Recent advances in millimeter-wave radars

Authors

  • Dmitry M. Vavriv Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
  • O. O. Bezvesilniy Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
  • V. A. Volkov Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
  • A. A. Kravtsov Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine
  • E. V. Bulakh Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.1109/ICATT.2015.7136774

Keywords:

millimeter-wave radar, airborne radar, meteorological radar, signal processing, motion error compensation, radar applications, radar imaging, synthetic aperture radar

Abstract

The usage of millimeter-wave radar systems is widened to a number of civil applications including: airborne radars for obstacle avoidance, altimetry and landing aids, automotive radars for collision avoidance, driving safety support, autonomous vehicle control, meteorological radars, radars for remote sensing applications, and radars for medical imaging and diagnostic. We review some of these developments supported by advances in millimeter-wave components and achievements in signal processing technique. A recently developed at the Institute  of Radio Astronomy ground based millimeter-wave synthetic aperture radar (SAR) is described in more details as an example of the activity in the field. The hardware and software solutions introduced into the radar are described along with the results of the first radar tests.

References

MEAD, J.B.; PAZMANY, A.L.; SEKELSKY, S.M.; MCINTOSH, R.E. Millimeter-wave radars for remotely sensing clouds and precipitation, Proc. IEEE, 1994, v.82, n.12, p.1891-1906, doi: http://dx.doi.org/10.1109/5.338077.

SAUVAGEOT, H. Radar Meteorology. Artech House, 1992.

BATTAGLIA, A.; WESTBROOK, C.D.; KNEIFEL, S.; KOLLIAS, P.; HUMPAGE, N.; LOHNERT, U.; TYYNELA, J.; PETTY, G.W. G-band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., 2014, v.7, p.1527-1546, doi: http://dx.doi.org/10.5194/amt-7-1527-2014.

VAVRIV, D.M.; VOLKOV, V.A., BORMOTOV, V.N.; VINOGRADOV, V.V.; KOZHIN, R.V.; TRUSH, B.V.; BELIKOV, A.; SEMENUTA, V.Ye. Millimeter-wave radars for environmental studies, Radio Physics and Radio Astronomy, 2002, v.7, n.2, p.121-138.

VAVRIV, D.M.; VOLKOV, V.A.; VINOGRADOV, V.V.; KOZHIN, R.V.; SCHUENEMANN, K. 95 GHz Doppler polarimetric cloud radar based on a magnetron transmitter, Proc. of 32nd Microwave European Conf., 23-26 Sept. 2002, Milan, Italy. IEEE, 2002, p.1-4, doi: http://dx.doi.org/10.1109/EUMA.2002.339372.

BEZVESILNIY, O.O.; VAVRIV, D.M. Retrieving the median droplet diameter from Ka- and W-band dual-wavelength Doppler radar measurements, Int. J. Remote Sensing, 2007, v.28, n.16, p.3707-3712, doi: http://dx.doi.org/10.1080/01431160701311234.

VAVRIV, D.M.; VOLKOV, V.A.; BEZVESILNIY, O.O. Millimeter-Wavelength Meteorological radars, Proc. of the German Microwave Conference, 2008, p.392-396.

VOLKOV, V.A. Magnetron Based Radar Systems for Millimeter Wavelength Band — Modern Approaches and Prospects, Microwave and Millimeter Wave Technologies: Modem UWB antennas and equipment. InTech, 2010, p.459-488 [ed. by I. Minkin], doi: http://dx.doi.org/10.5772/9024.

SOSNYTSKIY, S.V. Dealiasing Doppler Spectra in Meteorological Radars, Radiofizika i Radioastronomia, 2012, v.17, n.1, p.89-94, doi: http://dx.doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i3.110.

Department of Microwave Electronics of the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, http://radar.kharkov.com.

ESSEN, H.; BRAUTIGAM, M.; SOMMER, R.; WAHLEN, A.; JOHANNES, W.; WILCKE, J.; SCHLECHTWEG, M.; TESSMANN, A. SUMATRA, a W-band SAR for UAV application, Proc. of Int. Radar Conf. on Surveillance for a Safer World. 2009, p.1-4.

MAGNARD, C.; MEIER, E.; RUEGG, M.; BREHM, T.; ESSEN, H. High resolution millimeter wave SAR interferometry, Proc. of IEEE Int. Geoscience and Remote Sensing Symp., 23-28 Jul. 2007, Barcelona. IEEE, 2007, p.5061-5064, doi: http://dx.doi.org/10.1109/IGARSS.2007.4423999.

JOHANNES, W.; ESSEN, H.; STANKO, S.; SOMMER, R.; WAHLEN, A.; WILCKE, J.; WAGNER, C.; SCHLECHTWEG, M.; TESSMANN, A. Miniaturized high resolution Synthetic Aperture Radar at 94 GHz for microlite aircraft or UAV. IEEE Sensors, 28-31 Oct. 2011, Limerick. IEEE, 2011, p.2022-2025, doi: http://dx.doi.org/10.1109/ICSENS.2011.6127301.

ESSEN, H.; HAGELEN, M.; JOHANNES, W.; SOMMER, R.; WAHLEN, A.; SCHLECHTWEG, M.; TESSMANN, A. High resolution millimetre wave measurement radars for ground based SAR and ISAR imaging. Proc. of IEEE Radar Conf., 26-30 May 2008, Rome. IEEE, 2008, p.1-5, doi: http://dx.doi.org/10.1109/RADAR.2008.4721023.

NOFERINI, L.; PIERACCINI, M.; MECATTI, D.; MACALUSO, G.; LUZI, G.; ATZENI, C. DEM by Ground-Based SAR Interferometry, IEEE Geoscience and Remote Sensing Letters, 2007, v.4, n.4, p.659-663, doi: http://dx.doi.org/10.1109/LGRS.2007.905118.

TAKAHASHI, K.; MECATTI, D.; DEI, D.; MATSUMOTO, M.; SATO, M. Landslide observation by ground-based SAR interferometry, Proc. of IEEE Int. Geoscience and Remote Sensing Symp., 22-27 Jul. 2012, Munich. IEEE, 2012, p.6887-6890, doi: http://dx.doi.org/10.1109/IGARSS.2012.6352580.

LUZI, G.; PIERACCINI, M.; MECATTI, D.; NOFERINI, L.; MACALUSO, G.; TAMBURINI, A.; ATZENI, C. Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry, IEEE Geoscience and Remote Sensing Letters, 2007, v.4, n.3, p.495-499, doi: http://dx.doi.org/10.1109/LGRS.2007.898282.

MARTINEZ-VAZQUEZ, A.; FORTUNY-GUASCH, J. A GB-SAR Processor for Snow Avalanche Identification, IEEE Trans. Geoscience and Remote Sensing, 2008, v.46, n.11, pp.3948-3956, doi: http://dx.doi.org/10.1109/TGRS.2008.2001387.

PIPIA, L.; FABREGAS, X.; AGUASCA, A.; LOPEZ-MARTINEZ, C. Polarimetric Temporal Analysis of Urban Environments With a Ground-Based SAR, IEEE Trans. Geoscience and Remote Sensing, 2013, v.51, n.4, p.2343-2360, doi: http://dx.doi.org/10.1109/TGRS.2012.2211369.

ROSEN, P.A.; HENSLEY, S.; JOUGHIN, I.R.; LI, K. Fuk; MADSEN, S.N.; RODRIGUEZ, E.; GOLDSTEIN, R.M. Synthetic aperture radar interferometry, Proc. IEEE, 2000, v.88, n.3, p.333-382, doi: http://dx.doi.org/10.1109/5.838084.

VAVRIV, D.M.; VINOGRADOV, V.V.; VOLKOV, V.A.; KOZHIN, R.V.; BEZVESILNIY, O.O.; ALEKSEENKOV, S.V.; SHEVCHENKO, A.V.; BELIKOV, A.; VASILEVSKY, M.P.; ZAIKIN, D.I. Cost-effective airborne SAR, Radio Physics and Radio Astronomy, 2006, v.11, n.3, p.276-297.

BEZVESILNIY, O.O.; DUKHOPELNYKOVA, I.V.; VINOGRADOV, V.V.; VAVRIV, D.M. Retrieving 3-D topography by using a single-antenna squint-mode airborne SAR, IEEE Trans. Geoscience and Remote Sensing, 2007, v.45, n.11, p.3574-3582, doi: http://dx.doi.org/10.1109/TGRS.2007.902963.

VAVRIV, D.M.; BEZVESILNIY, O.O. Developing SAR for small aircrafts in Ukraine, Proc. of IEEE MTT-S Int. Microwave Symp., IMS, 5-10 Jun. 2011, Baltimore, MD. IEEE, 2011, p.1-4, doi: http://dx.doi.org/10.1109/MWSYM.2011.5972630.

BEZVESILNIY, O.O.; VAVRIV, D.M. Recent Advances in Aircraft Technology. InTech, 2012, v.20, p.465-498.

VAVRIV, D.M.; BEZVESILNIY, O.O.; KOZHIN, R.V.; VINOGRADOV, V.V.; VOLKOV, V.A.; GOROVYI, I.M.; SEKRETAROV, S.S. X-Band SAR System for Light-Weight Aircrafts, Proc. of the 15th Int. Radar Symp., IRS, 16-18 Jun. 2014, Gdansk. IEEE, 2014, p.501-505, doi: http://dx.doi.org/10.1109/IRS.2014.6869304.

KLARIC FELIC, G.; EVANS, R.J.; DUONG, HOA THAI; VIET, LE HOANG; LI, J.; SKAFIDAS, E. Single-Chip Millimeter Wave Radar, 2015, http://www.microwavejournal.com/articles/23640-single-chip-millimeter-wave-radar.

Published

2015-04-25