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ON THE SINGULAR SOLUTION OF
SCHRODINGER EQUATION FOR THE HYDROGEN
ATOM

Purpose. The authors of known for us textbooks on quantum mechanics pay attention only to the first regular solution
of Schroédinger equation for the hydrogen atom. To exclude the second linearly independent solution from the general
solution, different textbooks give various arguments such as invalid boundary condition in the coordinate origin, the
appearance of Dirac delta function or divergence of the kinetic energy in the origin.

Methods. Using the power series method, we obtained an exact analytic expression for the second independent solution
of Schrodinger equation for the hydrogen atom.

Results. The solution consists of a sum of two parts, one of which increases indefinitely over long distances, while the
other is limited and contains a logarithmic term. This feature is peculiar to all values of the orbital angular momentums.
Conclusions. On the example of the hydrogen atom, we demonstrated the mathematically correct algorithm of cons-
truction of the independent solutions for the power series method. In particular, this algorithm is important in the case

of quantum systems with coupled channels which are described by two or more coupled Schrédinger equations.
Keywords: hydrogen atom, regular solution, singular solution, ordinary differential equation, indicial equation

Introduction

The problem for the hydrogen atom, as one
of the few that allows an exact analytical so-
lution, is considered for methodological rea-
sons in most textbooks on quantum mechan-
ics. One of the two independent solutions of the
Schrédinger equation is square integrable and
satisfies the boundary conditions at the coordi-
nate origin (r = 0) and at infinity (» — o). For
states with orbital angular momentum [/ > 1, the
second singular solution gives the divergence of
the normalization integral at the point r = 0.
However, for the angular momentum [ =
0, the singularity of the second solution is ex-
pressed weakly and does not lead to the diver-
gence of the integral at the origin, but it is re-
jected by guiding various arguments in vari-
ous textbooks. These arguments can be classi-
fied into three groups. The first group of text-
books [1-4] indicates the unsatisfactory bound-

ary conditions of the second solution at the ori-
gin. In another group of textbooks [5-7], it
is indicated that this solution does not satisfy
the Schrodinger equation at the origin of co-
ordinates » = 0 due to the appearance of the
Dirac function (). In the practical textbook
[8], there is argued that in the singular state of
[ = 0 the mean value of the kinetic energy takes
the infinite, therefore this solution is unaccept-
able.

We tried to deal with this variety of argu-
ments also because if the singular solution for
the orbital moment [ = 0 is possible to normal-
ize, then it represents a state with limited energy
of the system but an infinite average kinetic en-
ergy (+0o0) and infinite potential energy (—o0),
that is, the sum of two infinite quantities is finite

E = (V|H|V) = (Ex) + (Ep) =
= (400) + (—00). (1)

To demonstrate our investigation about
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the singular solution we briefly repeat one of the
methods for obtaining the analytical solution of
the Schroédinger equation with the Coulomb po-
tential.

The radial Schrodinger equation

In the Schrédinger equation

HU(r) = EV(7) 2

with the Coulomb potential for the hydrogen
atom

-2 2
H=2 -2 3
20 7

where 1 is a reduced mass of the atom, one sep-
arates the variables in the spherical coordinate
system

\II<F) = \P(Ta 67 (b) - Rl(r)yim(ea ¢) =

)

(4)

where Y},,(0, ) is spherical harmonics. For ra-
dial function v;(r), we obtain the equation

I(1+1)

r2

w + (—k:2 - + ?) ~uy(r) =0, (5)

where [ is the orbital angular momentum, and
parameters k£ and A have the same dimension
and are given by expressions

I I

The normalization of the radial function u;(r)

looks as
/ ul(r) - dr = 1.
0

At large distance (r — o) equation (B) takes
the form (we will omit index /)

(6)

()

"

u —k*-u(r) =0, (8)
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and has two independent solutions e~*" and

e+, Since the normalization condition is ful-
filled for the asymptotic (r — oo) solution e =",
the radial function of equation (B) is sought in

the form

)

which leads to an equation for the unknown
function f(r)

I(1+1)

r2

=2kt —

f+¥f:0. (10)

We shall now look for solution of equation
() by the power series method

o0

f(r) =r. Zaj,rjaao # OJ

J=0

(11)

where s and a; are unknown parameters that
are determined from the substitution of function
(1)) into equation (fL0) with subsequent zeroing
of coefficients for each power of variable r. The
coefficient at the lowest power gives the equa-
tion for determining the parameter s

ap(s* —s—1>—1)=0. (12)
This equation has two solutions s; = [ + 1 and
s9 = —I. Since the roots of the indicial equation
(12) differ by an integer, according to [9,[10] two
independent solutions of the differential equa-
tion are defined in the way

o0

filry = vt Zaﬂ’jy

J=0

(13)

fQ(T) = r_l : Z bqrq + g- fl(r) ' l?’L(’l”), (14)
q=0

where unknown coefficients a;, b, and g are suc-
cessively determined by substituting the formu-
las ([L3) and ([L4)) into equation ({L0) and equating
to zero the coefficients for powers of the vari-
able 7.
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The regular solution

Substituting formula ([L3) into equation ([L0) we
obtain the following chain of equations for co-
efficients a;

aolk -1+ k—A) —ay(l+1) =0,

In the general case, starting with coefficient a,
the following are sequentially

2. (k- (I+j) - A)
TRl +1)
i=1,2,3,...

“ 51,
(16)

The only coefficient ay remains indefinite, but
it serves as a common factor and defines only
the normalization of the function ([13). The ra-
tio of the coefficients of the series ({L3) with the
growth of the index j gives the value

a; 2k
hm = -,
J=00 @j—1 J

(17)

which corresponds to the ratio of coefficients of
the Taylor series for the function ¢?*". That is,
taking into account formula (g), the radial func-
tion u(r) will behave like ¢*. However, when
the coefficients of the series ([L3) vanish, start-
ing with a; we break an infinite series and ob-
tain a polynomial as the first independent solu-
tion. The zero value of the coefficient a; can be
achieved by a special choice of the parameter k
(eigenvalue of the energy (B))

k J=1,2,3,... (18)

A
The given algorithm allows finding the eigen-
values of energy and the regular radial eigen-
function

w(r) = fi(r) - e,

where the coefficient a is determined by the
condition of normalization (7). In this case, the
function f;(r) is a polynomial with powers of
the variable from r'** up to r/+1.

(19)

The singular solution

The second independent solution of equation
([L0) is given by formula ([L4), which includes
the first solution ([L3). We note that for orbital
momentum [ > 1 the solution ([L4) is singular at
zero, which does not allow normalizing the ra-
dial function. Therefore, we consider the case
[ = 0, when the solution is regular at zero. To
simplify the calculations, we take into account
the ground state ([ = 0,J = 1,k = A) for
which the first solution has the form f;(r) =
ag - r. Then the formula for the second indepen-
dent solution ([14) will take the form

fa(r) = byt + g1 - In(r) (20)
q=0

We substitute formula (20) into equation ({L0)
and consistently vanish coefficients for every
degree of variable r (logarithmic members are
reduced autonomously). To determine un-
known coefficients we obtain a chain of equa-
tions

2Ab0 + g = O,
—2Ab2 —|— 6b3 = 0,

2b2 - 2Ag = 0,
—6Aby + 20b5 = 0, ... (21)

From these equations, one can sequentially find
g, ba, bs, by, etc. Coefficient b; remains uncer-
tain. This reflects the fact that the sum of two
independent solutions

f(r) =afi(r) + Bfa(r) (22)

is also a solution to the equation ([L0). For sim-
plicity, the coefficient b; can be set to zero. The
coefficient b, also remains as an indefinite com-
mon factor of the function f5(r). The chain of
equations (21) is not interrupted, and the rela-
tion of neighboring coefficients with the growth
of the index ¢ has the same form as formula ([L7).
Accordingly, an infinite series in (20) behaves
asymptotically as e?*”. So the second indepen-
dent solution of the radial equation () will have
a term that behaves like ¢*" as r — oo. So, the
two independent solutions of equation (§) for
the ground state are
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u(r)=ag-r-e*, (23)

us(r) = (Y _byr?) ™ +

g-r-In(r)-e . (24)
The first solution (23) is normalized (regular),
and the second solution (24) is not normalized
(singular) since the power series behaves like
ek at large distances.

Discussion and conclusion

We found the exact formula ({L4) of the second
independent solution of the Schrédinger equa-
tion for the hydrogen atom, which contains a
logarithmic term and satisfies the equation at the
origin of the coordinate » = 0. For the orbital
angular momentum [ = 0, the second indepen-
dent solution is finite at the origin but exponen-
tially increases at long distances. The exponen-
tial behavior of the second independent radial
solution at large distances is inherent for every
value of the angular momentum /. That is, one
independent solution of the radial Schrodinger
equation for hydrogen-like atoms has a regu-
lar behavior and is normalized on the interval
[0, 00), and the second independent solution is
not normalized and exponentially increases at
large values of variable 7.

The exponential rise of the second inde-
pendent solution of () can be proved by based

on general considerations. Namely, at large dis-
tances, the Schrodinger equation has two inde-
pendent solutions i, (r) ~ e *" and ty(r) ~
ek, which don’t depend on orbital angular mo-
mentum /. Atthe origin of the coordinates, inde-
pendent solutions are u; () ~ r'™! and uy(r) ~
r~!. The solution u,(r) converges to the solu-
tion u, (r) as r — oo, but the independent solu-
tion uy(r) must converge either to the solution
o (r) orto linear sum [« @y (1) + 3 to(r)] (here
B # 0) as r — oo. That is the second solution
exponentially rise at the infinite.

One can note that the Schrodinger equa-
tion for the scattering problem of an electron
on a proton differs from equation (§) only by a
sign of the parameter k? (+k? instead of —&?).
For such equation, two independent solutions
are well known - the regular F;(k, r) and irregu-
lar (logarithmic) G;(k, ) Coulomb wave func-
tions [11].

We want to emphasize that for the hy-
drogen atom with Coulomb potential and for
deuteron wave function [12], the logarithmic
term in ([L4) ensures the correct behavior of the
solution at the origin. However, for other poten-
tials, it can appear that the coefficient ¢ in equa-
tion ([L4) is zero. Such situates are realized for
mixed states of two quarks systems where mix-
ing of orbital [[13] or spin momentums [[14, 15]
can occur.
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CUHTY/IIPHOE PEIIEHUE YPABHEHUS
[IIPEAVHTEPA 1711 ATOMA BOJOPOIIA

MeTo/i0M pa3/io)keHUsl B CTelleHHOMW psif, Oy4eHO TOUYHOe aHa/UTHYeCKoe BbIpakeHHe /i/isi BTOPOro He3aBUCHMOTO
peliieHys: ypaBHeHus LllpenuHrepa f1s aroMa Bofiopofia. PelieHre cOCTOUT U3 CyMMBI IByX UacTel, 0fHa U3 KOTOPBIX
HEeOTrpaHMUeHHO BO3pacTaeT Ha OOMBIIMX PacCTOSHUSX, a BTOpasi orpaHnyeHa Ha OECKOHEUHOCTH, XOTb U COZIePKUT
COJep>XUT JIorapuMUUecKiii MHOXKUTeNb. Takasi CTPYKTypa pelleHus XapaKTepHa [/l BCeX BeJIMYMH OpOrTaIbHO-
ro MOMeHTa. B M3BeCTHBIX HaM yueGHBIM MMOCOOWSIM 110 KBAHTOBOW MeXaHWKe TIPUBOAUTCS TOJIBKO BBIpayKeHHe JJIs
TIepBOro PEry/ISIPHOrO pellieHus. [/ NCK/IFOUeHHsT BTOPOTro JIMHEMHO He3aBUCHMOTO PelleHHs B pa3HbIX yueOHHKax
TIPUBOJATCS pa3/yHble apryMeHTHI.
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KoroueBble c/10Ba: aToM BOZOPO/a, Pery/sipHOe pellleHre, CHHTY/ISIpHOe pellleHre, 00bIKHOBeHHOe inddepeHnab-
HOe ypaBHeHHe, XapaKTepHUCTHYeCKoe ypaBHeHMe.
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YxropochbKuii HalfioHa/bHUN yHiBepcuTeT, 88000, Ykropog, By/. KamityabHa, 9A, YkpaiHa,
e-mail: ivan.haysak@uzhnu.edu.ua

CUHI'YJIAPHUI PO3B’SA30K PIBHAAHHSA
HTPEATHT'EPA OJIAd ATOMA BOJHIO

MeTozi0M po3K/IaZly B CTelleHeBUM psifi, OTpUMaHO TOYHUI aHa/liTUYHUI BUpa3 [jisl iPYTOro He3asleXKHOro PO3B 3Ky
piBHsiHHA IIpexinrepa 1 aToMa BoHIO. PO3B’SI30K CK/IAZIA€ThCS 3 IBOX JIOAAHKIB, OIUH 3 SIKUX HEOOMEeXeHO 3po-
CTa€ Ha BeJIUKMX Bi/ICTaHsX, a APYrUii Ha HECKiIHYEHOCTi MPSIMY€ [0 Hy/Is, X0U i MiCTUTDb jlorapuMiuyHNI MHOXHUK.
Taka CTPYKTypa pO3B’s13Ky XapakKTepHa JJIsl BCiX BeIMUMH 0pbiTaibHOr0 MOMEHTY. Y BifIOMHMX HaM MiIpyYHHKAX T10
KBaHTOBi{ MeXaHil[i HABOAUTLCS TLTBKY BUpa3 [ijis TIEPIIIOTo Pery/spHOTOo Po3B’si3Ky. /st yCyHeHHs JpyTroro JiHiiHO
He3aJIe)KHOT'0 PO3B’s3KY B Pi3HUX MiJpyYHHUKAX HaBOZASTHCS Pi3Hi apryMeHTH.

Kio4oBi coBa: aToM BOJHIO, PeTy/IsipHUI PO3B’SI30K, CUHTY/ISIPHUN PO3B’s130K, 3BUYaliHe AvdepeHIjialbHe DiBHIH-
Hfl, XapaKTepUCTHUYHE PiBHSIHHS.
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