Waveguide antenna with a hybrid dielectric insertion

Authors

  • V. A. Plakhtii Kharkiv National University, Ukraine
  • I. Ivanchenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • M. Khruslov Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine
  • N. Popenko Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.1109/ICATT.2015.7136841

Keywords:

antenna radiation patterns, near-field antenna radiation

Abstract

In this paper, the aperture X-band antenna with a hybrid dielectric insertion has been proposed. It is shown that the use of cylinders with different permittivities inside the dielectric matrix and a specific topology in their location gives rise to the significant extension of the operational frequency band up to 2.3 GHz and varying the elevation angle of peak directivity in the H-plane.

References

LEE, J.J.; CHU, R.-S. Aperture matching of a dielectric loaded circular waveguide element array. IEEE Trans. Antenna Propag., 1989, v.37, n.3, p.395-399, doi: http://dx.doi.org/10.1109/8.18738.

COMAN, C.I.; LAGER, I.E.; LIGTHART, L.P. The Design of a Matching Circuit for Dielectric-filled Open-ended Waveguide Antenna. Proc. of the European Radar Conf., 2004, p.73-76.

COMAN, C.I.; LAGER, I.E.; LIGTHART, L.P. Optimization of linear sparse array antennas consisting of electromagnetically coupled apertures. Proc. of the European Radar Conf., 2004, p.302-304.

GARDIOL, F.; BOLOMEY, J.-C. Engineering Applications of the Modulated Scatterer Technique. Artech House, 2001.

BAKHTIARI, S.; GANCHEV, S.I.; ZOUGHI, R. Open-ended rectangular waveguide for nondestructive thickness measurement and detection of lossy dielectric slabs backed by a conductive plate. IEEE Trans. Intrum. Meas., 1993, v.42, n.1, p.19-24, doi: http://dx.doi.org/10.1109/19.206673.

MAAZI, M.; GLAY, D.; LASRI, T. Millimeter wave non destructive technologies and artificial neural networks for near field characterization of embedded defects. Proc. of ICONIC, 2005, p.329-334.

CHERNOBROVKIN, R.; IVANCHENKO, I.; POPENKO, N. A Novel V-band Antenna for Nondestructive Testing Techniques. Microwave and Optical Technology Letters, 2007, v.49, n.7, p.1732-1735, doi: http://dx.doi.org/10.1002/mop.22504.

SPORER, M.; FRIEDRICH, A.; WEIGEL, R.; KOELPIN, A. Open-ended dielectric-filled waveguide antenna for underwater usage. Proc. of European Microwave Conf., EuMC, 2014, p.1683-1686.

CHERNOBROVKIN, R.; IVANCHENKO, I.; LIGTHART, L.; KOROLEV, A.; POPENKO, N. Wide-angle X-band antenna array with novel radiating elements. Radioengineering, 2008, v.17, n.2, p.72-76.

ANDRENKO, A.S.; IVANCHENKO, I.V.; IVANCHENKO, D.I.; KARELIN, S.Y.; KOROLEV, A.M.; LAZ'KO, E.P.; POPENKO, N.A. Active Broad X-Band Circular Patch Antenna. IEEE Antennas and Wireless Propagation Letters, 2006, v.5, n.1, p.529-533, doi: http://dx.doi.org/10.1109/LAWP.2005.860200.

Published

2015-04-25

Issue

Section

Reflector antennas and other types of radar antennas