Blind estimation of speckle variance in synthetic aperture radar images
DOI:
https://doi.org/10.1109/ICATT.2015.7136846Keywords:
SAR, multi-look, blind estimation, speckle varianceAbstract
A task of blind estimation of multiplicative noise (speckle) variance in multi-look images acquired by radars with synthesized aperture array is considered. It is shown that there are several factors affecting accuracy of such estimation. The main of them are spatial correlation of the speckle, complexity of an analyzed image and peculiarities of a method used. Spatial and spectral domain approaches are analyzed. It is shown that for both approaches spatial correlation of the speckle is to be estimated and taken into account. Results for real life TerraSAR-X data are presented as illustrations and for analyzing methods' accuracy.References
OLIVER, C.; QUEGAN, S. Understanding Synthetic Aperture Radar Images. SciTech Publishing, 2004.
LEE, J.-S.; HOPPEL, K.; MANGO, S.A. Unsupervised Estimation of Speckle Noise in Radar Images. Imaging Systems and Technology, 1992, v.4, p.298-305, doi: http://dx.doi.org/10.1002/ima.1850040409.
ANFINSEN, S.N.; DOULGERIS, A.P.; ELTOFT, T. Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery. IEEE Trans. Geoscience Remote Sensing, 2009, v.47, n.11, p.3795-3809, doi: http://dx.doi.org/10.1109/TGRS.2009.2019269.
FOUCHER, S.; BOUCHER, J.-M.; BENIE, G.B. Maximum likelihood estimation of the number of looks in SAR images. Proc. of Int. Conf. on Microwave, Radar Wireless Communication, 2000, Wroclaw. IEEE, 2000, v.2, p.657-660, doi: http://dx.doi.org/10.1109/MIKON.2000.914020.
LEE, J.-S.; WEN, J.H.; AINSWORTH, T.I.; CHEN, K.S.; CHEN, A.J. Improved sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geoscience Remote Sensing, 2009, v.47, n.1, p.202-213, doi: http://dx.doi.org/10.1109/TGRS.2008.2002881.
ABRAMOV, S.; ABRAMOVA, V.; LUKIN, V.; PONOMARENKO, N. Computational and Numerical Simulations. InTech, 2014, p.303-327, doi: http://dx.doi.org/10.5772/57040.
ABRAMOVA, V.; ABRAMOV, S.; LUKIN, V.; ROENKO, A.; VOZEL, B. Automatic estimation of spatially correlated noise variance in spectral domain for images. Telecommunications and Radio Engineering, 2014, v.73, n.6, p.511-527, doi: http://dx.doi.org/10.1615/TelecomRadEng.v73.i6.40.
LUKIN, V.; ABRAMOV, S.; ZELENSKY, A.; ASTOLA, J.; VOZEL, B.; CHEHDI, K. Improved minimal inter-quantile distance method for blind estimation of noise variance in images. Proc. of SPIE on Image and Signal Processing for Remote Sensing XIII, 2007, v.6748, n.674811, doi: http://dx.doi.org/10.1117/12.738006.
ZORAN, D.; WEISS, Y. Scale Invariance and Noise in Natural Images. Proc. of IEEE 12th Int. Conf. on Computer Vision ICCV, 29 Sept.-2 Oct. 2009, Kyoto. IEEE, 2009, p.2209-2216, doi: http://dx.doi.org/10.1109/ICCV.2009.5459476.
SENDUR, L.; SELESNICK, I.W. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters, 2002, v.9, n.12, p.438-441, doi: http://dx.doi.org/10.1109/LSP.2002.806054.
KURKIN, D.; LUKIN, V.; ABRAMOVA, V.; ABRAMOV, S.; VOZEL, B.; CHEHDI, K. Image DCT-coefficient statistics and their use in blind noise variance estimation. Proc. of MMET, 28-30 Aug. 2012, Kyiv, Ukraine. IEEE, 2012, p.316-319, doi: http://dx.doi.org/10.1109/MMET.2012.6331267.
ROENKO, A.; LUKIN, V.; DJUROVIC, I. DCT Coefficient Statistics in Images Corrupted by Spatially Correlated Noise. Proc. of MECO, 15-20 Jun. 2013, Budva. IEEE, 2013, p.156-159, doi: http://dx.doi.org/10.1109/MECO.2013.6601344.