ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00caiodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 2 (16) ISSN 2524-2296 (online)

UDC 004.657; 004.051; 004.413.5 DOI: https://doi.org/10.30837/1TSSI.2021.16.019

O. MAazurRovA, A. NABOKA, M. SHIROKOPETLEVA

RESEARCH OF ACID TRANSACTION IMPLEMENTATION METHODS FOR
DISTRIBUTED DATABASES USING REPLICATION TECHNOLOGY

Today, databases are an integral part of most modern applications designed to store large amounts of data and to request from many
users. To solve business problems in such conditions, databases are scaled, often horizontally on several physical servers using
replication technology. At the same time, many business operations require the implementation of transactional compliance with
ACID properties. For relational databases that traditionally support ACID transactions, horizontal scaling is not always effective due
to the limitations of the relational model itself. Therefore, there is an applied problem of efficient implementation of ACID
transactions for horizontally distributed databases. The subject matter of the study is the methods of implementing ACID transactions
in distributed databases, created by replication technology. The goal of the work is to increase the efficiency of ACID transaction
implementation for horizontally distributed databases. The work is devoted to solving the following tasks: analysis and selection of
the most relevant methods of implementation of distributed ACID transactions; planning and experimental research of methods for
implementing ACID transactions by using of NoSQL DBMS MongoDB and NewSQL DBMS VolItDB as an example; measurements
of metrics of productivity of use of these methods and formation of the recommendation concerning their effective use. The following
methods are used: system analysis; relational databases design; methods for evaluating database performance. The following results
were obtained: experimental measurements of the execution time of typical distributed transactions for the subject area of e-
commerce, as well as measurements of the number of resources required for their execution; revealed trends in the performance of
such transactions, formed recommendations for the methods studied. The obtained results allowed to make functions of dependence of
the considered metrics on loading parameters. Conclusions: the strengths and weaknesses of the implementation of distributed ACID
transactions using MongoDB and VolItDB were identified. Practical recommendations for the effective use of these systems for

different types of applications, taking into account the resources consumed and the types of requests.
Keywords: distributed database; transaction; performance; ACID; NOSQL; NewSQL; MongoDB; VoltDB.

Introduction

Databases (DB) are the basis of the vast majority of
modern software applications in various spheres of human
life. These are medical solutions, financial and banking
systems, social networks, etc. Today, databases and their
shells, DBMSs, store and process data, the number of
which is significantly increasing every year.

Because the resources of any server on which the
DBMS is deployed are limited, to store new amounts of
data requires its scaling, vertical or horizontal [1]. Vertical
scaling, which consists in increasing the hardware
resources (increase in RAM, permanent media) on the
database server machine, obviously has limitations and
does not provide the necessary result for the
implementation of large systems. For this reason,
horizontal scaling has become more popular, the essence
of which is the introduction of additional node machines,
which are combined into a single cluster. Thus, the
database is stored on several physical machines, and there
are no restrictions on this type of scaling.

Thus, a horizontally distributed database consists of
several physical nodes that are hosted on different
physical servers and store certain data throughout the
database [2]. For this type of scaling, there are two
distribution technologies: sharding and replication. The
essence of sharding is to place part of the data of the entire
database on a particular server, while in the case of
replication; copies of all database data are stored on all
nodes of the cluster simultaneously.

On the other hand, it is critical for modern databases
to execute ACID transactions [3], which have become an
integral part of business operations (money transfer, ticket
booking) for most areas. But for horizontally scalable
databases, there is a problem with performing such ACID

transactions, which is that different nodes of the database
cluster can interact with each other using a network TCP
protocol, which in itself does not support transactionality.
This problem applies to both horizontal scaling
technologies, but is especially relevant for replicated
databases, where the same data is on different physical
servers, which must always be in a consistent state [4].

Thus, the developers of distributed systems are faced
with the problem of choosing and implementing methods
to support distributed transactions when creating
applications based on replicated databases.

Analysis of recent research and publications

Classic relational DBMSs were the first to face the
problems of horizontal scaling and implementation of
distributed transactions: PostgreSQL, MySQL, SQL
Server, Oracle and others. Due to the features of the
relational data model, such as reference integrity and
unique constraints, the corresponding DBMS cannot be
easily distributed to several physical machines. In
addition, relational ACID principles have been developed
to operate within a single address space, and have some
difficulty in implementing in a distributed environment.
Therefore, most relational databases do not provide out-
of-the-box capabilities to support distributed ACID
transactions.

Later, to solve the problems of horizontal scaling,
databases of a new class NoSQL were developed, in
which the developers tried to overcome the limitations
inherent in relational data models and the SQL language
[5-8]. Since NoSQL DBMSs are not based on the concept
of DB schema and relationships between tables, they
provide a fairly easy possibility of horizontal scaling from
the beginning [9].

© O. Mazurova, A. Nahoka, M. Shirokopetleva, 2021

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

However, most NoSQL DBMSs support
transactionality at the single-record level only, which
prevents them from being used in a number of important
transactional business operations. A number of developers
of NoSQL systems to implement this shortcoming
implement additional functionality. An example of such a
DBMS is MongoDB [10-11], which fully supports
distributed ACID transactions. This one of the most
popular systems shows quite high performance results and
has integration with a large number of programming
languages.

As an attempt to combine the advantages of classic
relational and NoSQL DB, a new class of DBMS has
recently appeared - NewSQL [12-13]. NewSQL DBMSs
have both built-in support for horizontal scaling and,
inherent in relational systems, support for transaction
ACID and most SQL functionality. And although this
class of systems has a fairly high potential, but it has not
yet gained much popularity among developers. However,
the DBMS VoltDB, which is quite popular among systems
of this class, already has integration with many
programming languages.

It should not be forgotten that one of the first
methods of implementing distributed transactions, which
is still used by developers, is their implementation at the
application level. That is, the application itself takes
responsibility for fixing transactions on all nodes of the
cluster, for example, using the template Two-phase
commit [14].

Given the analysis, more modern and promising for
further research and comparison are the methods of
implementing distributed ACID transactions in NoSQL
DBMS (on the example of MongoDB) and NewSQL
DBMS (on the example of VoItDB).

The purpose of this article is to improve the
implementation of ACID transactions for horizontally
distributed databases by comparing the effectiveness of
such methods on the example of using NoSQL DBMS
MongoDB and NewSQL DBMS VoltDB, and develop
appropriate recommendations for their application.

This study requires the design of a pilot DB and
related transactions, as well as the planning and conduct
of a series of experiments on different DB volumes, loads,
and DB access modes. Evaluation of the effectiveness of
the use of methods should be carried out taking into
account such criteria [15-16] as:

- the average execution time of read requests, as well
as transactional write requests;

- resources required to perform these queries:
database size, RAM required, and percentage of CPU
time.

In addition to the absolute values of measurements, it
is advisable to determine and analyze the functions of
their growth.

Materials and methods

A DB was designed for the experiment, which will
then be implemented as a BSON model for MongoDB, as
well as a relational model for VoltDB.

The design area is e-commerce, for which distributed
systems are created and which is associated with heavy
workload and big data. In addition, the real field of
activity allowed for a clear demonstration of the need for
distributed transactions for applied tasks.

The simplified structure of the experimental DB
contains the following basic essences:

- product categories: have only a name;

- goods: have a name, description, quantity in stock,
price, and also belong to a certain category;

- properties of goods: have the name of the property,
its meaning, and also belong to a particular product;

- customers: have a name, surname, e-mail address,
telephone number, and physical address;

- orders: have a specific delivery date, discount, and
also belong to a specific customer;

- order elements: indicate a specific product, have
the ordered quantity, and also belong to a specific order.

The data structures developed for the experiment are
shown in fig. 1 (relational scheme DB) and in fig. 2 (in
BSON format).

EZN T e
1de, L

Id %
FirstName DeliveryDate
o Customerld

Discount

LastName
Email
PhoneNumber

Address

1doy ! Name

Name Description
Quantity
Price

Categoryld

Fig. 1. Relational DB scheme

1_ 1dey
Orderld
*

*

Productld

OrderedQuantity

1

ProductProperties

Id %
Productld
Name

Value

Cyuacnuti cmam HayKo8ux 00CIIONCeHb ma mexnoaozi 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

The following e-commerce business operations were
selected to design queries for experiments:

- withdrawal of the most popular categories of
goods;

- view and create orders;

"Categories”
"id": "ObjectId",

"name": "string"

"Products"”

"id": "ObjectId",
"name" :
"description™:
"quantity"
"price": "decimal",
"category": "ObjectId”,
"properties":

"name": “"string",

"value":

"string",
"string",

"number™

3

"string"

Fig. 2. BSON DB structure

For the experiment, transactions based on SQL and
BSON queries for VoltDB and MongoDB, respectively,
were developed for selected business processes. All
transactions are implemented with a standard DBC
isolation level for many DBMSs.

For the experiment, the following deployment of DB
server nodes was adopted:

- measurements were made for a cluster of DB
virtual server machines;

- each server runs in the Azure cloud on a B2s virtual
machine with 2 CPUs, 4 GB of RAM and 8 GB of hard
drive.

Table 1. DB characteristics for study modes

- change in the quantity of goods in the warehouse
and the price of the goods;

- adding or changing a discount for a specific order;

- adding new categories of goods and the goods
themselves for them.

"Customers"”

"id": "ObjectId",
"first_name":

"string",
"last_name": "string",
"email": "string",
"phone_number": “string",

"address": "string"

"Orders"

"id": "ObjectId",
"delivery_date": "Date",
"customer": {
"id": "ObjectId",
"email": "string"
"items":
"ObjectId",
"product_name":

"product_id"
"string",

"ordered_quantity": "number"

- Windows Server 2016 operating system.

The experimental load on the DB cluster was formed
taking into account the following factors:

- the amount of data stored in the database;
number of simultaneous connections to the
database;

- the number of replica nodes in the DB cluster on
which transaction results must be recorded simultaneously
and consistently.

For a series of experiments, modes associated with
specific discrete values for the above factors were
identified (table 1).

Regime | Total entities in the database Number of simultaneous connections The number OZILZFt)(Iei:a nodes in th
Basic 122 064 10 2

Basic+ 568 064 30 3

Basic++ 1 266 064 50 -

Medium 2420064 100

Intensive 8 050 064 300

The experiment is based on the idea of measuring the
execution time of requests and resource consumption by
gradually changing one mode to another for one factor,
while the values of the other two factors will remain static.
This will establish the dependence of these metrics on the

specific load factor DB. An experiment will also be
performed with a gradual simultaneous change of modes
of all factors to compare the most important criteria that
affect the execution time of queries.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

It was decided to compare all measurements not only
through absolute values, but also by identifying the
functions of dependence and comparing their growth rate
graphically.

For research on the basis of certain business
processes, a number of requests were made, namely:

- withdrawal of the three most popular categories of
goods;

- withdrawal of the order and its elements by the
order ID;

- transaction with the operation of inserting an order
with a variable number of order elements, which will be
equal to the number of elements for this mode;

- transaction with the operation of updating goods,
the number of which is less than 10, namely, reducing
their price by 10%;

- transaction to delete all orders, the total amount of
which is on a certain segment [x; x + 500], where x €
[8,000; 13,000];

- complex transaction with operations of insertion of
many orders with their elements, updating with increase in
quantity of the goods in a warehouse which current
quantity is less than 15, and also updating with transfer of
date of the order in a certain range for some days forward,;

- a comprehensive transaction with the insertion of
new categories and products for them, the insertion of new
customers and orders for them, as well as the renewal of
the discount for those orders whose delivery date belongs
to a certain segment.

To conduct the experiment, special software was
developed, the essence of which is to automatically deploy
a DB cluster with the number of nodes according to a
given mode, fill it with data according to this mode and
perform parallel queries to the cluster according to a given
mode. The software measures the execution time of each
request and constantly monitors the resources consumed.

Research results and their discussion

Let’s consider the main most interesting trends in the
performance of experiments to support ACID transactions
for NoSQL DBMS MongoDB and NewSQL DBMS
VoltDB.

Let's start with the analysis of such a resource as the
DB volume. In fig. 3 shows a histogram showing for each
mode the DB dimensions for both DBMSs with the same
number of entities as they contain.

2,000
MongoDB
) 1,500 VoItDB
=
S
g 1,000
w
o ' MongoDB
(m] 500 MongoDs o MOnGoDB MongoDB e MOM9P5 voitps
0
0 T T T T T
Basic Basic+ Basic++ Medium Intensive

Fig. 3. Comparative diagram of the size of the database

As you can see, VoItDB requires less memory to
store the same amount of information in a DB than
MongoDB. As the amount of data increases, the DB gap
only widens, suggesting that the DBMS VoltDB generally
requires less memory to store a single entity than
MongoDB does.

Consider the results of measurements of CPU time
used as a percentage for both methods. During the
experiments it was found that the CPU time in both cases
does not depend on the number of replicas in the cluster.
But interestingly, MongoDB is characterized by a more
rapid growth of CPU consumption when increasing only
the factor of the amount of data stored in the database, and
when increasing only the number of simultaneous CPU
connections, time also increases, but rather slowly and this
growth is dampening. On the other hand, VoltDB, on the
other hand, shows an increase of only 1% from the lowest
mode to the highest when the data grows, but shows a
progressive increase with the number of connections.
Comparative tables with absolute values for both methods
are given in table 2 and table 3.

Thus, in terms of CPU usage, it is better to use
VoltDB when it is known in advance that the application

will have a large growing amount of data and a more static
number of users. Conversely, it is better to use MongoDB
when the system aims to attract a large number of users
with a more or less fixed data set.

Table 2. The results of experiments with changing only the
amount of data

Regimes MongoDB CPU (%) | VoltDB CPU (%)
Data Basic 1.1 1
Data Basic+ 3.5 1.1
Data Basic++ 3.7 1.3
Data Medium 7.1 1.4
Data Intensive 7.2 2

Table 3. The results of experiments with changing only the
number of simultaneous connections

Regimes MongoDB CPU (%) MoltDB CPU (%
Connection Basic 1.1 1
Connection Basic+ 2.5 1.4

Connection Basic++ 3.6 2
Connection Medium 3.5 4.2
Connection Intensive 3.7 10

CyuacHuii cman HayKko8ux 00caiodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

If the proportions of the amount of data and users are
unknown in advance or a characteristic increase of both
values is assumed, it is better to pay attention to the
measurements of the CPU metric, when all loaded factors
simultaneously and gradually increase (table 4).

As you can see, in this case VoltDB consumes less
CPU and this consumption grows more slowly than in the
case of MongoDB. That is why in the case when the
application must be ready for a rapid growth of both data
and users, it is still better to choose VoltDB in terms of
CPU consumption.

Table 4. The results of experiments, when all load factors
increase simultaneously

Let’s consider the results of measurements of the
used RAM consumed by the DB server during
transactions in different load modes. Note that
from the start, MongoDB consumes several times less
RAM than VoltDB. For example, when changing the
amount of data, MongoDB consumes from 91 MB of
RAM for the lowest level and up to 99 MB for
the highest level, and when changing the number of
connections from 83 MB to 97 MB. Even in the presence
of a certain statistical error, it is clear that growth, if any,
is very slow. At the same time, VoltDB consumes when
changing data from 218 MB to 560 MB, and when
changing connections from 218 MB to 1360 MB. The
corresponding histograms of RAM consumption at change

Regimes MongoDB CPU (%) | VoItDB CPU (%) | of data quantity (fig. 4) and quantity of connections
Basic 11 1 (fig. 5) are resulted. The histograms show that when the
Basic+ 1.9 1.4 amount of data changes, the difference in RAM is smaller
Basict+ 6.3 2.2 than when changing the number of simultaneous
Medium 10.2 a7 connections

Intensive 16.5 13 '

600 VoltDB
500
~
0 400
z VoltDB
; 300 VoltDB
< \VoltDB VoltDB
o2 200
100 - MongoDB MongoDB MongoDB MongoDB MongoDB
0
Data Basic Data Basic+ Data Basic++ Data Medium Data Intensive
Fig. 4. Comparative histogram of RAM consumption when changing the amount of data
1,200 1 VoltDB
1,000 +

A

M

S 800

'

b3 \oltDB

600
g
+4

400 ~ VoltDB

VoltDB
\VoltDB
200 -
MongoDB MongoDB MongoDB MongoDB MongoDB
0
Conn. Basic Conn. Basic+ Conn. Basic++ Conn. Medium Conn. Intensive

Fig. 5. Comparative histogram of RAM consumption when changing the number of connections

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

Also note that the amount of RAM for both methods
does not actually depend on the number of replicas.

More interesting is the situation with increasing
RAM consumption while increasing all load factors. And
although in absolute terms MongoDB still loses VoltDB,
but shows significant growth at high loaded levels
(table 5).

Table 5. The results of measurements of RAM consumption
while changing all factors

Regimes MongoDB RAM (MB) NMoltDB RAM (MB
Basic 91 218
Basic+ 94 322
Basic++ 97 439
Medium 182 692
Intensive 370 1369

We see that for both methods, although RAM
consumption doubles between the last two modes, VoltDB
still requires an order of magnitude more RAM at high
load. Therefore, in terms of using the DB server RAM, it
is more efficient to use MongoDB.

2,000 ~
1,800 -

—

g 1,600 -

1,400 -

Further on we consider the results of measurements
of the average execution time of transactions.

Let’s consider the results for the operation of
inserting a single order with its elements. The number of
elements to be inserted will increase when the load mode
is changed:

- Basic: 30 elements;

- Basic +: 40 elements;

- Basic ++: 50 elements;

- Medium: 60 items;

- Intensive: 100 items.

The experiment showed that MongoDB executes this
transaction several times faster than VoltDB when
changing any factor. At the same time, it was found that
the data quantity factor in DB does not affect the insert
transaction speed for MongoDB, but significantly affects
the rate for VoltDB (fig. 6). This revealed a completely
opposite situation with the factor of the number of
replicas, on which there is dependence for MongoDB
(fig. 7), but not for WVoltDB. And although
the growth is noticeable, but in fact the time changes by
only 100 ms.

Data Basic Data Basic+

Data Basic++ Data Medium Data Intensive

Fig 6. Graph of growth of time of execution of transaction on an insert from quantity of data in basis for VoltDB

240

220 +

200 A

Insert Time (ms)
5 =

120 +

100 :
Replica Basic

Replica Basic+

Replica Medium Replica Intensive

Fig. 7. Graph of growth of time of execution of transaction on an insert from quantity of data in basis for VoltDB

Cyuacnuti cmam HayKo8ux 00CIIONCeHb ma mexnoaozi 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

It was found that the insertion time for both methods
depends on the number of simultaneous connections.
However, MongoDB spends several times less time and
this time increases several times slower than for VoltDB
(fig. 8).

It was also found that with a simultaneous increase
in all load factors, the execution time of the transaction on
the insert increases significantly for both methods. In this
way, you can find out the maximum bandwidth of the
insertion operation for both methods at the highest levels
of each factor, as well as at the same time the highest level
of all factors simultaneously. A series of experiments

60,000 -
-~ 50,000
"
£

< 40,000 -

Q
lg 30;000 =
=

showed that MongoDB in all layouts has a higher
insertion bandwidth than VoltDB.

Consider the results of experiments to perform an
update transaction, the essence of which is to update the
price of all goods, the number of which is less
than a certain threshold. This in turn means
that the DBMS will have to scan the entire table /
collection to find such products. Fig.9 shows a
histogram comparing both methods for this
transaction in terms of maximum execution
time when changing each load factor separately and
together.

g 20,000 - /
0 VoltDB
£ 10,000 4 —
_— MongoDB
0 _# k : -

Conn. Basic

Conn. Basic+ Conn. Basic++ Conn. Medium Conn. Intensive

Fig 8. Graph of comparison of time of execution of insertion for both methods at a variable number of connections

It was found that for the transaction, the VoltDB
update shows an order of magnitude better results both in
terms of absolute values (the time difference reached
37 times) and in terms of growth. Thus, the growth

rate with increasing various load factors for
VoltDB increases approximately 1.5-2 times, while
~ 60,000 -
7]

50,000 -
40,000 -
30,000 - MongoDB

20,000 -

10,000 -

Update transaction time (m

MongoDB

VoltDB

0 a
Max data volume

connections

VoltDB

Max number of

in the case of MongoDB, for each higher load mode, the
time can increase by an order of magnitude. The execution
time for MongoDB depends on all load factors,
and for VoltDB it depends only on the amount

of data and the number of simultaneous
connections.
MongoDB
MongoDB \VoltDB

\VoltDB

Max values of all

Max number of

replicas factors

Fig. 9. Comparative histogram of the maximum execution time of the update transaction

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

Therefore, you can immediately see a huge
difference in the execution time of this transaction for the
compared DBMS. With a variable amount of data and
replicas, VoltDB updates in less than 120 ms. Given that
during this transaction about 10% of the total number of
goods are updated, you can determine the maximum

bandwidth of each method (table 6). The table shows that
VoltDB updates data much more efficiently, especially the
gain compared to MongoDB is seen when increasing only
the amount of data. The smallest gap between the methods
is observed in the case when only the number of replicas
increases.

Table 6. The detected maximum number of entities that can be updated in one second

Types of load changes MongoDB (number of entities) VoltDB (number of entities)
When the amount of data changes 1824 93283
When changing the number of connections 7 248
When changing the number of replicas 85 1585
When all factors change 92 1927

Next, we consider the execution of a transaction with
a request to delete all orders, the amount of which is in a
certain range. This transaction also requires scanning the
entire table / collection and performing a grouping
operation to find the order amount through the
price of its items. Grouping will take place for order items
by the ID of the order to which they belong. After the
grouping operation, the total price of the order
will be calculated as the sum of the prices of all its
elements.

Experiments have shown that the deletion
transaction, as for the previous request, is performed an

Execution time

(ms)

400000

VoltDB {y = 0.00587x + 11219.417)

+ 200 000

order of magnitude faster with VoltDB when changing
any factor. Runtime for both DBMSs increases most
slowly when the number of replica nodes in the cluster
changes. The rate of increase of execution time
when changing the amount of data and the
number of connections will be better investigated by
graphically displaying the corresponding linear
regression functions. The following are graphs
of the time dependency of the removal transaction
from the amount of data (fig. 1la) and the
number of simultaneous connections (fig. 10b) for both
DBMSs.

Execution time
(ms)

- 400 000

1000000 2000000 3000000
Number of entities to process

a)

200 400 600 800 1000 1200

Number of connections
b)

Fig. 10. Functions of growth of execution time of transaction of removal at change (a - volume of data, b - number of connections)

As you can see from both graphs, for this query,
VolItDB removal works much faster at any load in
absolute values, and the time increase is not as rapid as in
the case of MongoDB.

A number of complex transactions were also

investigated in the paper. The first of these
transactions contains two insert operations and
two update operations. For this transaction,
MongoDB worked an order of magnitude
faster than VoltDB. The following is a histogram
comparing the maximum execution time of this

transaction when changing each load factor separately
(fig. 112).

We see that the largest gap
when increasing the number of simultaneous
connections, and the smallest when entering
new nodes-replicas in the cluster. An even greater gap in
execution time (almost 40 times) is observed
with a simultaneous increase in the values of
all load factors. Thus, for VoltDB at maximum load, the
execution time is 675549.34 ms, and for MongoDB
16980.45 ms.

in time occurs

CyuacHuii cman HayKko8ux 00caiodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Max data _IMonQODB (1024.07)
volume

Max num. of |11 MONgODB (2935.62)

connections |

Max num. of
replicas

VoltDB (8363.25)

VoItDB

lMongoDB (1801.23) (46122.82)
VoItDB (2285.46)

0 10,000 20,000 30,000 40,000 50,000

Transaction execution time (ms)

Fig. 11. Comparative histogram of the maximum execution time of transactions when changing various factors

We see that the largest gap in time occurs when
increasing the number of simultaneous connections, and
the smallest when entering new nodes-replicas in the
cluster. An even greater gap in execution time (almost 40
times) is observed with a simultaneous increase in the
values of all load factors. Thus, for VoltDB at maximum
load, the execution time is 675549.34 ms, and for
MongoDB 16980.45 ms.

The other complex transaction contains 6 insert
operations and 1 update operation. MongoDB also

Table 7. Experiments results

executes this transaction an order of magnitude faster than
VoltDB. Moreover, the execution time for VoltDB is
affected by all load factors, while for MongoDB there is
no characteristic dependence on the number of
simultaneous connections. Comparison of the maximum
execution time of this transaction when changing each
load factor separately and all at the same time are given in
table 7.

Load factors MongoDB, execution time (ms) VoltDB, execution time (ms) Difference
Max data volume 2213.16 40693.78 18.4 times
Max number of connections 1126.16 42720.91 37.9 times
Max number of replicas 1222.05 4492.47 3.7 times
Max value of all factors 25183.41 613669.34 24.4 times

It can be seen that MongoDB executes this
transaction several tens of times faster than VoltDB.
Moreover, the largest time gap for DBMS is manifested at
the peak values of the number of connections, and the
smallest at the maximum number of replicas. In general,
MongoDB more efficiently captures the ACID of a
transaction with a large number of write requests in a
distributed DB.

Finally, consider the performance of read requests.
Although they are not part of ACID transactions, this type
of operation is most common in distributed DBs and its
performance can significantly influence the choice of a
method.

The first read request will consider a request to
receive an order with its elements by the ID of this order.
For both DBMSs at the DB level, index readings will be
performed to check the effectiveness of the indexed
search. As expected, for both methods, the amount of data
in the database does not have a strong effect on the
execution time of the search, because the logarithmic
function grows very slowly. But it immediately becomes
clear that MongoDB reads an order of magnitude faster
than VoltDB - an average of 17 ms versus 125 ms. The
number of replicas in the cluster also does not affect the
search speed for both methods, because in this case, the
interaction still takes place with only one node. On the
other hand, the query execution time for both methods
depends on the number of simultaneous connections,
while MongoDB reads an order of magnitude faster and

with increasing connections the time increases much more
slowly than in the case of VoItDB (Table 8).

At simultaneous increase of indicators of all factors
the approximately same tendency, as well as in the table
above remains. Thus, it is clear that MongoDB is much
more efficient at reading the index. This is primarily due
to the fact that Mongo searches for an order in only one
collection, and VoltDB searches the index in two tables:
the order and its elements. As you can see, the difference
in time differs by an order of magnitude, and for the
maximum load in terms of connections, in general, by
several orders of magnitude. This once again proves the
stability of MongoDB with a large number of users, as
well as its advantages when performing an index read
operation.

Table 8. The results of measuring the execution time of the read
request when changing the factor of the number of connections

Regimes MongoDB (ms) VolItDB (ms)
Basic 15.06 123.68
Basic+ 17.87 146.38
Basic++ 17.48 179.38
Medium 21.18 187.07
Intensive 25.53 10993.58

The latter we will analyze the implementation of a
more complex request to obtain the three most popular
categories of goods, which will include grouping, sorting
and data limiting operations. When performing this query,

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

both methods have a characteristic increase in runtime
from the amount of data and the number of simultaneous
connections. As in the previous case, the measurement
results immediately show that MongoDB executes
this request an order of magnitude faster than VoltDB.

350,000 ~

300,000

250,000

200,000

150,000

100,000

Reading time (ms)

50,000
0 —_—

Below are graphs of the dependence of the query
execution time for both methods on the increase in data
volume (fig. 12) and the number of simultaneous
connections (fig. 13).

MongoDB

-+ >— —

4 v

Data Basic Data Basic+

Data Basic++ Data Medium Data Intensive

Fig. 12. Comparing of the category read time growth graphs based on data volume

60,000 -

50,000

S

o

o

o

o
1

I

30,000

[\

o

o

o

o
1

r

Reading time (ms)

10,000 ~

/

_ NoltP2 -

/

~MongoDB _____—*

0 ¢ =

Conn. Basic Conn. Basic+

Conn. Basic++ Conn. Medium Conn. Intensive

Fig. 13. Comparing of the category read time growth graphs based on number of connection

Both series of experiments give a similar result, the
graphs clearly show that VoltDB executes this request
much slower than MongoDB, and execution time
increases many times faster. At a maximum load of all
factors, VoltDB executes this request in 358923.22 ms,
while MongoDB - in 80733.55 ms. That is, the difference
at peak load is almost 4.5 times.

Therefore, based on the measurements made, it can
be concluded that MongoDB performs a read request with
grouping, sorting and limiting operations is several times
more efficient than VoltDB.

As a result of the experimental study, the main trends
in the performance of the compared DBMS were
identified in a specific situation, which allows us to make
recommendations for their application. Consider the
recommendations made on the basis of the resources
consumed for both methods. The amount of resources
consumed directly affects the hardware of the virtual
machine on which the DB server is located, and therefore
the price of this machine.

Experiments show that the VoltDB consumes less
storage space and requires slightly less CPU time, while in
any load mode it consumes several times more RAM.
Therefore, less disk space usage by VoltDB allows you to
choose this DBMS in cases where you need to save on the
size of the permanent media of the virtual machine,
namely:

- when creating applications in which the DB must
store tens of gigabytes of data and, at the same time, such
data is not processed very often or intensively, so the
speed of their processing is not a priority (for example, in
storage systems DB backups or outdated data low
probability);

-when creating applications where the same
machine stores data from other databases or just other
files; also the processing speed should not be a priority for
the application.

Also, VolItDB's lower CPU resource consumption
allows you to choose this approach when one or more
applications that require CPU and multithreaded
computing are deployed on the same virtual machine with

CyuacHuii cman HayKko8ux 00caiodcenb ma mexnonoeitl 6 npomuciosocmi. 2021. Ne 2 (16)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

the DB server. Examples of such applications are
computer vision systems, which require a lot of CPU time
to solve the classification problem. With this approach,
you can save on CPU resources, which are the most
expensive.

On the other hand, due to less RAM consumption, it
is more appropriate to use MongoDB in the following
cases:

- creating applications that require a lot of RAM to
run continuously, but host one or more applications on the
same virtual machine (for example, in systems that use
different levels of cache stored in RAM for faster response
, such as web servers that cache the client's response to
expedite the response);

- creating applications where other repositories that
require a large amount of RAM (for example, in In-
Memory DB, such as Redis or Memcached) must be
located on the same virtual machine.

All this will save on RAM, which is also quite
expensive to rent.

Further on let’s consider the recommendations
developed based on the average execution time of various
queries and transactions.

Based on the results of experiments, the
implementation of distributed ACID transactions using
MongoDB is more appropriate in the cases:

- creation of applications where read operations take
precedence over other write operations (for example, in
various analytical systems, data processing systems,
online stores, search engines, which use such complex
queries as indexed search); because MongoDB executes
both simple index read requests and complex grouping,
sorting, and limiting queries an order of magnitude faster,
it is therefore more performance-efficient for this type of
application;

- creation of applications where insert operations
prevail over update and deletion operations, which is
typical of data collection systems, which are then
analyzed; usually, in such situations, the initial data is
processed, which no longer changes (for example, in
centralized data logging systems, control systems for
various environmental metrics using the Internet of
Things, ticket booking systems);

- creation of applications where within the ACID
transaction many entries for insertion, updating or
removal should be performed (for example, in systems
with complex transactions, such as, bank applications with
the function of transfer of funds, applications for
construction of various graphic objects and charts
numerical data, as well as applications with the function
of testing and automated assessment of user knowledge);
because MongoDB executes and fixes transactions with
several separate requests faster on all nodes, so the more
of these requests, the greater the difference in the time of
its processing of transactions compared to VoltDB);

- creation of applications where the speed of any data
change operations under high load from users is critical
(for example, in e-commerce systems where there is a
peak load of users during the holidays or in online
competition systems, where to participate at a certain time
hundreds of users must connect at once.); because

MongoDB handles many concurrent connections very
efficiently for most data change operations, MongoDB
executes most of these requests faster than VoltDB; and
even for such transactions, which are still faster in
VolItDB, the gap with MongoDB is still smaller than for
other load factors.

On the other hand, using VoltDB to implement
distributed ACID transactions is more efficient in cases:

- creation of applications where update operations
outperform other performance-critical and execution-
critical operations (for example, in shared document
editing systems, where multiple users simultaneously and
continuously edit the same document, as well as systems
for financial exchanges , where exchange rates and
stock prices of companies are constantly updated);
VoltDB, as measurements have shown, executes this type
of transaction an order of magnitude faster than
MongoDB;

- creation of applications where the deletion
operation is performed with the same frequency as the
insertion operation, or where the speed of data deletion is
very important (for example, in systems of transmission of
secret values through one-time pages, where they must be
deleted immediately after the first reading, and in systems
with the display of various data and metrics in real time,
where obsolete data should be deleted as soon as possible
S0 as not to take up disk space);

- creation of applications where a large number of
replicas are expected from clusters (for example, in hotel
reservation systems around the world, where DB servers
are located in different geographical areas); The
recommendation is due to the fact that VVoltDB showed
that the factor of the number of replica nodes in the cluster
does not affect the speed of most queries, and if some
queries are still characterized by an increase in time with
increasing number of replicas, this growth is minimal and
fluctuates around a few percent.

However, in situations where the method of
implementing distributed ACID transactions is chosen
before the start of application development and it is not
known which load factor will be a priority and which
types of requests will predominate in the application, a
more reliable option is MongoDB. After all, for this
DBMS with a simultaneous increase in all load factors,
the execution time of most requests and transactions is
less than for VVoltDB.

Conclusions and prospects for further development

In terms of performance, a study of methods for
implementing distributed ACID transactions, namely the
built-in capabilities of DBMS MongoDB and VoltDB. A
series of experiments was performed to measure the
resources consumed and the execution time of various
queries and transactions.

To perform the experiment, DB structures were
designed for the relational and BSON models, as well as
transactions to these databases. The experiments were
performed with increasing load, which allowed to
compare not only the absolute values of the metrics, but
also their trends. The experiments used metrics on the

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

execution time of queries and the resources required to Thus, the study provided a complete picture of the
execute those queries. Based on the analysis of these performance of both methods during different types of
metrics, the comparative advantages and disadvantages of workload, based on which the main recommendations for
each approach were identified; analyzed what load factors the effective use of a method for a particular type of
affect specific types of requests and resources used. application were formulated.

References

1. Tamer Ozsu, M. (2020), Principles of Distributed Database Systems, Springer International Publishing, 674 p.

2. Maran, M. M., Paniavin, N. A., Poliushkin, I. A. (2020), "Alternative Approaches to Data Storing and Processing",
V International ~ Conference on Information Technologies in Engineering Education (Inforino). DOI:
https://doi.org/10.1109/inforino48376.2020.9111708

3. Blokdyk, G. (2018), ACID Transactions Second Edition, 5STARCooks, 282 p.

4. Kemme, B., Peris, R. J., Patifio-Martinez, M. (2010), Database Replication (Synthesis Lectures on Data Management), Morgan
and Claypool Publishers, 154 p. DOI: https://doi.org/10.2200/S00296ED1V01Y201008DTMO007

5. Moniruzzaman, A. B. M., Hossain, S. A. (2012), "NoSQL Database: New Era of Databases for Big data Analytics —
Classification, Characteristics and Comparison”, International Journal of Database Theory and Application, No. 4, P. 1.

6. Kuzochkina, A., Shirokopetleva, M., Dudar, Z. (2018), "Analyzing and Comparison of NoSQL DBMS", International Scientific-
Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), P.560-564.
DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632133

7. Sahatgija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, F., (2018), "Comparison between relational and NOSQL databases"”, 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), P. 216—
221. DOI: https://doi.org/10.23919/mipro.2018.8400041

8. Gyo6rodi, C. A., Dumge-Burescu, D. V., Zmaranda, D. R., Gy6rddi, R. S., Gabor, G. A., Pecherle, G. D. (2020), "Performance
Analysis of NoSQL and Relational Databases with CouchDB and MySQL for Application’s Data Storage", Applied Sciences,
No. 10 (23), P. 8524. DOI: https://doi.org/10.3390/app10238524

9. Sadalage, P., Fowler, M. (2012), NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, 1st Edition,
Addison-Wesley Professional, 192 p.

10. Chodorow, K. (2016), MongoDB: The Definitive Guide: Powerful and Scalable Data Storage, 3rd Edition, O'Reilly Media, 514 p.

11. Palanisamy, S., Suvitha Vani P. (2020), "A survey on RDBMS and NoSQL Databases MySQL vs MongoDB", International
Conference on Computer Communication and Informatics (ICCCI). DOI: https://doi.org/10.1109/iccci48352.2020.9104047

12. Pavlo, A., Aslett, M. (2016), "What’s Really New with NewSQL?", SIGMOD Record, Vol. 45(2), P.45-55.
DOI: https://doi.org/10.1145/3003665.3003674

13. Astrova, ., Koschel, A., Wellermann, N., Klostermeyer, P. (2021), "Performance Benchmarking of NewSQL Databases with
Yahoo Cloud Serving Benchmark™, Proceedings of the Future Technologies Conference (FTC) 2020, Vol. 2. FTC 2020. Advances
in Intelligent Systems and Computing, Vol. 1289, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-63089-8_17

14. Bhiri, S., Gaaloul, K., Perrin, O., Godart, C., (2005), "Overview of Transactional Patterns: Combining Workflow Flexibility and
Transactional Reliability for Composite Web Services", In: van der Aalst W.M.P., Benatallah B., Casati F., Curbera F. (eds)
Business Process Management. BPM 2005, Lecture Notes in Computer Science, Vol. 3649, Springer, Berlin, Heidelberg.
DOI: https://doi.org/10.1007/11538394_37

15. Priya, M., Kalpana, R. (2017), "Distributed and Parallel Processing of Location based spatial query with Approximate
Transformation®, Ninth International Conference on Advanced Computing (ICoAQC), P. 334-338.
DOI: https://doi.org/10.1109/ICoAC.2017.8441297

16. Gomes, C., Borba, E., Tavares, E., Meuse Nogueira de O. Junior (2019), "Performability Model for Assessing NoSQL DBMS
Consistency”, IEEE International Systems Conference (SysCon). DOI: https://doi.org/10.1109/syscon.2019.8836757

Received 27.05.2021

Bioomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors
Ma3sypoBa Oxkcana OugexciiBHa — KaHANAAT TEXHIYHUX HayK, JOLEHT, XapKiBCbKHH HAI[IOHATGHUN YHIBEPCHTET
pajioeneKkTpoHiku, goueHT Kadeapu mporpamHoi imkenepii, XapkiB, VYkpaina; email: oksana.mazurova@nure.ua;
ORCID: https://orcid.org/0000-0003-3715-3476.

MasypoBa OxcaHa AJjleKCeeBHA — KaHAUAAT TEXHUYECKHX HAyK, JOLIEHT, XapbKOBCKUI HAllMOHAIBHBIA YHHBEPCUTET
PaIHo3IeKTPOHHKH, TOIEHT Kadeapbl IpOrpaMMHON HH)KEHEpUH, XapbKoB, YKpanHa.

Mazurova Oksana — PhD (Engineering Sciences), Associate Professor, Kharkiv National University of Radio Electronics,
Associate Professor of the Department of Software Engineering, Kharkiv, Ukraine.

Ha6oka Aprem OnexcanapoBuy — XapKiBCbKUI HalliOHAJIBHUI YHIBEPCUTET paioeNeKTPpOHIKHM, MaricTp creniansHocTi 121 -
[HKeHepist mporpaMHoro 3abe3nedeHHs:, XapkiB, Ykpaina; email: artem.naboka@nure.ua; ORCID: https://orcid.org/0000-0003-2178-
7984.

Halokxa ApTem AjlekcaHAPOBUY — XapbKOBCKUIl HALMOHAIBHBIN YHUBEPCUTET PAJAUOIEKTPOHUKU, MarkuCTpP CIELMalbHOCTH
121 — UmxeHepwus porpaMMHOro obecredeHuns, XapbkoB, YKpanHa.

Naboka Artem — Kharkiv National University of Radio Electronics, Master of Specialty 121 - Software Engineering, Kharkiv,
Ukraine.

IIupoxonerneBa Mapisn CepriiBHa — XapkiBchbKuli HaI[lOHANGHUN YHIBEPCHUTET paJiOeNeKTPOHIKH, CTapIIMil BUKJIagad
kadexpu nporpamHoi iHKeHepii, XapkiB, Ykpaina; email: marija.shirokopetleva@nure.ua, ORCID: https://orcid.org/0000-0002-
7472-6045.

https://doi.org/10.1109/inforino48376.2020.9111708
https://doi.org/10.2200/S00296ED1V01Y201008DTM007
https://doi.org/10.1109/INFOCOMMST.2018.8632133
https://doi.org/10.23919/mipro.2018.8400041
https://doi.org/10.3390/app10238524
https://doi.org/10.1109/iccci48352.2020.9104047
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1007/978-3-030-63089-8_17
https://doi.org/10.1007/11538394_37
https://doi.org/10.1109/ICoAC.2017.8441297
https://doi.org/10.1109/syscon.2019.8836757
mailto:oksana.mazurova@nure.ua
https://orcid.org/0000-0003-3715-3476
mailto:artem.naboka@nure.ua
https://orcid.org/0000-0003-3715-3476
https://orcid.org/0000-0003-3715-3476
mailto:marija.shirokopetleva@nure.ua
https://orcid.org/0000-0002-7472-6045
https://orcid.org/0000-0002-7472-6045

ISSN 2522-9818 (print)
CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 2 (16) ISSN 2524-2296 (online)

upoxonerieBa Mapusa CepreeBHa — XapbKOBCKUH HAIlMOHANBHBIA YHHUBEPCUTET DPAIHO3JICKTPOHHKH, CTapIIni
pernoaBaTenb Kageapsl IporpaMMHON HH)KeHEepUH, XapbKoB, YKpanHa.

Shirokopetleva Mariya — Kharkiv National University of Radio Electronics, Senior Lecturer of the Department of Software
Engineering, Kharkiv, Ukraine.

JTOCJIIKEHHA METOIB PEAJIZAILI PO3INOJAIIEHAX ACID TPAH3AKIINI
3A TEXHOJIOT'IEIO PEILIIKAIIIL

CporozHi 6a3n TaHUX € HEBiA €MHOIO YaCTHHOIO OUTBIIOCTI CydacHHWX 3aCTOCYBaHb, HPH3HAUCHUX VIS 30epiraHHs BEIMKUX OOCSTIB
JaHUX Ta 3BepTaHb Bix OaraThoX KopHcTyBauiB. [l pimeHHs Oi3Hec-3ajad B TakWX yMoOBaxX Oa3W JaHMX MacIITaOyIOTHCH,
HaifyacTilie TOPU30HTAIBHO Ha JEKUIPKOX ()I3MYHUX CepBepax 3 BHKOPUCTAHHSIM TEXHOJOTI perutikyBaHHA. Ilpum mpomy Oarato
Oi3Hec-omeparniii moTpeOyroTh peanmizamii TpaH3akmiiHocTi 3 moTpuMaHHAM ACID-npunnumis:. [na pensamiiinux CYB/, saxi
TpaguiiiHo miaTpumyots ACID TpaH3akilii, TOpU30HTaJIbHE MAacIUTa0yBaHHS HE 3aBXIM c(PEeKTHBHO 4epe3 OOMEKEeHHs caMoi
pemsniitnoi Moaeni. OTxe icHye mpukiagHa npodiema edextuHoi peanizanii ACID TpaH3akmiid 175 TOPU30HTAIBEHO PO3MOIIIEHHX
6a3 nmanux. IIpeamerom mocmimkenHs € meromu peamizamii ACID TpaH3akuiii B posmofineHnx 0a3ax maHMX, IO CTBOPEHO 3a
TEXHOJIOTI€I0 perntikyBaHHA. Mera poGotm — migsuineHHs edextuBHOcTi peamizanii ACID TpaH3akmiii Uit TOpH30HTaJIBHO
posmnoxineHux 6a3 gaHHX. B poOOTi BHPIIIyIOThCS HACTYIHI 3aBAAHHS: aHATi3 Ta BUOIp HAMOUIBII aKTyaJbHUX METONIB peamizarii
posnoninenux ACID TpaH3akuiii; TIaHyBaHHS Ta CKCIICPUMEHTANLHE NOCTIDKEHHs MeToniB peamizanii ACID Tpansakuiii Ha
npukiani BukopuctanHsi NoSQL CYBJ] MongoDB ta NewSQL CYB/l VoltDB; 3amipu MeTpuK MpOAyKTHBHOCTI BUKOPHCTAHHS ITHX
MeTOAiB Ta (popMyBaHHA pEKOMEHaMii MO0 iX epEeKTUBHOTO BUKOPHCTaHHS. BUKOPHCTOBYIOTECS Taki MeTOAM: CHCTEMHHUH aHAIi3;
METOAM NPOCKTYBaHHA peIUiiHUX 0a3 JaHWX Ta iX 00’€KTiB; METOAM OLIHKH MPOAYKTUBHOCTI 0a3 maHux. OTpuMaHO HACTYITHI
Pe3yJabTaTH: MIPOBEICHO CKCIICPUMEHTAIBHI BUMIPH Yacy BHKOHAHHS THUIOBUX PO3MOIIICHUX TPaH3aKIiH IS MpeaIMeTHOI o0nacTi
€JIEKTPOHHOI KOMEPIIil, a TaKOX 3aMipH KUIBKOCTI pecypciB, IO HEOOXigHI IS 1X BHKOHAHHS; BUSBICHO TPEHIH HMPOIYKTHBHOCTI
BUKOHAHHS TaKWX TpaH3akWid, chopMOBaHi peKOMEHIalil 00 METOAIB, 0 AOCTiKyBamucs. OTpUMaHi pe3ysIbTaTH JO3BOJIMIIN
cKiacTy (yHKIIi 3a71€KHOCTI PO3ITSIHYTUX METPUK BiJ IapamMeTpiB HaBaHTaKCHHs. BHCHOBKM: Oyny BHSBIICHI CHIIBHI Ta ciaOki
cToponr peamizamii posnoaiieanx ACID Ttpansakmiii 3a gonomororo CYBJ] MongoDB i VoltDB. 3anponoHoBaHO NpakTHYHI
pexoMeHamii moao eheKTHBHOTO BUKOPUCTAHHS TaHUX CHCTEM JUIA PI3HHUX THUIB JOAATKIB 3 YPaXyBaHHSAM CIIOKHBAaHUX PECYPCiB Ta
THUIIB 3aMUTIB.
Kurouosi ciioBa: posnozinena 6asza gaHux; TpaH3akuis; npoaykTuBHiCTh; ACID; NOSQL; NEWSQL; MongoDB; VoltDB.

HNCCIEJOBAHUE METOJ1OB PEAJIM3AIIMU PACITPEJAEJEHHBIX ACID
TPAH3AKIIUH MO TEXHOJIOT MM PEIUIMIIUPOBAHUS

CeronHst 6a3bl JaHHBIX SIBISIOTCS HEOTHEMJIEMOH YacCThiO OONBIIMHCTBA COBPEMEHHBIX IMPUIIOKCHUH, INpeAHa3HAYCHHBIX IS
XpaHeHus OOJBIINX 00BEMOB IaHHBIX U OOpaIleHu 0T OOJBIIOr0 KOJIMYECTBO MoNb30Batenei. [pemeHns Ou3Hec-3a1a4d B TAKUX
YCIIOBHSX 0a3bl JaHHBIX MacIITaOUPYIOTCS, Yalle BCEro FOPU3OHTAIEHO Ha HECKOJBKUX (DM3MYECKHX CepBepax C MCIIOJIb30BaHUEM
TEXHOJIOTHH perukaiun. [Ipu 3ToM MHOrHe Ou3Hec-omepanud TpeOyT peann3anui TpaH3aknuoHHOCTH ¢ cobmoaenuem ACID-
npuniunoB. Jnsa pemsuuonHsix CYBJ], kotopble TpaguimonHo mnoanepkuBaioT ACID TpaH3akuum, TOpH30HTAIBHOE
MaciutabupoBaHue He Bceraa d(GQEeKTHBHO HM3-3a OTpaHMYEHMIl caMOW pesuuoHHON Mozenu. ITosToMy cymiecTByeT NMpHKIIagHas
mpobnema sddextuBHoit peammzanun ACID TpaH3akumii UII TOPU3OHTANBHO pacTpeleNlieHHbIX 0a3 naHHbIX. Ilpeamerom
WCCIIeIOBaHMs SIBISIOTCA MeToasl peanmnsanuu ACID Tpanzakiuii B pacnpeneneHHBIX 0a3ax JaHHBIX, CO3AaHHBIX HAa OCHOBAaHUH
TexHonmornu permkanun. Leas pa®otel — mosbimeHne >¢dextuBHOCTH peanm3anud ACID TpaH3akuuii s TOPHU3OHTAIBHO
pactipeneneHHBIX 0a3 JaHHBIX. B paboTe pemraroTcs cliemyromiye 3aJauM: aHadu3 M BBIOOp Hamboliee aKTyaJbHBIX METOHOB
peamm3anuu pacnpenenenHsix ACID TpaH3akumii; miiaHUpOBaHUE U SKCIIEpHMEHTAIbHOE UcCieioBaHne MeTooB peann3anmu ACID
TpaH3akuuii Ha mnpumepe wucnoab3oBanus NOSQL CVYBJ[MongoDB u NewSQL CVYBJ[VoItDB; 3amepsr MeTpuk
MIPOMU3BOUTENBLHOCTH HCIIOJIB30BAaHUS THX METONOB M (OPMHUPOBAHUE PEKOMEHIAIMU IO MX 3(P(EKTHBHOMY HCIIOJIb30BAHUIO.
Vcnonb3yroTcs crieylolye MeTOABI: CUCTEMHBIH aHalM3; METOJbl MPOEKTHPOBAHHS DEISIIMOHHBIX 0a3 JaHHBIX M UX OOBEKTOB;
METO/Ibl OLCHKM HPOM3BOJMTENBHOCTH 0a3 IaHHBIX. IlOJydeHBI CleqyIoNnMe pPe3yJbTAThI: IMPOBEICHBI SKCIIEPHMEHTAIbHBIC
U3MEpPEeHHs BPEMEHH BBIMIOJIHEHUS TUIIOBBIX PACHpEEICHHBIX TPaH3aKUMHA IS MPeJMETHOH 00JIaCTH 3JIEKTPOHHONW KOMMEpILHH, a
TaKKe 3aMepbl KOJINYECTBA PECypCOB, HEOOXOIUMBIX JUISl UX BBINOJHEHHS; ONPEICICHB! TPEH/IbI MPOU3BOIUTEILHOCTH BBIIOIHEHUS
TaKWX TpaH3aKUud; CHOPMHUPOBAHBI PEKOMEHJALMU IO HCCIEAYyEeMbIM MeTojxaM. IloiydeHHble pe3yiabTaThl IO3BOJMIN HAWTH
(GYHKIMY 3aBUCHMOCTH PAaCCMOTPEHHBIX METPHK OT [TapaMeTPOB Harpy3Kd. BBIBOJbI: ObUTH BBISBICHBI CHIIBHBIE U CI1a0ble CTOPOHBI
peanmuzanuu pacnpeaenennsix ACID Tpansakiuii ¢ momompbio CYBJ[MongoDB u VoItDB. IlpemsioxkeHbl NpakTHYECKHE
PEKOMEHAAIMNU OTHOCUTEIIBHO Lle.]'leCOO6pa3HOCTI/I UCIIOJIb30BaHU JAaHHBIX CUCTEM Ul PA3JIMYHBIX THIIOB l'[pI/IJ'lO)KeHI/Iﬁ C yueToM
HOTPEOIISIEMBIX PECYPCOB U THUIIOB 3aIIPOCOB.

KaiwoueBsie ciioBa: pactipenencHHas 6a3a JaHHBIX; TpaH3akmus; mpousBoautenasHocTh; ACID; NOSQL; NEWSQL; MongoDB;
VoltDB.

bibnioepaghiuni onucu / Bibliographic descriptions
Masyposa O. O., Haboxka A. O., lllupoxonernesa M. C. ocmimkeHHs MeToiB peanizanii posnozaineHnx ACID tpan3akuiit 3a

TexHosoriero perunikauii. Cywacnuii cman Haykosux 00cuioxcens ma mexnonozii 6 npomuciosocmi. 2021, Ne 2 (16). C. 19-31.
DOI: https://doi.org/10.30837/ITSS1.2021.16.019

Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation methods for distributed
databases using replication technology”, Innovative Technologies and Scientific Solutions for Industries, No. 2 (16), P.19-31.
DOI: https://doi.org/10.30837/ITSS1.2021.16.019

https://doi.org/10.30837/ITSSI.2021.16.019

