Combined radar-acoustic antenna for application in wind-power engineering
DOI:
https://doi.org/10.1109/ICATT.2015.7136839Keywords:
wind-power engineering, radio-acoustic sounding, wind turbine, parametric operational mode, ring acoustic radiator, double-frequency pumpingAbstract
Energy efficiency and fail-safety of modern wind turbines (WT) are largely determined by their ability to the temporal "tuning" under the spatial variability of the wind field.
The paper examines the possibility of implementing the combined radar-acoustic antenna (CRAA), which is placed on the horizontal-axis wind turbine for the horizontal radio-acoustic wind sounding system (HRASS). The main antenna feature is the use of the developed antenna parametric working mode at acoustic waves, which ensures the high directivity of the acoustic probing radiation at the limited antenna aperture. The basic version of the CRAA design, intended for installation on the horizontal-axis wind turbine includes an ring multi-element acoustic radiator, in the interior of which the pulse-Doppler radar antenna unit is installed.
The radio-acoustic hardware operates in accordance with the special quasicontinuous mode when using radio pulses of large spatial extent, together with short acoustic pulses.
References
HAU, ERIH. Wind Turbines, Fundamentals, Technologies, Application, Economics, 2nd ed. Berlin: Springer, 791 p.
BURTON, T.; SHARPE, D.; JENKINS, N.; BOSSANYI, E. Wind Energy Handbook. Chichester: John Wiley & Sons, 642 p.
MISAILOV, V.L.; ULIANOV, Y.N. Opportunities of increasing utilization of wind energy in wind turbines with the horizontal axis of the wind wheel rotation. Bulletin of NTU KhPI. Ser. System Analysis, Control and Information Technology, 2013, v.42, n.948, p.17-22.
ULIANOV, Y.N.; MISAILOV, V.L.; MARTYNENKO, G.Y. Horizontal radio acoustic sounding systems for windspeed measuring for wind turbines. Collected Works 'Information Processing Systems', 2011, v.2, n.92, p.168-172.
ULIANOV, Y.N.; MAKSIMOVA, N.G.; SHIFRIN, Y.S. Combined acousto-electromagnetic antennas for radioacoustic sounding of the atmosphere. Proc. of VI Int. Conf. on Antenna Theory and Techniques, ICATT, 17-21 Sept. 2007, Sevastopol, Ukraine. IEEE, 2007, p.344-347, doi: http://dx.doi.org/10.1109/ICATT.2007.4425206.
ULIANOV, Y.N.; VETROV, V.I.; MAKSIMOVA, N.G. Radioacoustic Sounding of the Horizontal Wind in the PBL. Does it have the Future? Proc. of Int. Symp. on Advancement of Boundary Layer Remote Sensing, 2006, p.75-77.
ULYANOV, Y.N.; BUTAKOVA, S.V. The Electromagnetic Compatibility of RASS Techniques under the Airfield Conditions. Proc. of the Second Int. Workshop on Ultrawideband and Ultrashort Impulse Signals, 19-22 Sept. 2004. IEEE, 2004, p.138-140, doi: http://dx.doi.org/10.1109/UWBUS.2004.1388075.
TENIENTE, J.; GONZALO, R.; BOCIO, C. Low Sidelobe Corrugated Horn Antennas for RadioTelescopes to Maximize G/Ts. IEEE Trans. Antennas Propag., 2011, v.59, n.6, p.1866-1893, doi: http://dx.doi.org/10.1109/TAP.2011.2128293.
MAILLOUX, R.J. Phased Array Antenna Handbook, 2nd ed. Boston, MA: Artech House Inc., 496 p.
BENNETT, M.B.; BLACKSTOCK, D.T. Parametric Array in Air. J. Acoustical Society of America, 1975, v.57, p.562-568, doi: http://dx.doi.org/10.1121/1.380484.
ULIANOV, Y.N.; SKVORTSOV, V.S.; VETROV, V.I.; MISAILOV, V.L. MAKSIMOVA, N.G. Parametric Acoustic Antenna for Noise-proof Pulse Sodar. Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT, 16-20 Sept. 2013, Odessa, Ukraine. IEEE, 2013, p.307-309, doi: http://dx.doi.org/10.1109/ICATT.2013.6650760.