ISSN 2522-9818 (print)
CyuacHuii cman HayKogux 00cniodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 1 (15) ISSN 2524-2296 (online)

UDC 681.3.06 DOI: https://doi.org/10.30837/1TSS1.2021.15.053

D. ZOLOTARIOV

THE MECHANISM FOR CREATION OF EVENT-DRIVEN APPLICATIONS BASED
ON WOLFRAM MATHEMATICA AND APACHE KAFKA

The article is devoted to the research and development of the mechanism of interaction between Wolfram Mathematica programs and
Apache Kafka queue to provide the ability to build event-driven applications based on it. The subject of the research is the practical
principles of building a mechanism for interaction between Wolfram Mathematica and Apache Kafka. The purpose of the article is to
develop and substantiate practical recommendations regarding the formation of a mechanism for publishing messages to the Apache
Kafka queue and reading messages from it for programs of the mathematical processor Wolfram Mathematica, which will make it
possible to build event-driven applications. Tasks: to determine the mechanism of such interaction, prove the choice of tools for its
implementation, create and test the obtained results. The research used the following tools: Apache Kafka, Kafkacat, the method of
developing the Wolfram Mathematica package. The results of the research: the mechanism of interaction between Wolfram
Mathematica and Apache Kafka was determined and the corresponding toolkit was created on its basis in the form of two
Mathematica packages, which are built on using Apache Kafka as a queue client and third-party Kafkacat software, respectively. It is
shown that the first option is less reliable and consumes much more computer resources during operation. It has been demonstrated
that the Mathematica processor is currently not suitable in its pure form for real-time data analysis. Recommendations are given
regarding the use of built-in compilation functions to increase the speed of such processing. Conclusions. Practical recommendations
have been developed and substantiated regarding the formation of the mechanism of interaction between the Wolfram Mathematica
mathematical processor and the Apache Kafka queue manager for the possibility of working in two directions with the queue:
publishing messages and reading them. A toolkit for such interaction in the form of Mathematica packages has been created, their
capabilities have been demonstrated, as well as comparison with each other. The economic benefit of using the described tools is

shown. Future ways of its improvement are given.
Keywords: event-driven applications; queue manager;
Mathematica.

Introduction

Recent years have been marked by the rapid
development of micro service architecture and the
distributed processing of information in real or near real
time. This is primarily due to the development and
improvement of data delivery mechanisms such as queue
managers.

Based on them, such event-driven products are built
as: 10T [1-2], which work with the flow of messages from
"smart" things; web platforms [3] that display the results
of receiving or processing events to the end user; data
processing pipelines [4-7], responding to events of
different nature, and others. The peculiarity of such
systems is that they focus not so much on reducing the
processing time of each individual event and bringing it
closer to real time, but on the guaranteed and clear
sequence of interconnected events and guarantees the
processing of each of them. The latter comes to the fore
because event generators and consumers are often
completely technologically = and algorithmically
independent, and can also be located in space at a
considerable distance from each other. In addition,
consumers - queue data points - can appear in the system
as needed, change at any time, and be excluded from it
when they are no longer needed. The consequence of this
feature is that the number of queue clients is limited only
by the capacity of the queue managers' servers.

One of the most popular, fault-tolerant and powerful
queue managers at the moment is Apache Kafka. It allows
you to build a distributed system of brokers (managers) of
the queue, which is able not only to dynamically adapt to
the load from the queue customers of both types
(generators and consumers), but also easily scale both
vertically and horizontally.

mathematical processor; saving resources and funds; Kafka;

The benefits of event-oriented architecture are
increasingly being appreciated beyond the development of
commercial products. One of the promising areas is the
processing of such a message flow by mathematical
processors, which allows you to use their full range of
tools for analysis. For example, the implementation of the
study of data obtained from Kafka in the mathematical
package MathWorks MATLAB is already underway [8]
and has a fairly rich functionality.

The Wolfram Mathematica processor is one of the
world leaders in the field of symbolic and numerical data
processing and is used in almost every field of knowledge
and science, which is clearly seen, for example, in
publications [9-12], where this matpacket is used to solve
different areas of applied technology. Therefore, the
construction of event-driven products based on it is an
urgent task.

But there is still no effective and reliable mechanism
for connecting this math processor and Kafka to receive or
publish data. There is a single undocumented MQTTLink
package [13] for the MQTT protocol (mosquitto), which,
through third-party software, allows you to connect to a
Kafka cluster. But it does not guarantee correct operation
[14].

Therefore, the purpose of this article is to develop
and substantiate practical recommendations for the
formation of the mechanism of interaction between the
mathematical processor Wolfram Mathematica and the
queue manager Apache Kafka to work in two directions:
publishing messages in the queue and consuming
messages from it — which will build event-driven
applications in Mathematica. The task of the article is to
identify the necessary elements of such a mechanism and
justify the choice of tools for their construction.

© D. Zolotariov, 2021

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 1 (15)

Using Apache Kafka

The Mathematica mat package itself, as mentioned
above, does not have built-in interoperability with Kafka.
And the easiest way to organize this interaction is to
locally install Apache Kafka software on the client
computer as a queue client and interact with the queue
through it. The diagram of the system constructed on such
approach is given in fig. 1. It should be noted that Kafka
also requires the installation of a Java code execution
platform. It should also be borne in mind that currently
Kafka developers do not guarantee the correct operation
of all components of their platform on Windows [15].

PC
Apache
Java VM
Katka
cluster
Mathematica| Apache >
imd Kafka z

_ ')

Fig. 1. Connecting to a Kafka cluster via a local Apache Kafka
installation as a client

Scripts from the "/ bin /" subdirectory for Linux
systems and "/ bin / windows /" for Windows systems in

Run["echo \""'<> key <>":"<> value <>'
<>" --property \"parse.key=true\"

The publication is made in the form of "key: value",
which is indicated by two arguments of the script with the
prefix "--property". Moreover, the "value" should not have
time transfers. The function is a call to the echo

the Kafka installation directory are used for publishing,
reading messages, and other operations in turn. For
certainty, we will consider only Windows as a client, for
Linux the difference will be only in the extension of
scripts ".sh".

The publishing operation is a one-time execution of
the instant termination script "kafka-console-
producer.bat”, which is performed each time to send a
separate message to the queue, which is read from the
standard input stream (stdin). Read operation - one-time
execution of the script "kafka-console-consumer.bat"
without completion, which is an endless process of
reading messages from the queue and output them to the
standard output stream (stdout). The main parameters of
all scripts are: "--bootstrap-server" - a comma-separated
list of boostrap servers to connect to the Kafka cluster, and
"--topic" - the name of a specific queue. Hereinafter, these
general parameters in the code are replaced by three dots
for brevity.

Therefore, the construction of the mechanism of
interaction of Mathematica with the Kafka cluster should
be based on the use of built-in functions of executing
external applications and reading streaming data that work
with standard input and output streams.

To run external applications from a Mathematica
document, use the Run function, the only parameter of
which is the command to execute. The function of
publishing in turn built on its basis looks as follows.

\"" | kafka-console-producer.bat ... "
--property \"'key.separator=:\"""];

environment command, which provides data for
publication to the Kafka script input.
Creating and deleting queues is done in a similar

way, for example, creating:

Run[""'kafka-topics.bat ... --create];

To read from a data stream in Mathematica, use the
Read function, the parameters of which are the file name
and read mode: string, write, word, and others. But if you
put an exclamation point at the beginning of the file name,
it will be treated as a command to execute and the Read
function will return its output to the standard stream. Also,
instead of the file name, you can pass the handle of the

stream = OpenRead["'!'kafka-console-consumer.bat ...
While[True,{
Check[str=Read[stream,String], Break[];];

thread opened by the OpenRead function, which takes in
the file name with all the comments above. The
mechanism of operation of the Read function is such that
it does not end until the data flow reaches the value of
EndOfFile, i.e. does not end. The reading of queue data
based on it is given below.

--from-beginning"];

If[str===EndOfFile || callback[str]===False, Break(];]

H;

Close[stream];

The above construction opens a data stream initiated
by the script "kafka-console-consumer.bat" and reads in
an infinite loop. Each message is processed by a user
function in the callback variable. In this case, the simplest
way to break messages is used — as a text string by
hyphenation of the line "\ n". But if the messages contain
such characters, it is possible to switch the reading mode

to "Record" and set in the RecordSeparators option of the
Read function a valid character for dividing the flow into
messages. The use of the intermediate function OpenRead
is intended to obtain a flow descriptor for its correct
closure by the function Close, however, as mentioned
above, you can pass the command directly by the first
argument to the function Read. In the latter case, the

Cyuacnuti cmamn HayKo8ux 00CIIONCeHb ma mexnoaozi 6 npomuciosocmi. 2021. Ne 1 (15)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

thread will be closed only when the current Mathematica
kernel is closed.

For ease of distribution and use, the developed
functions based on the above are designed in the form of
Mathematica package "KafkalLocalLink", which is built in
a standard way and has the following structure of files and
directories, shown in fig.2.

KafkalLocalLink
Consume
= Consume.m
Kernel
= initm
Produce
= Produce.m
= KafkalocalLink.m

Fig. 2. The structure of the directories of the Mathematica
package of interaction with Kafka

Each of the Consume.m and Produce.m files has
descriptions of the function of obtaining a list of queue
names and their specialized ones. The first is reading,
the second is deleting, creating a queue, and publishing to
it.

The advantages of separating the developed program
code into a package include the possibility of its dynamic
loading in Mathematica.

Using Kafkacat

An alternative approach to publishing to the Kafka
queue might be to install Kafkacat [16] on the client, a
third-party software for connecting to a Kafka cluster that
does not require the Java platform but requires Windows
version 10 with Windows Subsystem for installed and
configured. Linux (WSL) [17] based on Ubuntu. The
diagram of the system built on the use of Kafkacat is
shown in fig. 3.

PE
Apache

Kafka

WSL

cluster

Mathematica
H

Fig. 3. Connecting to a cluster via a local Kafkacat installation

A A A 4

In terms of built-in features, this application is not
inferior to the original Apache Kafka software, but much
more convenient to use.

A similar package for Mathematica is based on it.
Which differs only in the following remarks. The
publishing team in the queue will look much shorter:

"... | kafkacat P -K: -b ... -t..."

The argument "-P" includes publishing mode, "-K" -
sets the colon as a separator between the key and the value
of the message, the last "-b" and "-t" - are completely
similar to "--bootstrap-server" and "—topic”.

The reading command from the queue will look like
this:

"lkafkacat-C-J-u-q-b...-t..."

Where the argument "-C" includes read mode, "-J" -
receive a message in full JSON-format, "-u" - switches to
unbuffered output mode, "-q" - excludes the output of
service information.

As mentioned above, using the "-J" parameter for
Kafkacat returns a string that is a JSON object with
complete information about the message from the queue:
publication time, key, values, headers, offsets, and more.
But Mathematica does not have a built-in convenient
mechanism for working with the JSON format, so to
process this string and get from it the fields "key"
(message key) and "payload" (message text) you need to
use the following approach:

json = ImportString[str, "JSON"];
key ="key™ /. json;

Similar constructs are used to retrieve other fields

from the object, such as "headers"”, "offset™ or "ts"..

Work demonstration and comparison

To implement the experiment, two Mathematica
documents were created on the client computer: a
generator and a reader. Each of them has its own core of
the mathematical processor, which is allocated its own
core of the CPU - for guaranteed parallel and independent
document processing. The first developed package was
used to connect to the Apache Kafka cluster. After
receiving the results, the queue was deleted and the
second Kafkacat-based package was used.

As a platform for the deployment of the queue, cloud
technologies DigitalOcean were chosen, which is one of
the world leaders, where servers based on Ubuntu 20.04
LTS x64 OS were located, which proved to be a reliable
and fast platform in previous developments [20].

To demonstrate the operation of the developed tools
for building event-driven programs in Mathematica, the
generation of an arbitrary number in the range [-50.50] is
selected, repeated 100 times with a delay of one second. A
small number of iterations are chosen for the convenience
of plotting.

The content of the experiment is as follows: on the
publication side, an arbitrary number is generated and
added to the end of the points array, which has a dynamic
update (via the Dynamic function) in the document, and is
sent to the queue. At the same time, the client-reader
receives a message with this number, adds it to its array,
which automatically leads to the restructuring of the graph
based on it, which also has a dynamic output. The graph is
constructed by the ListPlot function for the entire
definition area [1,100] and with the option

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 1 (15)

"InterpolationOrder -> 2", which at the boundary points
leads to the output values from the original range of
values [-50.50] and serves as an additional load on
message processing.

Since the client can only connect to a queue that
already exists, the first to run was a document with the

NN = 100;
points = {};
Dynamic [Text [points]]

(-42, -19,2, 37, =23, 23, 32, 36, -29, -25, 16, 26, -2, 14, -19, -19, 37

KafkaClearTopic[kafkaTopic];

Do|
int = ToString[RandomInteger[{-50, 50}]]:
AppendTo[points, int];
KafkaPublish([kafkaTopic, ToString[i], int];

Pause[1];
, {1, NN}];

KafkaPublishFinish[];

.28, =14, -42, -3, 20, 48,
=42, 46, 41, 29, -16, -38, 50, 2, 36, =32, 50, 43, 49, -15, -40, -47, =42, -36, 49, -22, -11, 4,

44, -40,42, -49, 8, 34, 19, =38, -17, 49, 36, -43, -10, -21, 6, -7, =22, 44, 25, -48, -6, -40)

publication of messages, which first creates a queue,
followed by a reader document. The result obtained at the
same time for both documents for the package with
Kafkacat is shown in fig. 4.

i ihL N

20 40 60 80 100

=25+

KafkaRead [
kafkaCallback ,
kafkaTopic

| {3

Fig. 4. Simultaneous publishing (right) and reading from the same queue (left) using the Kafkacat-based package

The figure above shows that the client-reader does
not lag behind the client-generator. But in real time it is
clear that such a lag is still there, although insignificant.
The main delay that has been shown in the simulation is
the updating of dynamic objects in the document: for the
text field when publishing - imperceptible, for graphics -
about 0.2s, which is visible to the eye. With more
complex processing operations, the delays will be even
greater.

This in turn indicates that the Mathematica package
is not yet designed for real-time data analysis and cannot
handle critical operations. For complex data stream

analysis tasks, it is recommended to use in Mathematica
compilation of functions in WVM bytecode or even C,
which in practice [21] can increase its execution speed
from 2 to 10 times or more depending on the input
function being compiled.

The comparison of the speed of the developed
packages is as follows. For publication, only the
publication of data in the queue is selected as the most
resource-intensive process. The experiment described
above was repeated 15 times for each developed package
to exclude measurement error. The measurement results
were averaged. They are given in table 1.

Table 1. Consumption of computer resources by clients of the Kafka queue

Name Using OM (MB) CPU time usage (%)
Package based on Apache Kafka 132 79,3
Package based on Kafkacat 5 0,5

This clearly shows that Kafkacat is much faster to
perform and more economical to operate, because it
requires almost an order of magnitude less computer
resources.

Prospects for further development of the system

Prospects for further development of the developed
tools are the following improvements.

Due to the fact that the queue never ends and
because of this, the program will never receive an
EndOfFile signal during normal operation, it seems
promising to develop an additional mechanism for
forcibly exiting queue messages by the client-reader on a
signal from the client-generator or in any other way, as
well as to include in the package processing service fields

"headers" from a JSON object describing the message in
Kafkacat.

Disadvantages of this tool include the installation
and configuration of multiple components on the Kafka
cluster client computer. In addition, a direct connection to
the Kafka cluster is associated with the following
complications - each client needs to know the IP addresses
of bootstrap servers, have authorization data on
all servers in the cluster and know all the necessary
settings to work with them. Therefore, it seems
promising to transfer this component of the mechanism of
interaction from cluster clients to a separate
server, which will act as an intermediary, hiding all the
settings of interaction with the cluster and
authentication.

ISSN 2522-9818 (print)
CyuacHuii cman HayKogux 00cniodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 1 (15) ISSN 2524-2296 (online)

Conclusions It has been demonstrated that the Mathematica

processor is not currently suitable in its pure form for real-

The paper develops and substantiates practical time queue data analysis. Recommendations for using

recommendations for the formation of the mechanism of ~ built-in compilation features to increase message
interaction of the mathematical processor Wolfram processing speed are given.

Mathematica and the queue manager Apache Kafka for ' The economic benefi'g o_f_using the desc_ribed tools is
the possibility of working in two directions: publishing achieved due to the possibility of developing powerful
messages in the queue and consuming messages from it. data analyzers from the Kafka queue with a relatively

Appropriate tools have been created in the form of ~ easy-to-learn Mathematica ~ processor instead of
two Mathematica packages, built on the use of Apache developing narrowly specialized tools. And also due to

Kafka as a queue client and third-party Kafkacat software, ~ fast and flexible updating of such program in a matpacket
respectively. which can be changed at any moment and started at once

It is shown that the first option is less reliable and ~ On execution.
requires much more machine resources during operation.

References

1. Ed-daoudy, A., Maalmi, K. (2019), "A new Internet of Things architecture for real-time prediction of various diseases using machine
learning on big data environment”, Journal of Big Data, Vol. 6, No. 104. DOI: https://doi.org/10.1186/s40537-019-0271-7

2. Mahapatra, T. (2020), "Composing high-level stream processing pipelines”, Journal of Big Data, Vol. 7, No. 81.
DOI: https://doi.org/10.1186/s40537-020-00353-2

3. Nasiri, H., Nasehi, S., Goudarzi, M. (2019), "Evaluation of distributed stream processing frameworks for 10T applications in Smart
Cities", Journal of Big Data, Vol. 6, No. 52. DOI: https://doi.org/10.1186/s40537-019-0215-2

4. Jung, S., Kim, Y., Hwang, E. (2018), "Real-time car tracking system based on surveillance videos", EURASIP Journal on Image and
Video Processing, Vol. 2018, No. 133. DOI: https://doi.org/10.1186/s13640-018-0374-7

5. Ismail, A., Truong, H. L., Kastner, W. (2019), "Manufacturing process data analysis pipelines: a requirements analysis and survey",
Journal of Big Data, Vol. 6, No. 1. DOI: https://doi.org/10.1186/s40537-018-0162-3

6. Kim, Y. K., Kim, Y., Jeong, C. S. (2018), "RIDE: real-time massive image processing platform on distributed environment", EURASIP
Journal on Image and Video Processing, Vol. 2018, No. 39. DOI: https://doi.org/10.1186/s13640-018-0279-5

7. Kolajo, T., Daramola, O., Adebiyi, A. (2019), "Big data stream analysis: a systematic literature review", Journal of Big Data, Vol. 6, No.
47. DOI: https://doi.org/10.1186/s40537-019-0210-7

8. GitHub (2020), "Mathworks-ref-arch/matlab-apache-kafka: MATLAB Interface for Apache Kafka", available at:
https://github.com/mathworks-ref-arch/matlab-apache-kafka (last accessed 10 December 2020).

9. Rehman, S., Idrees, M., Shah, R. A. et al. (2019), "Suction/injection effects on an unsteady MHD Casson thin film flow with slip and
uniform thickness over a stretching sheet along variable flow properties”, Boundary Value Problems, Vol. 2019, No. 26.
DOI: https://doi.org/10.1186/s13661-019-1133-0

10. Ghorbani, M. A., Singh, V. P., Sivakumar, B. et al. (2017), "Probability distribution functions for unit hydrographs with optimization
using genetic algorithm", Applied Water Science, Vol. 7, P. 663-676. DOI: https://doi.org/10.1007/s13201-015-0278-y

11. DeCanio, S. J. (2020), "Can an Al learn political theory?", Al Perspectives, VVol. 2, Article 3. DOI: https://doi.org/10.1186/s42467-020-
00007-2

12. You, X., Chen, D. R. (2018), "A new sequence convergent to Euler—Mascheroni constant"”, Journal of Inequalities and Applications, Vol.
2018, Article 75. DOI: https://doi.org/10.1186/s13660-018-1670-6

13. Mathematica Stack Exchange (2020), "Networking - Connect Mathematica to message broker - Kafka, NATS or mosquitto”, available at:
https://mathematica.stackexchange.com/questions/199848/connect-mathematica-to-message-broker-kafka-nats-or-mosquitto (last
accessed 10 December 2020).

14. Mathematica Stack Exchange (2020), "Networking - MQTTLink TopicSubscribe[] cannot receive messages”, available at:
https://mathematica.stackexchange.com/questions/211940/mqttlink-topicsubscribe-cannot-receive-messages (last accessed 10 December
2020).

15. Apache Kafka (2020), "Apache Kafka", available at: https://kafka.apache.org/documentation/#os (last accessed 10 December 2020).

16. GitHub (2020), "Edenhill/kafkacat: Generic command line non-JVM Apache Kafka producer and consumer”, available at:
https://github.com/edenhill/kafkacat (last accessed 10 December 2020).

17. Microsoft Docs (2020), "An overview on the Windows Subsystem for Linux", available at: https://docs.microsoft.com/en-
us/windows/wsl/ (last accessed 10 December 2020).

18. Stack Overflow (2020), “"Kafka bootstrap-servers vs zookeeper in kafka-console-consumer”, available at:
https://stackoverflow.com/questions/41774446/kafka-bootstrap-servers-vs-zookeeper-in-kafka-console-consumer (last accessed 10
December 2020).

19. Stack Overflow (2020), "Apache kafka - bootstrap-server vs zookeeper params in consumer console”, available at:
https://stackoverflow.com/questions/53954877/bootstrap-server-vs-zookeeper-params-in-consumer-console (last accessed 10 December
2020).

20. Zolotariov, D. (2020), "The distributed system of automated computing based on cloud infrastructure”, Innovative Technologies and
Scientific Solutions for Industries, No. 4 (14), P. 47-55. DOI: https://doi.org/10.30837/ITSS1.2020.14.047

21. Zolotariov, D. A. (2020), "Automation and optimization of scientific and engineering calculations in Wolfram Mathematica”, Kharkiv :
FOP Panov A. M. ISBN: 978-617-7859-36-8 [In Ukrainian].

Received 23.12.2020

Bidomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

3o0J10TapHOB Jennc OurekciiioBu4 - KaHIuIaT (bi3uKO-MaTeMaTHYHNX HaykK, Xapkis, VYkpaiHa;
email: denis@zolotariov.org.ua, ORCID: https://orcid.org/0000-0003-4907-7810.

https://doi.org/10.1186/s40537-019-0271-7
https://doi.org/10.1186/s40537-020-00353-2
https://doi.org/10.1186/s40537-019-0215-2
https://doi.org/10.1186/s13640-018-0374-7
https://doi.org/10.1186/s40537-018-0162-3
https://doi.org/10.1186/s13640-018-0279-5
https://doi.org/10.1186/s40537-019-0210-7
https://github.com/mathworks-ref-arch/matlab-apache-kafka
https://doi.org/10.1186/s13661-019-1133-0
https://doi.org/10.1007/s13201-015-0278-y
https://doi.org/10.1186/s42467-020-00007-2
https://doi.org/10.1186/s42467-020-00007-2
https://doi.org/10.1186/s13660-018-1670-6
https://mathematica.stackexchange.com/questions/199848/connect-mathematica-to-message-broker-kafka-nats-or-mosquitto
https://mathematica.stackexchange.com/questions/211940/mqttlink-topicsubscribe-cannot-receive-messages
https://kafka.apache.org/documentation/#os
https://github.com/edenhill/kafkacat
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://stackoverflow.com/questions/41774446/kafka-bootstrap-servers-vs-zookeeper-in-kafka-console-consumer
https://stackoverflow.com/questions/53954877/bootstrap-server-vs-zookeeper-params-in-consumer-console
https://doi.org/10.30837/ITSSI.2020.14.047
mailto:denis@zolotariov.org.ua
https://orcid.org/0000-0003-4907-7810

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 1 (15)

3oJ0TapéB Jlenuc AnexceeBHY — KaHANAAT GU3UKO-MAaTEMaTHIECKUX HayK, XapbKoB, YKpanHa.
Zolotariov Denis — PhD (Physics and Mathematics Sciences), Kharkiv, Ukraine.

PO3POBKA MEXAHI3MY JJISA CTBOPEHHS KEPOBAHUX ITOAIAMU
JOJATKIB HA BA31l WOLFRAM MATHEMATICA TA APACHE KAFKA

CraTTs IpUCBsAYCHA OCIIKEHHIO Ta po3poliii MexaHi3My B3aemoii mporpam Wolfram Mathematica i3 MmeHemxepom yepru Apache
Kafka qns HagaHHS MOXKIJIMBOCTI TTOOYIOBH Ha HOTO OCHOBI KEpOBaHMX MOMAIAMHU nojatkiB. [IpeamMeToM NOCITIIKEHHS € PaKTHYHI
3acaqu moOynoBH MexaHizmy B3aemoaii Wolfram Mathematica i3 Apache Kafka. Mertoto crarTi € po3pobOka Ta OOIpYHTYBaHHS
MPaKTUYHUX PEeKOMeHAalill Imoxo (opMyBaHHS MexaHi3My myOumikamii moBimomsieHb y uepry Apache Kafka Ta cmoxxuBanHS
MOBIIOMJIEHb 13 HEl AJI porpaM MareMaTudHoro mnpouecopy Wolfram Mathematica, mo gacTb MOKIHBICTh MOOYZIOBH KEPOBAHHUX
mofisiMH ZoAaTKiB. 3aBAaHHS poOOTH: BH3HAUUTH MEXaHI3M Takoi B3aeMojii, oOIpyHTyBaTh BHOIp IHCTPYMEHTIB Ui iforo
peaizariii, CTBOPHTH Ta MPOTECTYBATH OTPUMAHUH pe3ysbTaT. Y X0/l HOCHIIKEHHS BUKOPHUCTAHO 3aco0u: iH(opMamiiHi TexHomorii
Apache Kafka, Kafkacat, cmoci6 moOynosu makery Wolfram Mathematica. Pe3yapTaTm IOCIi/UKEHHS: BH3HAYCHUH MeEXaHI3M
B3aemonii Wolfram Mathematica i3 Apache Kafka ta cTBOpeHmil BimmoBimHMI iHCTpyMeHTapiii Ha HOro OCHOBI y BHIIAL JBOX
naketiB Mathematica, mo moOynoBani Ha BukopucTaHHI Apache Kafka y sxocti Kii€eHTa 4epru Ta CTOPOHHBOTO IIPOTPAMHOTO
3abe3neuyenHs Kafkacat Bigmosimno. IlokasaHo, mo mepimiuii BapiaHT € MEHII HaIiiHUM Ta moTpedye 3HAYHO OiNbIlle MAIIWHHUAX
pecypceiB mixg gac pobortu. IIpogeMoHCTpoBaHO, IO Ha AaHMH MOMEHT MaTeMaTHYHUH mporecop Mathematica He HiIXOAWUTH y
YUCTOMY BHUDJIAOI Ui aHalmi3y JaHUX y peaspHOMy dHaci. [laHi pexoMeHpamii IIOJ0 BHKOPHCTaHHS BOYZOBaHHUX (YHKIIH
KOMITUTFOBAHHS IS MiABHIICHHS IIBUIKOCTI 00poOku. BucHoBKkH. Po3poOnieHi Ta 0OIpyHTOBaHI MpaKTHYHI pEeKOMEHIAmii MI0A0
(GopMyBaHHS MeXaHi3My B3aeMofii MaremaTHyHoro npouecopy Wolfram Mathematica Ta menemkepy ueprn Apache Kafka mmst
MOXJIMBOCTI poOOTH y IBOX HANpsIMKax i3 4eproro: myOiikariil nosizomieHs Ta ix untaHHs. CTBOpeHHMit iHCTpyMeHTapiil a1 Takoi
B3aeMofil y Buriai makeriB Mathematica, mpomeMOHCTpOBaHI iX MOJMIJIMBOCTI, a TakoX HOPIBHSHHSA MiX coboro. [lokxazana
€KOHOMIYHA BUT'0/Ia BiJl BUKOPHUCTaHHS ONMUCAHOTO iHCTpyMeHTapito. HaBexeHi MaliOyTHI IUISIXM HOTO BIOCKOHAJICHHS.

KunrouoBi cioBa: kepoBaHi MOJISIMHU TOJATKH; MEHEDKEPU Yepry; MaTeMaTHYHHH IPOIECOp; EKOHOMIS pecypciB Ta KOIITIB;
Kafka; Mathematica.

PA3PABOTKA MEXAHM3MA JJI5s1 CO3JAHUSA YIIPABJIIAAEMBIX COBBITHSIMU
IMPHUJIO)KEHUHU HA BASE WOLFRAM MATHEMATICA U APACHE KAFKA

Crathsi OCBSIICHA HCCIECIOBAHUIO U pa3paboTKe MexaHu3Ma B3aumojeiictBus mporpamm Wolfram Mathematica ¢ menemkepom
ouepenn Apache Kafka st mpemocraBieHnss BO3MOXKHOCTH MOCTPOCHHUS HA €r0 OCHOBE YNPABISEMBIX COOBITHSMH MPHIOKCHHIL.
IIpeaMeTOM HCCIIEIOBAHKS SBIISAIOTCS MPAKTHYECKHE TPUHIMITBI IOCTPOEHHUs MexaHu3Ma B3aumozeiicteus Wolfram Mathematica ¢
Apache Kafka. Hleabto cratbu siBisiercs pa3paboTka U 000CHOBAHHS MPAKTHUECKUX PEKOMEHIAIMI OTHOCHTEIRHO (DOPMHPOBAHUS
MexaHn3Mma TyOnukanun coobuieHuii B oyepens Apache Kafka u urtennst cooOuienunii U3 Hee [Uisi MpOrpamMM MaTEMaTHYECKOTO
nporeccopa Wolfram Mathematica, 4to macT BO3MOKHOCTH [TOCTPOCHHUSI YIPABISAEMbBIX COOBITHSIMU MPHIOKEHKH. 3agaua paGoThL:
OIPEICIUTh MEXaHM3M TAaKOTO B3aUMOJICHCTBHUSI, 000CHOBATh BHIOOP HHCTPYMEHTOB JUISl €r0 pPeajn3allii, CO3/1aTh U MPOTECTHPOBATh
MOJTyYeHHBIH pe3ynbTar. B xo/e uccriemoBaHms HCOIb30BaHbl cpeacTBa: uapopmannonnsie Texuonoruu Apache Kafka, Kafkacat,
crioco6 paspaborku makera Wolfram Mathematica. PesyabTaT uccremoBanmsi: onpeneneH mexaHu3M Biammozeiictsus Wolfram
Mathematica ¢ Apache Kafka i co3man cooTBeTcTByIOmuii HHCTpyMEHTapHii Ha ero OCHOBE B Buje ABYXx maketoB Mathematica,
KOTOpBIE MOCTPOEHHI Ha ucnons3oBaHuu Apache Kafka B kadecTBe kimMeHTa o4yepeny W CTOPOHHETO MPOrPaMMHOIO OOeCIeueHUs
Kafkacat coorserctBenno. [TokazaHo, 4TO TEpPBBIH BapHaHT MEHEE HAJCKEH W IMOTPEONACT 3HAYUTENBHO OOJIbIIE KOMIBIOTEPHBIX
pecypcoB BO BpeMst paboThl. [IpogeMOHCTPHPOBAHO, YTO HA JAaHHBI MOMEHT MaTeMaTH4ecKuii mpoueccop Mathematica ne mogxoaur
B YHCTOM BHJE /Ul aHaiM3a JaHHBIX B PEAbHOM BpEeMeHH. JIaHbl PEKOMCHJALMH OTHOCHTEJBHO KCIOJb30BaHHUS BCTPOCHHBIX
GYHKIMH KOMIHIMPOBAHUS VISl TIOBBIIICHHS CKOPOCTH Takoil o0paGoTku. BeiBoabl. PaspaGoraHsl U 000CHOBaHBI MPAKTHYCCKHE
PEeKOMEHIAINK OTHOCUTENHHO (POPMHUPOBAHUS MEXaHM3Ma B3aMMOJEICTBHsI MaTemMaTrdeckoro mporeccopa Wolfram Mathematica u
menemkepa ouepenn Apache Kafka mis BoamoxuOCTH paboThl B [BYX HAMpaBICHHSX C OYEPEAbIO: IMyOIUKAIMHA COOOMIEHHI U X
yrenus. Co3qaHbl MHCTPYMEHTAPUH U1 TAaKOro B3aHMMOJCHCTBHA B Bujae maketoB Mathematica, mpoaeMoHCTpupoBaHBI HX
BO3MOXXKHOCTH, a TaKKe CpaBHEHHE Mexay coOoi. ITokasaHa SKOHOMHYECKAas BBIFOJAa OT HCIIONB30BAHHUS OMHMCAHHOTO
uHCTpyMeHTapusl. [IpuBeieHbI Oy IyIHe MyTH ero YCOBEPIICHCTBOBAHHMS.

KioueBbie cioBa: ympapiseMble COOBITHAMH MPHJIOKEHHS; MCHEIDKEPhl OUepei; MaTeMaTHUECKHH TPOIIECCOp; IKOHOMHS
pecypcos u cpenacts; Kafka; Mathematica.

Fibnioepaghiuni onucu / Bibliographic descriptions
3om0TapsoB JI. O. Po3poOka MexaHi3My Ui CTBOPEHHS KEPOBAHUX MOIsIMU A0AaTKIB Ha 6231 Wolfram Mathematica ta Apache

Kafka. Cywacnuii cman nayxosux Oocnioscens ma mexnono2ii 6 npomucinosocmi. 2021, Nel(15). C.53-58.
DOI: https://doi.org/10.30837/ITSSI.2021.15.053

Zolotariov, D. (2021), "The mechanism for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 1 (15), P. 53-58.
DOI: https://doi.org/10.30837/ITSSI.2021.15.053

