
 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

19

UDC 004.657; 004.051; 004.413.5 DOI: https://doi.org/10.30837/ITSSI.2021.16.019

O. MAZUROVA, A. NABOKA, M. SHIROKOPETLEVA

RESEARCH OF ACID TRANSACTION IMPLEMENTATION METHODS FOR

DISTRIBUTED DATABASES USING REPLICATION TECHNOLOGY

Today, databases are an integral part of most modern applications designed to store large amounts of data and to request from many

users. To solve business problems in such conditions, databases are scaled, often horizontally on several physical servers using

replication technology. At the same time, many business operations require the implementation of transactional compliance with

ACID properties. For relational databases that traditionally support ACID transactions, horizontal scaling is not always effective due

to the limitations of the relational model itself. Therefore, there is an applied problem of efficient implementation of ACID

transactions for horizontally distributed databases. The subject matter of the study is the methods of implementing ACID transactions

in distributed databases, created by replication technology. The goal of the work is to increase the efficiency of ACID transaction

implementation for horizontally distributed databases. The work is devoted to solving the following tasks: analysis and selection of

the most relevant methods of implementation of distributed ACID transactions; planning and experimental research of methods for

implementing ACID transactions by using of NoSQL DBMS MongoDB and NewSQL DBMS VoltDB as an example; measurements

of metrics of productivity of use of these methods and formation of the recommendation concerning their effective use. The following

methods are used: system analysis; relational databases design; methods for evaluating database performance. The following results

were obtained: experimental measurements of the execution time of typical distributed transactions for the subject area of e-

commerce, as well as measurements of the number of resources required for their execution; revealed trends in the performance of

such transactions, formed recommendations for the methods studied. The obtained results allowed to make functions of dependence of

the considered metrics on loading parameters. Conclusions: the strengths and weaknesses of the implementation of distributed ACID

transactions using MongoDB and VoltDB were identified. Practical recommendations for the effective use of these systems for

different types of applications, taking into account the resources consumed and the types of requests.

Keywords: distributed database; transaction; performance; ACID; NOSQL; NewSQL; MongoDB; VoltDB.

Introduction

Databases (DB) are the basis of the vast majority of

modern software applications in various spheres of human

life. These are medical solutions, financial and banking

systems, social networks, etc. Today, databases and their

shells, DBMSs, store and process data, the number of

which is significantly increasing every year.

Because the resources of any server on which the

DBMS is deployed are limited, to store new amounts of

data requires its scaling, vertical or horizontal [1]. Vertical

scaling, which consists in increasing the hardware

resources (increase in RAM, permanent media) on the

database server machine, obviously has limitations and

does not provide the necessary result for the

implementation of large systems. For this reason,

horizontal scaling has become more popular, the essence

of which is the introduction of additional node machines,

which are combined into a single cluster. Thus, the

database is stored on several physical machines, and there

are no restrictions on this type of scaling.

Thus, a horizontally distributed database consists of

several physical nodes that are hosted on different

physical servers and store certain data throughout the

database [2]. For this type of scaling, there are two

distribution technologies: sharding and replication. The

essence of sharding is to place part of the data of the entire

database on a particular server, while in the case of

replication; copies of all database data are stored on all

nodes of the cluster simultaneously.

On the other hand, it is critical for modern databases

to execute ACID transactions [3], which have become an

integral part of business operations (money transfer, ticket

booking) for most areas. But for horizontally scalable

databases, there is a problem with performing such ACID

transactions, which is that different nodes of the database

cluster can interact with each other using a network TCP

protocol, which in itself does not support transactionality.

This problem applies to both horizontal scaling

technologies, but is especially relevant for replicated

databases, where the same data is on different physical

servers, which must always be in a consistent state [4].

Thus, the developers of distributed systems are faced

with the problem of choosing and implementing methods

to support distributed transactions when creating

applications based on replicated databases.

Analysis of recent research and publications

Classic relational DBMSs were the first to face the

problems of horizontal scaling and implementation of

distributed transactions: PostgreSQL, MySQL, SQL

Server, Oracle and others. Due to the features of the

relational data model, such as reference integrity and

unique constraints, the corresponding DBMS cannot be

easily distributed to several physical machines. In

addition, relational ACID principles have been developed

to operate within a single address space, and have some

difficulty in implementing in a distributed environment.

Therefore, most relational databases do not provide out-

of-the-box capabilities to support distributed ACID

transactions.

Later, to solve the problems of horizontal scaling,

databases of a new class NoSQL were developed, in

which the developers tried to overcome the limitations

inherent in relational data models and the SQL language

[5-8]. Since NoSQL DBMSs are not based on the concept

of DB schema and relationships between tables, they

provide a fairly easy possibility of horizontal scaling from

the beginning [9].

© O. Mazurova, A. Naboka, M. Shirokopetleva, 2021

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

20

However, most NoSQL DBMSs support

transactionality at the single-record level only, which

prevents them from being used in a number of important

transactional business operations. A number of developers

of NoSQL systems to implement this shortcoming

implement additional functionality. An example of such a

DBMS is MongoDB [10-11], which fully supports

distributed ACID transactions. This one of the most

popular systems shows quite high performance results and

has integration with a large number of programming

languages.

As an attempt to combine the advantages of classic

relational and NoSQL DB, a new class of DBMS has

recently appeared - NewSQL [12-13]. NewSQL DBMSs

have both built-in support for horizontal scaling and,

inherent in relational systems, support for transaction

ACID and most SQL functionality. And although this

class of systems has a fairly high potential, but it has not

yet gained much popularity among developers. However,

the DBMS VoltDB, which is quite popular among systems

of this class, already has integration with many

programming languages.

It should not be forgotten that one of the first

methods of implementing distributed transactions, which

is still used by developers, is their implementation at the

application level. That is, the application itself takes

responsibility for fixing transactions on all nodes of the

cluster, for example, using the template Two-phase

commit [14].

Given the analysis, more modern and promising for

further research and comparison are the methods of

implementing distributed ACID transactions in NoSQL

DBMS (on the example of MongoDB) and NewSQL

DBMS (on the example of VoltDB).

The purpose of this article is to improve the

implementation of ACID transactions for horizontally

distributed databases by comparing the effectiveness of

such methods on the example of using NoSQL DBMS

MongoDB and NewSQL DBMS VoltDB, and develop

appropriate recommendations for their application.

This study requires the design of a pilot DB and

related transactions, as well as the planning and conduct

of a series of experiments on different DB volumes, loads,

and DB access modes. Evaluation of the effectiveness of

the use of methods should be carried out taking into

account such criteria [15-16] as:

- the average execution time of read requests, as well

as transactional write requests;

- resources required to perform these queries:

database size, RAM required, and percentage of CPU

time.

In addition to the absolute values of measurements, it

is advisable to determine and analyze the functions of

their growth.

Materials and methods

A DB was designed for the experiment, which will

then be implemented as a BSON model for MongoDB, as

well as a relational model for VoltDB.

The design area is e-commerce, for which distributed

systems are created and which is associated with heavy

workload and big data. In addition, the real field of

activity allowed for a clear demonstration of the need for

distributed transactions for applied tasks.

The simplified structure of the experimental DB

contains the following basic essences:

- product categories: have only a name;

- goods: have a name, description, quantity in stock,

price, and also belong to a certain category;

- properties of goods: have the name of the property,

its meaning, and also belong to a particular product;

- customers: have a name, surname, e-mail address,

telephone number, and physical address;

- orders: have a specific delivery date, discount, and

also belong to a specific customer;

- order elements: indicate a specific product, have

the ordered quantity, and also belong to a specific order.

The data structures developed for the experiment are

shown in fig. 1 (relational scheme DB) and in fig. 2 (in

BSON format).

Fig. 1. Relational DB scheme

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

21

The following e-commerce business operations were

selected to design queries for experiments:

- withdrawal of the most popular categories of

goods;

- view and create orders;

- change in the quantity of goods in the warehouse

and the price of the goods;

- adding or changing a discount for a specific order;

- adding new categories of goods and the goods

themselves for them.

Fig. 2. BSON DB structure

For the experiment, transactions based on SQL and

BSON queries for VoltDB and MongoDB, respectively,

were developed for selected business processes. All

transactions are implemented with a standard DBC

isolation level for many DBMSs.

For the experiment, the following deployment of DB

server nodes was adopted:

- measurements were made for a cluster of DB

virtual server machines;

- each server runs in the Azure cloud on a B2s virtual

machine with 2 CPUs, 4 GB of RAM and 8 GB of hard

drive.

- Windows Server 2016 operating system.

The experimental load on the DB cluster was formed

taking into account the following factors:

- the amount of data stored in the database;

- number of simultaneous connections to the

database;

- the number of replica nodes in the DB cluster on

which transaction results must be recorded simultaneously

and consistently.

For a series of experiments, modes associated with

specific discrete values for the above factors were

identified (table 1).

Table 1. DB characteristics for study modes

Regime Total entities in the database Number of simultaneous connections
The number of replica nodes in the

cluster

Basic 122 064 10 2

Basic+ 568 064 30 3

Basic++ 1 266 064 50 -

Medium 2 420 064 100 4

Intensive 8 050 064 300 6

The experiment is based on the idea of measuring the

execution time of requests and resource consumption by

gradually changing one mode to another for one factor,

while the values of the other two factors will remain static.

This will establish the dependence of these metrics on the

specific load factor DB. An experiment will also be

performed with a gradual simultaneous change of modes

of all factors to compare the most important criteria that

affect the execution time of queries.

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

22

It was decided to compare all measurements not only

through absolute values, but also by identifying the

functions of dependence and comparing their growth rate

graphically.

For research on the basis of certain business

processes, a number of requests were made, namely:

- withdrawal of the three most popular categories of

goods;

- withdrawal of the order and its elements by the

order ID;

- transaction with the operation of inserting an order

with a variable number of order elements, which will be

equal to the number of elements for this mode;

- transaction with the operation of updating goods,

the number of which is less than 10, namely, reducing

their price by 10%;

- transaction to delete all orders, the total amount of

which is on a certain segment [x; x + 500], where x ∈

[8,000; 13,000];

- complex transaction with operations of insertion of

many orders with their elements, updating with increase in

quantity of the goods in a warehouse which current

quantity is less than 15, and also updating with transfer of

date of the order in a certain range for some days forward;

- a comprehensive transaction with the insertion of

new categories and products for them, the insertion of new

customers and orders for them, as well as the renewal of

the discount for those orders whose delivery date belongs

to a certain segment.

To conduct the experiment, special software was

developed, the essence of which is to automatically deploy

a DB cluster with the number of nodes according to a

given mode, fill it with data according to this mode and

perform parallel queries to the cluster according to a given

mode. The software measures the execution time of each

request and constantly monitors the resources consumed.

Research results and their discussion

Let’s consider the main most interesting trends in the

performance of experiments to support ACID transactions

for NoSQL DBMS MongoDB and NewSQL DBMS

VoltDB.

Let's start with the analysis of such a resource as the

DB volume. In fig. 3 shows a histogram showing for each

mode the DB dimensions for both DBMSs with the same

number of entities as they contain.

Fig. 3. Comparative diagram of the size of the database

As you can see, VoltDB requires less memory to

store the same amount of information in a DB than

MongoDB. As the amount of data increases, the DB gap

only widens, suggesting that the DBMS VoltDB generally

requires less memory to store a single entity than

MongoDB does.

Consider the results of measurements of CPU time

used as a percentage for both methods. During the

experiments it was found that the CPU time in both cases

does not depend on the number of replicas in the cluster.

But interestingly, MongoDB is characterized by a more

rapid growth of CPU consumption when increasing only

the factor of the amount of data stored in the database, and

when increasing only the number of simultaneous CPU

connections, time also increases, but rather slowly and this

growth is dampening. On the other hand, VoltDB, on the

other hand, shows an increase of only 1% from the lowest

mode to the highest when the data grows, but shows a

progressive increase with the number of connections.

Comparative tables with absolute values for both methods

are given in table 2 and table 3.

Thus, in terms of CPU usage, it is better to use

VoltDB when it is known in advance that the application

will have a large growing amount of data and a more static

number of users. Conversely, it is better to use MongoDB

when the system aims to attract a large number of users

with a more or less fixed data set.

Table 2. The results of experiments with changing only the

amount of data

Regimes MongoDB CPU (%) VoltDB CPU (%)

Data Basic 1.1 1

Data Basic+ 3.5 1.1

Data Basic++ 3.7 1.3

Data Medium 7.1 1.4

Data Intensive 7.2 2

Table 3. The results of experiments with changing only the

number of simultaneous connections

Regimes MongoDB CPU (%) VoltDB CPU (%)

Connection Basic 1.1 1

Connection Basic+ 2.5 1.4

Connection Basic++ 3.6 2

Connection Medium 3.5 4.2

Connection Intensive 3.7 10

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

23

If the proportions of the amount of data and users are

unknown in advance or a characteristic increase of both

values is assumed, it is better to pay attention to the

measurements of the CPU metric, when all loaded factors

simultaneously and gradually increase (table 4).

As you can see, in this case VoltDB consumes less

CPU and this consumption grows more slowly than in the

case of MongoDB. That is why in the case when the

application must be ready for a rapid growth of both data

and users, it is still better to choose VoltDB in terms of

CPU consumption.

Table 4. The results of experiments, when all load factors

increase simultaneously

Regimes MongoDB CPU (%) VoltDB CPU (%)

Basic 1.1 1

Basic+ 1.9 1.4

Basic++ 6.3 2.2

Medium 10.2 4.7

Intensive 16.5 13

Let’s consider the results of measurements of the

used RAM consumed by the DB server during

transactions in different load modes. Note that

from the start, MongoDB consumes several times less

RAM than VoltDB. For example, when changing the

amount of data, MongoDB consumes from 91 MB of

RAM for the lowest level and up to 99 MB for

the highest level, and when changing the number of

connections from 83 MB to 97 MB. Even in the presence

of a certain statistical error, it is clear that growth, if any,

is very slow. At the same time, VoltDB consumes when

changing data from 218 MB to 560 MB, and when

changing connections from 218 MB to 1360 MB. The

corresponding histograms of RAM consumption at change

of data quantity (fig. 4) and quantity of connections

(fig. 5) are resulted. The histograms show that when the

amount of data changes, the difference in RAM is smaller

than when changing the number of simultaneous

connections.

Fig. 4. Comparative histogram of RAM consumption when changing the amount of data

Fig. 5. Comparative histogram of RAM consumption when changing the number of connections

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

24

Also note that the amount of RAM for both methods

does not actually depend on the number of replicas.

More interesting is the situation with increasing

RAM consumption while increasing all load factors. And

although in absolute terms MongoDB still loses VoltDB,

but shows significant growth at high loaded levels

(table 5).

Table 5. The results of measurements of RAM consumption

while changing all factors

Regimes MongoDB RAM (MB) VoltDB RAM (MB)

Basic 91 218

Basic+ 94 322

Basic++ 97 439

Medium 182 692

Intensive 370 1369

We see that for both methods, although RAM

consumption doubles between the last two modes, VoltDB

still requires an order of magnitude more RAM at high

load. Therefore, in terms of using the DB server RAM, it

is more efficient to use MongoDB.

Further on we consider the results of measurements

of the average execution time of transactions.

Let’s consider the results for the operation of

inserting a single order with its elements. The number of

elements to be inserted will increase when the load mode

is changed:

- Basic: 30 elements;

- Basic +: 40 elements;

- Basic ++: 50 elements;

- Medium: 60 items;

- Intensive: 100 items.

The experiment showed that MongoDB executes this

transaction several times faster than VoltDB when

changing any factor. At the same time, it was found that

the data quantity factor in DB does not affect the insert

transaction speed for MongoDB, but significantly affects

the rate for VoltDB (fig. 6). This revealed a completely

opposite situation with the factor of the number of

replicas, on which there is dependence for MongoDB

(fig. 7), but not for VoltDB. And although

the growth is noticeable, but in fact the time changes by

only 100 ms.

Fig 6. Graph of growth of time of execution of transaction on an insert from quantity of data in basis for VoltDB

Fig. 7. Graph of growth of time of execution of transaction on an insert from quantity of data in basis for VoltDB

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

25

It was found that the insertion time for both methods

depends on the number of simultaneous connections.

However, MongoDB spends several times less time and

this time increases several times slower than for VoltDB

(fig. 8).

It was also found that with a simultaneous increase

in all load factors, the execution time of the transaction on

the insert increases significantly for both methods. In this

way, you can find out the maximum bandwidth of the

insertion operation for both methods at the highest levels

of each factor, as well as at the same time the highest level

of all factors simultaneously. A series of experiments

showed that MongoDB in all layouts has a higher

insertion bandwidth than VoltDB.

Consider the results of experiments to perform an

update transaction, the essence of which is to update the

price of all goods, the number of which is less

than a certain threshold. This in turn means

that the DBMS will have to scan the entire table /

collection to find such products. Fig.9 shows a

histogram comparing both methods for this

transaction in terms of maximum execution

time when changing each load factor separately and

together.

Fig 8. Graph of comparison of time of execution of insertion for both methods at a variable number of connections

It was found that for the transaction, the VoltDB

update shows an order of magnitude better results both in

terms of absolute values (the time difference reached

37 times) and in terms of growth. Thus, the growth

rate with increasing various load factors for

VoltDB increases approximately 1.5-2 times, while

in the case of MongoDB, for each higher load mode, the

time can increase by an order of magnitude. The execution

time for MongoDB depends on all load factors,

and for VoltDB it depends only on the amount

of data and the number of simultaneous

connections.

Fig. 9. Comparative histogram of the maximum execution time of the update transaction

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

26

Therefore, you can immediately see a huge

difference in the execution time of this transaction for the

compared DBMS. With a variable amount of data and

replicas, VoltDB updates in less than 120 ms. Given that

during this transaction about 10% of the total number of

goods are updated, you can determine the maximum

bandwidth of each method (table 6). The table shows that

VoltDB updates data much more efficiently, especially the

gain compared to MongoDB is seen when increasing only

the amount of data. The smallest gap between the methods

is observed in the case when only the number of replicas

increases.

Table 6. The detected maximum number of entities that can be updated in one second

Types of load changes MongoDB (number of entities) VoltDB (number of entities)

When the amount of data changes 1824 93283

When changing the number of connections 7 248

When changing the number of replicas 85 1585

When all factors change 92 1927

Next, we consider the execution of a transaction with

a request to delete all orders, the amount of which is in a

certain range. This transaction also requires scanning the

entire table / collection and performing a grouping

operation to find the order amount through the

price of its items. Grouping will take place for order items

by the ID of the order to which they belong. After the

grouping operation, the total price of the order

will be calculated as the sum of the prices of all its

elements.

Experiments have shown that the deletion

transaction, as for the previous request, is performed an

order of magnitude faster with VoltDB when changing

any factor. Runtime for both DBMSs increases most

slowly when the number of replica nodes in the cluster

changes. The rate of increase of execution time

when changing the amount of data and the

number of connections will be better investigated by

graphically displaying the corresponding linear

regression functions. The following are graphs

of the time dependency of the removal transaction

from the amount of data (fig. 11a) and the

number of simultaneous connections (fig. 10b) for both

DBMSs.

 a) b)

Fig. 10. Functions of growth of execution time of transaction of removal at change (a - volume of data, b - number of connections)

As you can see from both graphs, for this query,

VoltDB removal works much faster at any load in

absolute values, and the time increase is not as rapid as in

the case of MongoDB.

A number of complex transactions were also

investigated in the paper. The first of these

transactions contains two insert operations and

 two update operations. For this transaction,

MongoDB worked an order of magnitude

faster than VoltDB. The following is a histogram

comparing the maximum execution time of this

transaction when changing each load factor separately

(fig. 11).

We see that the largest gap in time occurs

when increasing the number of simultaneous

connections, and the smallest when entering

new nodes-replicas in the cluster. An even greater gap in

execution time (almost 40 times) is observed

with a simultaneous increase in the values of

all load factors. Thus, for VoltDB at maximum load, the

execution time is 675549.34 ms, and for MongoDB

16980.45 ms.

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

27

Fig. 11. Comparative histogram of the maximum execution time of transactions when changing various factors

We see that the largest gap in time occurs when

increasing the number of simultaneous connections, and

the smallest when entering new nodes-replicas in the

cluster. An even greater gap in execution time (almost 40

times) is observed with a simultaneous increase in the

values of all load factors. Thus, for VoltDB at maximum

load, the execution time is 675549.34 ms, and for

MongoDB 16980.45 ms.

The other complex transaction contains 6 insert

operations and 1 update operation. MongoDB also

executes this transaction an order of magnitude faster than

VoltDB. Moreover, the execution time for VoltDB is

affected by all load factors, while for MongoDB there is

no characteristic dependence on the number of

simultaneous connections. Comparison of the maximum

execution time of this transaction when changing each

load factor separately and all at the same time are given in

table 7.

Table 7. Experiments results

Load factors MongoDB, execution time (ms) VoltDB, execution time (ms) Difference

Max data volume 2213.16 40693.78 18.4 times

Max number of connections 1126.16 42720.91 37.9 times

Max number of replicas 1222.05 4492.47 3.7 times

Max value of all factors 25183.41 613669.34 24.4 times

It can be seen that MongoDB executes this

transaction several tens of times faster than VoltDB.

Moreover, the largest time gap for DBMS is manifested at

the peak values of the number of connections, and the

smallest at the maximum number of replicas. In general,

MongoDB more efficiently captures the ACID of a

transaction with a large number of write requests in a

distributed DB.

Finally, consider the performance of read requests.

Although they are not part of ACID transactions, this type

of operation is most common in distributed DBs and its

performance can significantly influence the choice of a

method.

The first read request will consider a request to

receive an order with its elements by the ID of this order.

For both DBMSs at the DB level, index readings will be

performed to check the effectiveness of the indexed

search. As expected, for both methods, the amount of data

in the database does not have a strong effect on the

execution time of the search, because the logarithmic

function grows very slowly. But it immediately becomes

clear that MongoDB reads an order of magnitude faster

than VoltDB - an average of 17 ms versus 125 ms. The

number of replicas in the cluster also does not affect the

search speed for both methods, because in this case, the

interaction still takes place with only one node. On the

other hand, the query execution time for both methods

depends on the number of simultaneous connections,

while MongoDB reads an order of magnitude faster and

with increasing connections the time increases much more

slowly than in the case of VoltDB (Table 8).

At simultaneous increase of indicators of all factors

the approximately same tendency, as well as in the table

above remains. Thus, it is clear that MongoDB is much

more efficient at reading the index. This is primarily due

to the fact that Mongo searches for an order in only one

collection, and VoltDB searches the index in two tables:

the order and its elements. As you can see, the difference

in time differs by an order of magnitude, and for the

maximum load in terms of connections, in general, by

several orders of magnitude. This once again proves the

stability of MongoDB with a large number of users, as

well as its advantages when performing an index read

operation.

Table 8. The results of measuring the execution time of the read

request when changing the factor of the number of connections

Regimes MongoDB (ms) VoltDB (ms)

Basic 15.06 123.68

Basic+ 17.87 146.38

Basic++ 17.48 179.38

Medium 21.18 187.07

Intensive 25.53 10993.58

The latter we will analyze the implementation of a

more complex request to obtain the three most popular

categories of goods, which will include grouping, sorting

and data limiting operations. When performing this query,

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

28

both methods have a characteristic increase in runtime

from the amount of data and the number of simultaneous

connections. As in the previous case, the measurement

results immediately show that MongoDB executes

this request an order of magnitude faster than VoltDB.

Below are graphs of the dependence of the query

execution time for both methods on the increase in data

volume (fig. 12) and the number of simultaneous

connections (fig. 13).

Fig. 12. Comparing of the category read time growth graphs based on data volume

Fig. 13. Comparing of the category read time growth graphs based on number of connection

Both series of experiments give a similar result, the

graphs clearly show that VoltDB executes this request

much slower than MongoDB, and execution time

increases many times faster. At a maximum load of all

factors, VoltDB executes this request in 358923.22 ms,

while MongoDB - in 80733.55 ms. That is, the difference

at peak load is almost 4.5 times.

Therefore, based on the measurements made, it can

be concluded that MongoDB performs a read request with

grouping, sorting and limiting operations is several times

more efficient than VoltDB.

As a result of the experimental study, the main trends

in the performance of the compared DBMS were

identified in a specific situation, which allows us to make

recommendations for their application. Consider the

recommendations made on the basis of the resources

consumed for both methods. The amount of resources

consumed directly affects the hardware of the virtual

machine on which the DB server is located, and therefore

the price of this machine.

Experiments show that the VoltDB consumes less

storage space and requires slightly less CPU time, while in

any load mode it consumes several times more RAM.

Therefore, less disk space usage by VoltDB allows you to

choose this DBMS in cases where you need to save on the

size of the permanent media of the virtual machine,

namely:

- when creating applications in which the DB must

store tens of gigabytes of data and, at the same time, such

data is not processed very often or intensively, so the

speed of their processing is not a priority (for example, in

storage systems DB backups or outdated data low

probability);

- when creating applications where the same

machine stores data from other databases or just other

files; also the processing speed should not be a priority for

the application.

Also, VoltDB's lower CPU resource consumption

allows you to choose this approach when one or more

applications that require CPU and multithreaded

computing are deployed on the same virtual machine with

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

29

the DB server. Examples of such applications are

computer vision systems, which require a lot of CPU time

to solve the classification problem. With this approach,

you can save on CPU resources, which are the most

expensive.

On the other hand, due to less RAM consumption, it

is more appropriate to use MongoDB in the following

cases:

- creating applications that require a lot of RAM to

run continuously, but host one or more applications on the

same virtual machine (for example, in systems that use

different levels of cache stored in RAM for faster response

, such as web servers that cache the client's response to

expedite the response);

- creating applications where other repositories that

require a large amount of RAM (for example, in In-

Memory DB, such as Redis or Memcached) must be

located on the same virtual machine.

All this will save on RAM, which is also quite

expensive to rent.

Further on let’s consider the recommendations

developed based on the average execution time of various

queries and transactions.

Based on the results of experiments, the

implementation of distributed ACID transactions using

MongoDB is more appropriate in the cases:

- creation of applications where read operations take

precedence over other write operations (for example, in

various analytical systems, data processing systems,

online stores, search engines, which use such complex

queries as indexed search); because MongoDB executes

both simple index read requests and complex grouping,

sorting, and limiting queries an order of magnitude faster,

it is therefore more performance-efficient for this type of

application;

- creation of applications where insert operations

prevail over update and deletion operations, which is

typical of data collection systems, which are then

analyzed; usually, in such situations, the initial data is

processed, which no longer changes (for example, in

centralized data logging systems, control systems for

various environmental metrics using the Internet of

Things, ticket booking systems);

- creation of applications where within the ACID

transaction many entries for insertion, updating or

removal should be performed (for example, in systems

with complex transactions, such as, bank applications with

the function of transfer of funds, applications for

construction of various graphic objects and charts

numerical data, as well as applications with the function

of testing and automated assessment of user knowledge);

because MongoDB executes and fixes transactions with

several separate requests faster on all nodes, so the more

of these requests, the greater the difference in the time of

its processing of transactions compared to VoltDB);

- creation of applications where the speed of any data

change operations under high load from users is critical

(for example, in e-commerce systems where there is a

peak load of users during the holidays or in online

competition systems, where to participate at a certain time

hundreds of users must connect at once.); because

MongoDB handles many concurrent connections very

efficiently for most data change operations, MongoDB

executes most of these requests faster than VoltDB; and

even for such transactions, which are still faster in

VoltDB, the gap with MongoDB is still smaller than for

other load factors.

On the other hand, using VoltDB to implement

distributed ACID transactions is more efficient in cases:

- creation of applications where update operations

outperform other performance-critical and execution-

critical operations (for example, in shared document

editing systems, where multiple users simultaneously and

continuously edit the same document, as well as systems

for financial exchanges , where exchange rates and

stock prices of companies are constantly updated);

VoltDB, as measurements have shown, executes this type

of transaction an order of magnitude faster than

MongoDB;

- creation of applications where the deletion

operation is performed with the same frequency as the

insertion operation, or where the speed of data deletion is

very important (for example, in systems of transmission of

secret values through one-time pages, where they must be

deleted immediately after the first reading, and in systems

with the display of various data and metrics in real time,

where obsolete data should be deleted as soon as possible

so as not to take up disk space);

- creation of applications where a large number of

replicas are expected from clusters (for example, in hotel

reservation systems around the world, where DB servers

are located in different geographical areas); The

recommendation is due to the fact that VoltDB showed

that the factor of the number of replica nodes in the cluster

does not affect the speed of most queries, and if some

queries are still characterized by an increase in time with

increasing number of replicas, this growth is minimal and

fluctuates around a few percent.

However, in situations where the method of

implementing distributed ACID transactions is chosen

before the start of application development and it is not

known which load factor will be a priority and which

types of requests will predominate in the application, a

more reliable option is MongoDB. After all, for this

DBMS with a simultaneous increase in all load factors,

the execution time of most requests and transactions is

less than for VoltDB.

Conclusions and prospects for further development

In terms of performance, a study of methods for

implementing distributed ACID transactions, namely the

built-in capabilities of DBMS MongoDB and VoltDB. A

series of experiments was performed to measure the

resources consumed and the execution time of various

queries and transactions.

To perform the experiment, DB structures were

designed for the relational and BSON models, as well as

transactions to these databases. The experiments were

performed with increasing load, which allowed to

compare not only the absolute values of the metrics, but

also their trends. The experiments used metrics on the

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 2 (16)

30

execution time of queries and the resources required to

execute those queries. Based on the analysis of these

metrics, the comparative advantages and disadvantages of

each approach were identified; analyzed what load factors

affect specific types of requests and resources used.

Thus, the study provided a complete picture of the

performance of both methods during different types of

workload, based on which the main recommendations for

the effective use of a method for a particular type of

application were formulated.

References

1. Tamer Özsu, M. (2020), Principles of Distributed Database Systems, Springer International Publishing, 674 p.

2. Maran, M. M., Paniavin, N. A., Poliushkin, I. A. (2020), "Alternative Approaches to Data Storing and Processing",

V International Conference on Information Technologies in Engineering Education (Inforino). DOI:

https://doi.org/10.1109/inforino48376.2020.9111708

3. Blokdyk, G. (2018), ACID Transactions Second Edition, 5STARCooks, 282 p.

4. Kemme, B., Peris, R. J., Patiño-Martínez, M. (2010), Database Replication (Synthesis Lectures on Data Management), Morgan

and Claypool Publishers, 154 p. DOI: https://doi.org/10.2200/S00296ED1V01Y201008DTM007

5. Moniruzzaman, А. B. M., Hossain, S. A. (2012), "NoSQL Database: New Era of Databases for Big data Analytics –

Classification, Characteristics and Comparison", International Journal of Database Theory and Application, No. 4, P. 1.

6. Kuzochkina, A., Shirokopetleva, M., Dudar, Z. (2018), "Analyzing and Comparison of NoSQL DBMS", International Scientific-

Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), P. 560–564.

DOI: https://doi.org/10.1109/INFOCOMMST.2018.8632133

7. Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, F., (2018), "Comparison between relational and NOSQL databases", 41st

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), P. 216–

221. DOI: https://doi.org/10.23919/mipro.2018.8400041

8. Győrödi, C. A., Dumşe-Burescu, D. V., Zmaranda, D. R., Győrödi, R. Ş., Gabor, G. A., Pecherle, G. D. (2020), "Performance

Analysis of NoSQL and Relational Databases with CouchDB and MySQL for Application’s Data Storage", Applied Sciences,

No. 10 (23), P. 8524. DOI: https://doi.org/10.3390/app10238524

9. Sadalage, P., Fowler, M. (2012), NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, 1st Edition,

Addison-Wesley Professional, 192 p.

10. Chodorow, K. (2016), MongoDB: The Definitive Guide: Powerful and Scalable Data Storage, 3rd Edition, O'Reilly Media, 514 p.

11. Palanisamy, S., Suvitha Vani P. (2020), "A survey on RDBMS and NoSQL Databases MySQL vs MongoDB", International

Conference on Computer Communication and Informatics (ICCCI). DOI: https://doi.org/10.1109/iccci48352.2020.9104047

12. Pavlo, A., Aslett, M. (2016), "What’s Really New with NewSQL?", SIGMOD Record, Vol. 45(2), P. 45–55.

DOI: https://doi.org/10.1145/3003665.3003674

13. Astrova, I., Koschel, A., Wellermann, N., Klostermeyer, P. (2021), "Performance Benchmarking of NewSQL Databases with

Yahoo Cloud Serving Benchmark", Proceedings of the Future Technologies Conference (FTC) 2020, Vol. 2. FTC 2020. Advances

in Intelligent Systems and Computing, Vol. 1289, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-63089-8_17

14. Bhiri, S., Gaaloul, K., Perrin, O., Godart, C., (2005), "Overview of Transactional Patterns: Combining Workflow Flexibility and

Transactional Reliability for Composite Web Services", In: van der Aalst W.M.P., Benatallah B., Casati F., Curbera F. (eds)

Business Process Management. BPM 2005, Lecture Notes in Computer Science, Vol. 3649, Springer, Berlin, Heidelberg.

DOI: https://doi.org/10.1007/11538394_37

15. Priya, M., Kalpana, R. (2017), "Distributed and Parallel Processing of Location based spatial query with Approximate

Transformation", Ninth International Conference on Advanced Computing (ICoAC), P. 334–338.

DOI: https://doi.org/10.1109/ICoAC.2017.8441297

16. Gomes, C., Borba, E., Tavares, E., Meuse Nogueira de O. Junior (2019), "Performability Model for Assessing NoSQL DBMS

Consistency", IEEE International Systems Conference (SysCon). DOI: https://doi.org/10.1109/syscon.2019.8836757

Received 27.05.2021

Відомості про авторів / Сведения об авторах / About the Authors

Мазурова Оксана Олексіївна – кандидат технічних наук, доцент, Харківський національний університет

радіоелектроніки, доцент кафедри програмної інженерії, Харків, Україна; email: oksana.mazurova@nure.ua;

ORСID: https://orcid.org/0000-0003-3715-3476.

Мазурова Оксана Алексеевна – кандидат технических наук, доцент, Харьковский национальный университет

радиоэлектроники, доцент кафедры программной инженерии, Харьков, Украина.

Mazurova Oksana – PhD (Engineering Sciences), Associate Professor, Kharkiv National University of Radio Electronics,

Associate Professor of the Department of Software Engineering, Kharkiv, Ukraine.

Набока Артем Олександрович – Харківський національний університет радіоелектроніки, магістр спеціальності 121 -

Інженерія програмного забезпечення, Харків, Україна; email: artem.naboka@nure.ua; ORСID: https://orcid.org/0000-0003-2178-

7984.

Набока Артем Александрович – Харьковский национальный университет радиоэлектроники, магистр специальности

121 – Инженерия программного обеспечения, Харьков, Украина.

Naboka Artem – Kharkiv National University of Radio Electronics, Master of Specialty 121 - Software Engineering, Kharkiv,

Ukraine.

Широкопетлєва Марія Сергіївна – Харківський національний університет радіоелектроніки, старший викладач

кафедри програмної інженерії, Харків, Україна; email: marija.shirokopetleva@nure.ua, ORСID: https://orcid.org/0000-0002-

7472-6045.

https://doi.org/10.1109/inforino48376.2020.9111708
https://doi.org/10.2200/S00296ED1V01Y201008DTM007
https://doi.org/10.1109/INFOCOMMST.2018.8632133
https://doi.org/10.23919/mipro.2018.8400041
https://doi.org/10.3390/app10238524
https://doi.org/10.1109/iccci48352.2020.9104047
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1007/978-3-030-63089-8_17
https://doi.org/10.1007/11538394_37
https://doi.org/10.1109/ICoAC.2017.8441297
https://doi.org/10.1109/syscon.2019.8836757
mailto:oksana.mazurova@nure.ua
https://orcid.org/0000-0003-3715-3476
mailto:artem.naboka@nure.ua
https://orcid.org/0000-0003-3715-3476
https://orcid.org/0000-0003-3715-3476
mailto:marija.shirokopetleva@nure.ua
https://orcid.org/0000-0002-7472-6045
https://orcid.org/0000-0002-7472-6045

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16) ISSN 2524-2296 (online)

31

Широкопетлева Мария Сергеевна – Харьковский национальный университет радиоэлектроники, старший

преподаватель кафедры программной инженерии, Харьков, Украина.

Shirokopetleva Mariya – Kharkiv National University of Radio Electronics, Senior Lecturer of the Department of Software

Engineering, Kharkiv, Ukraine.

ДОСЛІДЖЕННЯ МЕТОДІВ РЕАЛІЗАЦІЇ РОЗПОДІЛЕНИХ ACID ТРАНЗАКЦІЙ

ЗА ТЕХНОЛОГІЄЮ РЕПЛІКАЦІЇ

Сьогодні бази даних є невід’ємною частиною більшості сучасних застосувань, призначених для зберігання великих обсягів

даних та звертань від багатьох користувачів. Для рішення бізнес-задач в таких умовах бази даних масштабуються,

найчастіше горизонтально на декількох фізичних серверах з використанням технології реплікування. При цьому багато

бізнес-операцій потребують реалізації транзакційності з дотриманням ACID-принципів:. Для реляційних СУБД, які

традиційно підтримують ACID транзакції, горизонтальне масштабування не завжди ефективно через обмеження самої

реляційної моделі. Отже існує прикладна проблема ефективної реалізації ACID транзакцій для горизонтально розподілених

баз даних. Предметом дослідження є методи реалізації ACID транзакцій в розподілених базах даних, що створено за

технологією реплікування. Мета роботи – підвищення ефективності реалізації ACID транзакцій для горизонтально

розподілених баз даних. В роботі вирішуються наступні завдання: аналіз та вибір найбільш актуальних методів реалізації

розподілених ACID транзакцій; планування та експериментальне дослідження методів реалізації ACID транзакцій на

прикладі використання NoSQL СУБД MongoDB та NewSQL СУБД VoltDB; заміри метрик продуктивності використання цих

методів та формування рекомендації щодо їх ефективного використання. Використовуються такі методи: системний аналіз;

методи проектування реляційних баз даних та їх об’єктів; методи оцінки продуктивності баз даних. Отримано наступні

результати: проведено експериментальні виміри часу виконання типових розподілених транзакцій для предметної області

електронної комерції, а також заміри кількості ресурсів, що необхідні для їх виконання; виявлено тренди продуктивності

виконання таких транзакцій, сформовані рекомендації щодо методів, що досліджувалися. Отримані результати дозволили

скласти функції залежності розглянутих метрик від параметрів навантаження. Висновки: були виявлені сильні та слабкі

сторони реалізації розподілених ACID транзакцій за допомогою СУБД MongoDB і VoltDB. Запропоновано практичні

рекомендації щодо ефективного використання даних систем для різних типів додатків з урахуванням споживаних ресурсів та

типів запитів.

Ключові слова: розподілена база даних; транзакція; продуктивність; ACID; NOSQL; NEWSQL; MongoDB; VoltDB.

ИССЛЕДОВАНИЕ МЕТОДОВ РЕАЛИЗАЦИИ РАСПРЕДЕЛЕННЫХ ACID

ТРАНЗАКЦИЙ ПО ТЕХНОЛОГИИ РЕПЛИЦИРОВАНИЯ

Сегодня базы данных являются неотъемлемой частью большинства современных приложений, предназначенных для

хранения больших объемов данных и обращений от большого количество пользователей. Для решения бизнес-задач в таких

условиях базы данных масштабируются, чаще всего горизонтально на нескольких физических серверах с использованием

технологии репликации. При этом многие бизнес-операции требуют реализации транзакционности с соблюдением ACID-

принципов. Для реляционных СУБД, которые традиционно поддерживают ACID транзакции, горизонтальное

масштабирование не всегда эффективно из-за ограничений самой реляционной модели. Поэтому существует прикладная

проблема эффективной реализации ACID транзакций для горизонтально распределенных баз данных. Предметом

исследования являются методы реализации ACID транзакций в распределенных базах данных, созданных на основании

технологии репликации. Цель работы – повышение эффективности реализации ACID транзакций для горизонтально

распределенных баз данных. В работе решаются следующие задачи: анализ и выбор наиболее актуальных методов

реализации распределенных ACID транзакций; планирование и экспериментальное исследование методов реализации ACID

транзакций на примере использования NoSQL СУБД MongoDB и NewSQL СУБД VoltDB; замеры метрик

производительности использования этих методов и формирование рекомендации по их эффективному использованию.

Используются следующие методы: системный анализ; методы проектирования реляционных баз данных и их объектов;

методы оценки производительности баз данных. Получены следующие результаты: проведены экспериментальные

измерения времени выполнения типовых распределенных транзакций для предметной области электронной коммерции, а

также замеры количества ресурсов, необходимых для их выполнения; определены тренды производительности выполнения

таких транзакций; сформированы рекомендации по исследуемым методам. Полученные результаты позволили найти

функции зависимости рассмотренных метрик от параметров нагрузки. Выводы: были выявлены сильные и слабые стороны

реализации распределенных ACID транзакций с помощью СУБД MongoDB и VoltDB. Предложены практические

рекомендации относительно целесообразности использования данных систем для различных типов приложений с учетом

потребляемых ресурсов и типов запросов.

Ключевые слова: распределенная база данных; транзакция; производительность; ACID; NOSQL; NEWSQL; MongoDB;

VoltDB.

Бібліографічні описи / Bibliographic descriptions

Мазурова О. О., Набока А. О., Широкопетлєва М. С. Дослідження методів реалізації розподілених ACID транзакцій за

технологією реплікації. Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 2 (16). С. 19–31.

DOI: https://doi.org/10.30837/ITSSI.2021.16.019

Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation methods for distributed

databases using replication technology", Innovative Technologies and Scientific Solutions for Industries, No. 2 (16), P. 19–31.

DOI: https://doi.org/10.30837/ITSSI.2021.16.019

https://doi.org/10.30837/ITSSI.2021.16.019

