Electromagnetic interaction of a single strip with a plane semi-infinite grating

Authors

DOI:

https://doi.org/10.1109/ICATT.2015.7136806

Keywords:

semi-infinite grating, operator method, regularization procedure

Abstract

The problem of interaction of a single strip with a plane semi-infinite grating is considered. It is reduced to a system of operator equations relatively spectral functions of scattered field. Field scattered by the structure may be represented as a superposition of fields with discrete (plane waves) and continuous spectrum (cylindrical wave). So, the kernel-function of the reflection operator may have singularities at the points which correspond to the cut-off frequencies of plane waves. For elimination of singularities in the equations the regularization procedure is performed. Numerical results are presented.

References

VOROBYOV, S.N.; ZAMYATIN, E.V.; PROSVIRNIN, S.L. Method for the solution of problems in wave diffraction by gratings with random fluctuations of the parameters. Radiophysics and Quantum Electronics, 1989, v.32, n.9, p.802-807, doi: http://dx.doi.org/10.1007/BF01038806.

NISHIMOTO, M.; IKUNO, H. Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects. Progr. Electromagn. Res., PIER, 1999, v.23, p.39-58, doi: http://dx.doi.org/10.2528/PIER98101602.

NEPA, P.; MANARA, G.; ARMOGIDA, A. EM scattering from the edge of a semi-infinite planar strip grating using approximate boundary conditions. IEEE Trans. Antennas Propag., 2005, v.53, n.1, p.82-90, doi: http://dx.doi.org/10.1109/TAP.2004.840523.

VOROBYOV, S.N.; LYTVYNENKO, L.M. Electromagnetic wave diffraction by semi-infinite strip grating. IEEE Trans. Antennas Propag., 2011, v.59, n.6, p.2169-2177, doi: http://dx.doi.org/10.1109/TAP.2011.2143655.

LYTVYNENKO, L.M.; KALIBERDA, M.E.; POGARSKY, S.A. Wave diffraction by semi-infinite venetian blind type grating. IEEE Trans. Antennas Propag., 2013, v.61, n.12, p.6120-6127, doi: http://dx.doi.org/10.1109/TAP.2013.2281510.

KALIBERDA, M.E.; LITVINENKO, L.N.; POGARSKY, S.A. Diffraction of H0m and E0m Modes by a System of Axially Symmetric Discontinuities in a Coaxial Circuit. J. Commun. Technol. Electron., 2010, v.55, n.5, p.505-511, doi: http://dx.doi.org/10.1134/S1064226910050037.

KALIBERDA, M.E.; LITVINENKO, L.N.; POGARSKII, S.A. Operator Method in the Analysis of Electromagnetic Wave Diffraction by Planar Screens. J. Commun. Technol. Electron., 2009, v.54, n.9, p.975-981, doi: http://dx.doi.org/10.1134/S1064226909090010.

LYTVYNENKO, L.M.; KALIBERDA, M.E.; POGARSKY, S.A. Solution of Waves Transformation Problem in Axially Symmetric Structures. Freq., 2012, v.66, n.1-2, p.17-25, doi: http://dx.doi.org/10.1515/freq.2012.012.

KALIBERDA, M.E.; POGARSKY, S.A. Operator method in a plane waveguide eigenmodes diffraction problem by finite and semiinfinite system of slots. Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, MMET, 28-30 Aug. 2012, Kyiv, Ukraine. IEEE, 2012, p.130-133, doi: http://dx.doi.org/10.1109/MMET.2012.6331296.

LYTVYNENKO, L.M.; PROSVIRNIN, S.L. Wave Diffraction by Periodic Multilayer Structures. Cambridge Scientific Publishers, 2012, 158 p.

LYTVYNENKO, L.M.; PROSVIRNIN, S.L. Spectral Operators of Scattering in Problems of Wave Diffraction by Plane Screens. Kiev: Naukova Dumka, 1984, 240 p.

Published

2015-04-25