this function depends on the dispersion law
parameters (1).

We also obtained the functional dependence
w (X) for the energy range, where terms at the

different order of the wave vector components
in the dispersion law (1) are nearly equal

(Fig.2).
The damping oscillatory shape with the

the dependencies

for the

p(x,t)=

A
B
ch”B(x —vt)
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A
—————=0
ch®B(x —vt)

AB’

N —; 9
ch*B(x—wt) )

by the expression:
(10)

relationships accordingly:

(11)

(12)

separated peaks in the distance is the important
feature of the considered  function
dependencies, similar to ones found by
Kawahara [28]. As it is marked in [28] such
solution containing more than one peak can be
considered as bound states of the soliton, and
the soliton was called “multisoliton”. At the
energy corresponding to the displaced
extremum minima in the energy spectrum of
the InsSes crystal, the solution of the (6) is one
soliton (Fig.3). The time dynamics of solitons
is presented in Fig.4 (a-d). As follows from
these figures, the both the soliton movement
and the change of its amplitude take place. Fig.
5 demonstrates the dependence of the function

w (K,X) on the wave vector (k =0+0.25)
for the dispersion law parameters oz, =13 eV,
S, =888eV.
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Fig. 2. Function y(x) for the different parameters of the dispersion law (1)
(o, =5.7eV, B, =479¢eV —red line; ar, =13eV, B, =888eV —green line; a, =3.1eV,
S; =2957 eV- blue line)
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t=200

Fig. 5. Function dependence (K, X) on the wave vector (k =0+ 0.25) at the dispersion law
parameters o, =13 eV, 3, =888eV.

Conclusion

Thus, the performed numerical
investigations of the nonlinear Schrodinger
equation with the fourth-order dispersion
obtained on the base of the dispersion law with
the low-energy non-parabolicity show that the
different type of the soliton excitations can be
realized in the InsSes crystal: from one soliton
to multisoliton. The theoretical predictions of
the stable solitary waves were made for a large

number of the variations of the wave vector
and the dispersion law parameters.

Since there is a possibility to change
these parameters and also the intensity of the
electron-phonon interaction by means of the
external factors (pressure or impurities) [20,
22, 23], the possibility of the controlled
solitary wave’s propagation (different width,
shape, and height) occurs. It discovers the new
perspective applications for the InsSes crystal,
for instance, in the nonlinear optics.
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OCOBEHHOCTH COJIMTOHHBIX BO3BYKJIEHUH B

KPUCTAJUIE InsSes

Hnst xpucraiuia InsSes B pamkax HenuHeiHoro ypasHenusi lllpenuHrepa mnpoBeeHbI
HCCIICIOBAaHMS TMPOCTPAHCTBEHHO -JOKAIM30BAaHHBIX BO30Y)XICHHH COJUTOHHOTO THIIA.
Iloxa3aHo, YTO HaaMYME WICHOB IPOCTPAHCTBEHHOW JUCIEPCUM YETBEPTOrO INOpsAKa

ABJIACTCA ONPCACIIAIOIINM  JJIA o6pa301aaH1/m YECANHCHHBIX

BOJIH B JTaHHOM KpHUCTaJLIC.

bananc MEXKAY AUCHCPCUOHHBIMU YWICHAMH YETBEPTOIO MOpsJaKa U HCHHHCﬁHOCTblo,

00yCJIOBIICHHOH  peIIeTOYHON

nedopmarue,

MOXET

NpUBOJAUTL K  PA3JIMYHBIM

IIPOCTPAaHCTBEHHO-IOKAJIM30BAaHHBIX BO30YKACHHUSIM B 3aBUCUMOCTH OT ITapaMeTPOB 3aKOHA
JMCIIEPCHU ISl HOCUTEINEH 3apsiia M 00JIacTH BOJTHOBOTO BekTopa. OnpeieneHsl mapamMmeTpsl
COJIMTOHOB (3HEPTHs, aMIUIMTY/a, CKOPOCTh). TakKe HcciieoBaHa BpEMEHHAs HBOJIIOLIHS
JUISL TAaHHBIX JIOKAJIM30BAaHHBIX BO30YKACHHH.
KnaroueBble cinoBa: 3akoH AUCIEPCHH C HHU3KO3HEPIeTHUECKOH HENapabOIMYHOCTHIO;
Henuneiinoe ypaBHenue IllpeauHrepa ¢ NpOCTPaHCTBEHHON JAMCIEPCHEM YETBEPTOTO

nopsinka; CoauToH
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OCOBJIMBOCTI COJITOHHUX 3bY/’KEHD B
KPUCTAJI InsSes

st xpucrtany 1nsSes B pamkax HeniHiitHOTO piBHsAHHS Ll peinrepa mpoBeneHo J0CTiDKEHHS
MIPOCTOPOBO- JIOKATI30BaHUX 30Y/PKEHb COMITOHHOTO TUIy. [loKa3aHo, [0 HASIBHICTH YWICHIB
IIPOCTOPOBOI TUCIIEPCi] YeTBEPTOTrO MOPSIAKY € BU3HAYAIBHOIO /IS YTBOPEHHS OJMHOYHUX
XBIIb B TaHOMY KpucTaii. bamanc MiX AWCIEpCIHHIMH YiIeHaAMH YETBEPTOTO TOPSAKY 1
HENiHIHHICTIO, 3yMOBIIEHOIO TPATKOBOIO Je(OpMaIlicro, MOXKE IPHUBOAUTH IO PI3HUX
TIPOCTOPOBO-JIOKATI30BaHUX 30YIKCHD B 3aJIS)KHOCTI Bil MapaMeTpiB 3aKOHY AHCIIEpCii s
HOCIiB 3apsny Ta 00JacTi XBUIBOBOTO BEKTOpY. Bu3HaueHi mapaMeTpu COJITOHIB (eHepris,
aMILTITYAa, MBUIKICTE). TakoX JOCIiIKeHa 9acoBa €BOJIONIS IS NaHUX JIOKATI30BaHUX
30yKEHB.

KoarouoBi ciioBa: 3akoH qucnepcii 3 HU3bKOCHEPreTHYHOI0 HenapabotiunicTio; Heniniiine
piBasHHs Lpeninrepa 3 mpocTopoBolo aucnepcieto ueTBeproro nopsaaxy; ComitoH.
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