ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 3 (17) ISSN 2524-2296 (online)

UDC 681.3.06 DOI: https://doi.org/10.30837/1TSS1.2021.17.013

D. ZOLOTARIOV

MICROSERVICE ARCHITECTURE FOR BUILDING HIGH-AVAILABILITY
DISTRIBUTED AUTOMATED COMPUTING SYSTEM IN A CLOUD
INFRASTRUCTURE

The article is devoted to the research and development of a highly available distributed automated computing system by iterative
algorithms based on the microservice architecture in a cloud infrastructure. The subject of the research is the practical foundations of
building high-availability automated computing systems based on microservice architecture in a cloud-based distributed
infrastructure. The purpose of the article is to develop and to substantiate practical recommendations for the formation of the
infrastructure of a high-availability automated computing system based on the microservice architecture, the choice of its constituent
elements and their components. The task of the work: to identify the necessary structural elements of a microservice automated
computing system and to analyze the constituent components and functional load for each of them, set specific tasks for building each
of them and justify the choice of tools for their creation. In the course of the research, methods of system analysis were used to
decompose a complex system into elements and each element into functional components, and tools: information technologies
Apache Kafka, Kafkacat, Wolfram Mathematica, nginx, Lumen, Telegram, Dropbox, and MySQL. As a result of the study, it was
found that the system infrastructure should consist of: fault-tolerant interservice transport, a high-availability computing microservice,
and communication microservices with end customers, which save or process the results. For each of them, recommendations are
provided regarding the formation and selection of implementation tools. According to the recommendations, one variant of
implementation of such system has been developed, the principles of its operation are shown and the results are presented. It has been
proven that when using a Kafka queue it is efficient to publish batches of results rather than one at a time, which results to significant
overhead on queue servers and data latency for its clients. Recommendations are given on the implementation of the CI/CD system to
build a continuous cycle of adding and improving microservices. Conclusions. Practical foundations have been developed for the
implementation of high availability distributed automated computing systems based on microservice architecture in a cloud
infrastructure. The flexibility in processing the results of such a system is shown due to the possibility of adding microservices and
using third-party analytical applications that support connection to the Kafka queue. The economic benefit of using the described
system is shown. Future ways of its improvement are given.

Keywords: high availability; cloud technologies; distributed infrastructure; automated calculations; saving resources and funds;
iterative algorithms; Mathematica; Kafka; Telegram.

Introduction The introduction of calculation systems based on

microservice architecture in scientific systems aims to

Recent years have been marked by the rapid give each participant the opportunity to process or

development of software products built on microservice
architecture: web services [1-2], Internet banking [3], data
streaming [4-5], Internet of Things (10T) [6-7] and others.
Its advantages include: ease of construction, updating and
modification of elements (microservices), ease of
addition, removal and replacement due to the
independence of operation — as a consequence, much
greater flexibility in the development of the system as a
whole. In addition, the distribution of infrastructure in
such systems is an integral part: the elements are
interconnected only through data delivery mechanisms —
gueue managers or other.

Therefore, it is not surprising that the advantages and
prospects of such architecture are appreciated by more and
more developers of complex services, and gradually bring
its elements to non-profit areas. As shown in [8], the
achievements of modern applied science are largely the
result of interdisciplinary teams of scientists, researchers
and engineers, resulting in the use of each member of the
group familiar in its field tools for development, research
and analysis that can be combined only through
specialized interaction systems for the transfer of results
between participants. Also, such systems that allow the
exchange of research results in automatic mode in real or
near real time, have become relevant in today's
environment, when researchers may be distributed around
the world or otherwise not be able to be with the team.

generate data with the usual tools and transfer the result to
other colleagues through a unified for all researchers’
communication mechanism - queue manager. With the use
of cloud laaS-technologies, which allow to approach the
construction of infrastructure by renting the technology
park for the right time in the right amount and with the
right resources, you can achieve maximum efficiency
from the cost of deployment and maintenance of such a
system.

This work is a logical continuation and extension of
the ideas presented for the first time in [8]. This article
focuses on the problem of building a system of automated
calculations based on microservice architecture
for the use of iterative algorithms based on cloud laaS
service, and is designed to use the widest range
of both service microservices and end customers
through the use of queue manager as a communication
channel.

Iterative algorithms are chosen because their feature
is the "natural” ability to save the state after each iteration
— the results of all previously calculated iterations can be
saved and loaded, thus completely restoring the saved
state of the program for a certain step of the algorithm.
"Window" algorithms, such as those used in [9-12], are
best suited for these purposes. Non-iterative algorithms
that are able to store their state and the results of
intermediate calculations for processing can also be used.

© D. Zolotariov, 2021

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technol

ogies and scientific solutions for industries. 2021. No. 3 (17)

The purpose of this article is to develop and
substantiate practical recommendations for the formation
of the infrastructure of such a system, the choice of its
components and their components. The task is to identify
the necessary structural elements and provide for each of
them an analysis of the components and functional load,
to justify the choice of tools for their construction.

General structure of the system

To build a system of automated calculations by
iterative methods for microservice architecture, we
identify the problems that need to be solved. These will
be, first, the construction of inter-service transport for the
transmission of near-real-time messages from one
microservice to another. Secondly, launching the
calculation program as the sole initiator of calculations
and automatic supervision of its correct operation. Third,
long-term storage of computational results in
a random access system. And, fourth, maintaining
backward compatibility with the customer system
developed in [8].

To solve the problems we formulate problems in the
form of characteristics of elements by directions.

Transport — is a channel of communication between
microservices that generate or process data, transmits in
real time the results of their work to other microservices,
and is fault-tolerant in understanding the construction of a
cluster and the failure of one of the servers.

Computing microservice — consists of a computing
initiator and a computing server. The first — has secure
network access to the second, launches the calculation
program itself. The second — provides secure network
access for the initiator of calculations, executes this
program, instantly notifies of failure in the calculation
process, transfers results of calculation of each iteration to
interservice transport.

Long-term data storage microservice - accepts the
results of calculations of each iteration from the transport,
processes them for storage suitability in a relational
DBMS and saves.

Microservice, which is responsible for maintaining
backward compatibility with the system described in [8], -
receives the results of calculations of each iteration from
the transport, processes them for storage in separate files
in the format of the specified system, saves and sends
them to Dropbox.

Also, the system can have many other microservices,
which is implied in the architectural approach. These can
include both computational results processors and
ancillary services: sending notifications to various
communication channels, constructing graphical images
of the calculation progress, and so on.

The block diagram of the basic implementation of
such a system of calculations, which will be considered
below, is shown in fig. 1. It should be noted that this is
one of its possible implementations: each element of the
system, including transport, can be replaced according to
specific circumstances.

» e =
/Imtlal generator 4 Math server \\ Custom Proxy Mathemat.lca
microservice MICIOSEIvices
Apact MICrOServices server /—\PC
Kafkacat Kp;&;e =
Initiator Apache
PC * * Katka
() Mathematica
Mathematica Kernel Apache
Kafkacat
Katka
¥ > [)
2/
cluster N j 4
Watcher ——
- L)\) MySQL
DB
(~\)
Tel Telegram Bot Telegram Graph microservice Separate
elegram _ _ DB
microservice microservice
- R —
4 e ™
PC Dropbox
service
Droob Dropbox Web
: ropbox
Mathematica client Separate L e Browser server
directory
- 78N J J

Fig. 1. Decomposition of the system of automated calculations into structural elements

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 3 (17)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

The system consists structurally of Apache Kafka
transport and subsequent microservices.

The main complex microservices "Initial generator
microservice" is the center of computing, and
"Mathematica microservices" are the main clients with
mathematical processors.

Auxiliary microservices: "Telegram Bot
microservice" is responsible for providing a mechanism
for sending messages to the Telegram messenger,
"Telegram Graph microservice" is responsible for
displaying to Telegram in real time the progress of
calculations and the form of text and graphs.

Designed for backward compatibility: "Dropbox
microservice" is used to save the results of calculations on
a third-party service, Dropbox and "DB microservice" is
used to display progress in the web browser of the end
customer.

The system also assumes in the future the possibility
of connecting to the transport of other arbitrary
microservices, which are indicated in fig. 1 as "Custom
microservices", in unlimited quantities.

Let's consider each element of the system in more
detail.

Transport

And gives the chance, having saved once results of
calculation, to process them by various analytical and
statistical software complexes, without disturbing the
computing microservice or even having excluded it from
system.

As a result, the transport configured in this way
allows easy duplication of the microservice of calculations
in case of failure of the working copy, and guarantees data
preservation even in the event of a physical accident on
any of the components of the microservice of calculation.

Microservice of calculations

In the original work [8], a third-party Dropbox
service was used as a transport, which has the main
disadvantage of not being controlled by the administrator,
and is a "bottleneck™ of the whole system — in case of
failure, the whole complex fails due to lack of
communication. To avoid these shortcomings when using
the queue manager, you need to achieve the following
goals:

- use only own or leased servers,

- use a distributed server system that minimizes the
possibility of their failure at the same time,

- as the software part to choose the most fault-
tolerant products that work in real time,

- and those that are available for connection to
customers from various fields of research and engineering.

The Apache Kafka real-time content delivery
platform meets all these requirements. This is one of the
most frequently used [14] and fault-tolerant queue
managers, which allows you to build a distributed system
of brokers, able to dynamically adapt to the load and, if
necessary, easily scale both vertically and horizontally. It
has many libraries already built to connect to the queue of
different software packages and open mechanisms for
developing their applications in different programming
languages.

To be able to run smoothly on N servers from the
queue cluster, the cluster must include at least 2N + 1
servers, which is also noted in the Kafka documentation.

It is also worth noting that the use of the queue
manager as a delivery mechanism is not the only way to
use it. With the correct queuing time, it can also be used
for easy and fast operation of the calculation results
storage mechanism, which guarantees their delivery to the
client even when connected to the queue with a significant
delay or even after the publication of data from the source.

The Wolfram Mathematica mathematical processor
[15] was chosen as a tool for building a computational
microservice through internal client-server architecture:
Mathematica client and WolframKernel kernel - and
server platform independence. It is one of the world
leaders in the field of symbolic and numerical data
processing and is used in almost every field of engineering
and science, which is clearly seen, for example, in
publications [16-18], where it is used to solve various
application technologies.

The generator is a complex system, built by analogy
with that in [8], consisting of a computer-initiator of
calculations with a client of the mathematical processor
Wolfram Mathematica and a calculation server based on
the Mathematica kernel. It has network access between
them organized through the ssh-channel using asymmetric
encryption keys, which ensure the security of command
transmission and reception of results from the computing
server.

Monitoring the operation of the Mathematica core on
the server with instant notification in case of failure is
carried out in the same way as in the original work [8],
with the addition of using as a notification channel
Telegram messenger, which is connected using the
microservice "Telegram Bot microservice ».

As shown in [19], the Wolfram Mathematica
processor does not have built-in mechanisms to connect to
the Kafka queue cluster. This opportunity to work in two
directions: publishing messages in the queue and
consuming messages from it - provides the use of a
package with [19] with the extension [20] for use on a
computing server. To run it on the computing server,
Apache Kafka is additionally installed as a queue client
and third-party Kafkacat software [21].

The following principles are used to construct the
interaction of the Mathematica kernel with the Kafka
gueue manager. A separate queue is created for each
calculation, which in its name has all the input parameters
for unambiguous identification "calculation - queue".
When you restart calculations, if such a queue already
exists, it is cleared. This approach allows you to have only
one source of truth for the results of calculations. All
additional data to be stored with the iteration result is
added to the headers fields of the message being written to
the queue.

The system intentionally does not use the ability to
store calculation results locally in dump files due to the
use of the DumpSave function in Mathematica. This is

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

done to follow the paradigm of the only source of truth,
which is the turn of Kafka. Of course, this approach leads
to a longer recovery of the program while continuing the
interrupted calculation.

The protocol of the calculation program is stored on
a hybrid basis. On the computation initiator, it is output to
the document and automatically saved with it using the
Mathematica NotebookSave function or the
NotebookAutoSave document option. On the computing
server it is stored locally in separate files without access
from external systems, quite similarly [8]. Despite the fact
that the microservice does not have a built-in possibility of
external use of the work protocol, it can be implemented
according to [8] through a specially created application
based on bash-scripts or other tools. This will allow it to
be duplicated in Dropbox files, in a separate database
table or even in a separate queue Kafka - in each case, the
advantage will be the formation of a remote independent
of the microservice computing copy, which is always
stored, and access to it does not load the calculation
server.

Microservices based on mathematical processors

For random processing of calculation results, the
system may have microservices based on mathematical
processors. Which allow flexible processing of results
using all available arsenal of built-in analytical and
numerous tools, various processing and analysis tools, as
well as changing algorithms of such processing at any
time. To implement this capability, it is necessary to have
an appropriate mechanism for connecting the mapacket to
the Kafka queue.

For example, MathWorks MATLAB already has
such a module [22] with a rather rich functionality for
publishing and consuming messages from the queue.

For the Wolfram Mathematica package, such a
package was developed in [20], which allows a group of
similar clients to connect to the queue through a single
proxy server. For individual connection to the queue
without additional implementation of the proxy server,
you can use the method described in [19]. But it requires
additional software to be installed locally on the client
computer.

Such microservices can have a similar [8] functional
load, and another depending on the challenges facing
researchers at the moment. As noted above, these
microservices can appear in the system and be excluded
from it if necessary without affecting its other elements.

The disadvantage of such microservices is that
access to the analysis results is available only on the
computer where they were obtained. To provide access to
them to other microservices or end customers, they can
publish their results to Kafka queues specially designated
for such tasks.

Backward Compatibility Microservices

ways. First, through a Mathematica-based client that
processes files obtained through a third-party Dropbox file
service into the computer's local directory. Second, a
browser on the end-user device connecting to the web
server connects to the database server where the
calculation results are stored.

The following two microservices have been added to
maintain backward compatibility with the previous
system [8].

To display the calculation progress in the client
browser, a microservice "DB microservice" has been
added to the system, which in real time receives
the results of calculating each iteration from the queue,
parses them, prepares them for inclusion in the database
and stores them in a dedicated database. Web servers are
already connected to the latter, which are
described in detail in [8], through which end
users receive an integrated environment in a mobile or

computer browser with display of graphic and
text results.
The importance of maintaining this backward

compatibility is due to the fact that through the multi-
client architecture that is present in any web server, the
number of clients connected through the browser is
limited only by the power of the server and can be
increased if necessary. In addition, the number of web
servers connected to a single database is also limited only
by the power of the latter. That is, despite the fact that the
tool for analyzing results on the web server and in the
browser is very limited, this is compensated by the speed
of processing requests and the lack of load on the central
microservices and the Kafka queue.

The second microservice is designed to preserve the
ability of clients to work based on processing files
containing the results of each iteration calculation.
"Dropbox microservice" in real time receives data from
the queue, formats it to write to a file, and saves these files
on a third-party Dropbox file service according to the
same principles as described in [8].

Maintaining this backward compatibility is important
because Dropbox does not limit not only the number of
service clients, but also the number of simultaneously
running applications on one client, parallel processing the
same data in different ways. That is, the same — this
microservice and its customers load other microservices
and the Kafka queue.

Auxiliary Microservices

The source system describes [8] the processing and
visualization of the calculation process on client
computers in close to real time is implemented in two

The proposed system architecture has two auxiliary
microservices.

The first microservice "Telegram Bot microservice"
is responsible for providing a mechanism for sending
messages to the Telegram messenger and processing
feedback from the user. Messages with text or image can
be sent through it, and already existing messages can be
updated (replaced).

Microservice in the process of work refers to a
specially registered bot in Telegram. It is important to
note the security side: at the moment, Telegram does not
provide for private bots, so privacy is achieved due to the

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 3 (17)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

restriction of message processing only from certain
Telegram users.

Unlike all others in the system, this microservice
does not work through the Kafka queue, but through
REST access using the HTTPS protocol. It is used, among
other things, to work as a notification mechanism for
starting the Mathematica kernel, closing it, and failing the
Initial generator microservice calculation server.

To report real-time calculation progress in the form
of graphs and text notifications, the Telegram Graph
microservice is used, which is a constantly running set of
systemd system services, with an automatic restart in case
of failure.

Each service is responsible for monitoring a separate
calculation (queue in Kafka): it receives messages from its
Kafka queue, processes them, creating notifications about
the calculation progress, and sends them to Telegram
through the use of the capabilities of the previous
microservice. At the first start - saves the identifiers of
these Telegram messages, and in future work updates
them. This achieves compactness and information for the
end user.

The microservice has the following capabilities for
operating services: Adds a service to a specific Kafka
queue that creates a service description file and adds it to
systemd but does not start. Start and stop running a
previously added service for a specific Kafka queue.
Deletes the service for a specific Kafka queue from the
systemd and its description file. Also displays a
description of all added services with queue names and the
current status obtained by executing the systemctl status
command.

Other Microservices

In the case of missing or damaged iteration results,
the program must take only the results up to the first
correct and full inclusive, and discard others. Its
implementation will begin so that the allegedly rejected
iterations are not yet calculated.

This way of working with iteration results is logging
for high availability. This principle is well described by
the authors of Apache Kafka: "the process that performs
local calculations can be made fault-tolerant by leaving
the changes that it makes to its local state so that another
process can reload these changes and continue if it fails"
[13]. This principle is used in the proposed system to
significantly increase its reliability and fault tolerance of
calculations.

It should also be borne in mind that in cases of short-
term interruption of a network connection, data may be
duplicated in the queue due to re-sending by the
microservice. To solve this problem, you need to save the
results of calculations in a way that relies not on order, but
on the unambiguous difference between the results of two
arbitrary iterations.

To create a more economical system, you can store
the intermediate data of each step of the current iteration
(and only its) in a separate queue, designed only to restart
the calculations in case of a failure. This allows you to
load the results of all the calculated iterations and the
results of the intermediate steps of the last iteration from
the queue, and fully restore the saved state of the program
with accuracy to a certain step of the algorithm.

Demonstration of the work

The set of microservices is not limited to those
described above. Arbitrary consumers can be connected to
the Kafka queue, having an integrated queue connection
mechanism and the ability to process messages in JSON
format.

It is also possible to develop individual-purpose
microservices through the use of libraries created by
Kafka developers and other users for almost every of the
common programming languages [23]: C, PHP, Python,
Go, Node.js and others.

Notes on iterative algorithms

Finally, we provide remarks on improving the
efficiency of the considered system for iterative
algorithms of computational programs.

The proposed system is based on a microservice
architecture and allows simultaneous parallel processing
in real time of the results of calculating each iteration by a
set of distributed clients. With the ability to stop, restart
and replace at any time of each client microservice
system, including central microservice computing.
The latter is possible due to the automatic full recovery of
the iterative algorithm of the program after loading
from the queue the results of all previously calculated
iterations.

To demonstrate the operation of the proposed
system, cloud technologies were used as a basis for
infrastructure construction. Choosing them has the
following key benefits: Servers can be quickly deployed
and quickly configured to meet the needs of the task. One
of the world leaders in cloud technologies DigitalOcean,
where servers based on Ubuntu 20.04 LTS x64 OS were
located, was chosen as the capacity:

- Kafka queue cluster servers in the amount of 3
pieces based on Apache Kafka 2.6.0,

- computing server with Wolfram Mathematica
11.3.0 for Linux x86 (64-bit), Kafkacat 1.5.0 and Apache
Kafka 2.6.0, built according to [8,20] for a computing
microservice,

- intermediary server for queuing with Kafkacat
1.5.0 and Apache Kafka 2.6.0, built according to [20] for
microservices "Mathematica microservices",

- server based on Lumen 8.x framework and MySQL
8.0.20 Community Server database for DB microservice,

- server based on nginx 1.18.0 web server and
Lumen 8.x framework for REST-microservice "Telegram
Bot microservice",

- server based on the Lumen 8.x framework for
Dropbox microservice and Telegram Graph microservice,
the latter using the high-performance Amenadiel \
JpGraph php library, which is responsible for plotting near
real time.

The capabilities of the implemented microservice
"Telegram Graph microservice" are presented in fig. 2 and

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

fully comply with the requirements set out above and
include the following: "Add" - adding a service for a
specific queue Kafka, returns an error if the queue does
not exist. "Start" / "Stop" - starts / stops the previously

o=

Status
topics:
- math-list - active (running) since Sat 2021-01-02 21:00:34 UTC; 3
days ago

Fig. 2. Capabilities of microservice "Telegram Graph microservice"

The result of the Status command, which returned a
description of the only added service instance to handle
messages from the math-list queue that is currently
running, is shown at the bottom of figure 2.

The calculation of the Airy momentum propagation
[10,12] in a one-dimensional plane-layered medium by the
method of approximating functions [9,11] is chosen as a
problem. Simulation area: normalized time t = [0, 100]
and normalized space x = [0, 1], simulation step h = 0.01.
The result of solving the problem is the value
of the desired function in the nodes of the simulation
grid.

The intermediate progress of calculating the task
built by the Telegram Graph microservice for the slice at x
= 0.6 is shown in figure 3 below. The graphs are obtained
at arbitrary times and are arranged chronologically as
follows: from the top left, from the bottom left, from the
right - and are displayed by replacing each other in a
single message of the Telegram messenger, which is
pointed to the right.

Graphs are built in two types at once and combined
on one image for easy reading: red dots for each
individual value of the function (grid node), and blue lines
for clarity. Fig. 3 (right) shows a complete graphical
Telegram message, which includes: a dynamically
updated schedule, action buttons with the service (from
left to right: start, get current status, stop). The buttons
duplicate the same from fig. 2, but are designed for instant
action, because they do not require entering the name of
the service in contrast to the universal in fig. 2.

At the top of each graph is given the information
about the name of the queue from which the data is taken,
and the number of points - the values of the function
present on the graph. Due to the fact that the microservice
is designed to be universal, only the ordinal numbers of
the graph points are given on the abscissa axis without
using the real coordinates of the modeled area. This can be
changed as needed, as the graphics library itself supports
scaling of various kinds and relative markers on the
coordinate axes.

added service for the specified Kafka queue. "Remove" -
removes the service for the specified Kafka queue.
"Status" - returns the status of all services.

Telegram Kafka topic Graph Service

After testing the system on a complete simulation
and obtaining a complete solution for the problem, the
experiment was continued in the direction of stress testing.
To do this, the Kafka queue cluster was replaced by a
single server with 1GB of RAM, a single processor core
and an SSD - the minimum available server configuration
on DigitalOcean. The Apache Kafka process was
allocated RAM of at least 150MB. Using the
solution of the initial problem obtained above allowed to
send the finished result to the queue as quickly
as possible without the cost of calculation. Thus, the
testing of the system s artificially achieved
at maximum loads on the queue manager and
microservices-consumers.

The essence of the experiment is as follows. The
initiator of the calculation selects a "window" of
simulation, which contains 1000 point values of the
desired function in the nodes of the grid, and publishes up
to the queue 1000 messages with a single point value.
Pauses for 1 minute, shifts the "window" to the next and
repeats the operation. This algorithm emulates a real
calculation on a high-performance workstation or server,
where during one iteration lasting 1 minute, the solution
of the problem for 1000 nodes of the simulation grid is
obtained. The experiment was repeated 5 times to exclude
error with the same result.

On the message generator side, 1000 messages are
published almost instantly. On the side of the Telegram
Graph microservice and Mathematica microservices,
consumption is also almost real. But queuing messages
takes a few minutes for every 1000 messages,
and the Kafka process CPU load on the queue server is
constantly around 17%. Confirmation that the system
bottleneck is the queue server is provided by the fact that
after full processing of all messages by the queue
manager, the above microservices were restarted
for the purity of the experiment and showed almost
instantaneous retrieval of all values from the queue and
their processing.

Cyuacnuti cmam HayKo8ux 00CILONCeHb ma mexnonozi 6 npomuciosocmi. 2021. Ne 3 (17)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

008

i)

006

1Y

R

-

010

010

008

006

ot

3

-yt s

Topic: math-list

(poirts [1, 1998))

e —
oL e teme

i

y - 4

-

Status

Fig. 3. Display of calculation progress in the form of graphs to Telegram through the microservice "Telegram Graph microservice"

The conclusions from the experiment are as follows.
Improving the performance of the computing server will
lead to the need to improve the performance of the Kafka
cluster in the first place, and only in the second — the
notification microservice or clients implemented on the
basis of the mathematical package Mathematica.
Publishing a large number of small messages is not

effective for the Kafka queue manager, who works in
compressed resource conditions.

The next step in the experiment was to change the
publishing method to the opposite: the values of the
function for one "window" of 200 points with the same
pause were completely published once in a row. To create
such a data package, you must first convert an array of

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

values to a JSON object by using the following construct
in Mathematica.

str = ExportString[arr, "JSON", Compact -> True];

On the Mathematica client side of the queue, the
inverse transformation takes the form:

json = ImportString[str, "JSON"];
payload = "payload" /. json;
points_array = ImportString[payload, "JSON"T;

This approach put a negligible load on the Kafka
queue manager on the CPU of the queue server with a
peak value of 5-6% for 1-2 seconds. As a result, all
customers received data in near real time. The speed of
micro-client services and micro-service notifications
remained at the same level. To confirm the result, the
experiment was also repeated 5 times.

The conclusion from the experiment is as follows.
Batch data acquisition and analysis by the above
microservices does not lead to significant delays. Unlike a
single publication of the results of calculations to the
Kafka queue, batch publishing gives an insignificant and
inconspicuous load on the servers of the queue and in no
way slows down the work of its clients, so this method of
publishing in the system can use much cheaper servers.

Prospects for further development of the system

Prospects for further development of the developed
system are the following architectural improvements.

Transfer the proxy server from the mechanism of
interaction with clients described in [20] to RESTfull
interaction according to the HTTPS protocol. A similar
mechanism has already been developed in [24-25],
although at the moment none of them has built-in
capabilities for queuing - only publishing or receiving
messages.

Microservice architecture allows easy dynamic
addition and change of its elements, often situational - for
a specific task of analysis or data processing, followed by
removal of the service from the system. Therefore, it is
important to anticipate that the proposed system will
dynamically add new elements and improve existing ones.
To facilitate this process, it is promising to build a
specially designed Cl / CD system that will meet modern
requirements for the creation, testing and implementation
of software and infrastructure components.

Conclusions

The ideas developed in [8] on the formation of a
system of flexibly interconnected elements were further
developed in the work. Developed and substantiated
practical bases for the implementation of a system of
distributed automated calculations of high availability by
iterative algorithms based on microservice architecture in
the cloud infrastructure.

One of the possible options for such a system is
implemented, consisting of: Apache Kafka distributed

content delivery platform as high-reliability interservice
transport, calculation microservice based on the core of
the Mathematica math package, microservices for
processing calculation results, including based on this
matpack, microservice of visual notification of the
calculation progress to the Telegram messenger, REST
microservice of interaction with Telegram bot, and
microservices of saving results to the database and
Dropbox.

The backward compatibility with the elements of the
original system [8] is preserved for easier replacement of
the latter with the developed one.

It is explained that the proposed system has the
greatest advantages when using iterative algorithms to
build a calculation program that allows it to be interrupted
at any step and continue from the last completed iteration,
and with the described additional state savings - and the
last interrupted iteration step.

The approaches described in the article to the
formation of the system have increased the reliability of
saving the results of calculation through the use of a
failover queuing cluster and their duplication in Dropbox
microservices and databases. Analyze and process data by
various means and on different servers or computers with
the ability to connect to the queue, provide user-friendly
remote monitoring of computing progress and response to
computing microservice failures through any smartphone
or tablet.

It has been proven that publishing a large number of
small messages is not effective for the Kafka queue
manager operating under compressed resource conditions
and leads to significant resource overruns of queue servers
and data delays for queue clients. It is shown that batch
publishing is much more profitable due to the fact that it
gives an insignificant load on queue servers, does not slow
down the work of its clients and provides the possibility of
using less powerful, that is cheaper, queue servers.

It is shown that using the developed version of the
proposed system, increasing the performance of the
computing server will lead to the need to increase the
performance of the Kafka cluster earlier than
microservices clients.

The flexibility of the proposed system is due to the
possibility of dynamically adding and eliminating
situationally necessary microservices at an arbitrary
moment of time without impeding the operation of the
entire system and its individual elements. Prospects of
development of this peculiarity are shown through
implementation of CI/CD system for continuous
improvement of microservices.

The economic benefit of using the described system
is achieved through maximum automation, which leads to
improved quality of work of researchers. Also due to the
reduction of computer costs of employees - each of them
has the opportunity to conduct research on the results of
calculations on available and convenient for him
equipment, if it has access to the queue. Due to the use of
cloud technologies, the cost of ownership of the system
infrastructure and the cost of its modification are the
lowest.

ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00caiodceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 3 (17) ISSN 2524-2296 (online)
References
1. Lichtenthéler, R., Prechtl, M., Schwille, C. et al (2020), "Requirements for a model-driven cloud-native migration of monolithic

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

web-based applications”, SICS Softw.-Inensiv. Cyber-Phys. Syst., Vol. 35, P. 89-100. DOI: https://doi.org/10.1007/s00450-019-
00414-9

Fernandez-Garcia, A. J., Iribarne, L., Corral, A. et al. (2019), "A microservice-based architecture for enhancing the user
experience in cross-device distributed mashup Uls with multiple forms of interaction”, Univ Access Inf Soc, Vol. 18, P. 747-770.
DOI: https://doi.org/10.1007/s10209-017-0606-0

Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., Mazzara, M. (2018), "From Monolithic to Microservices: An Experience
Report from the Banking Domain,", IEEE Software, Vol. 35, No. 3, P. 50-55, DOI: 10.1109/MS.2018.2141026.

Alaasam, A. B., Radchenko, G., Tchernykh, A. et al. (2020), "Analytic Study of Containerizing Stateful Stream Processing as
Microservice to Support Digital Twins in Fog Computing”, Program Comput Soft, Vol. 46, P. 511-525.
DOI: https://doi.org/10.1134/S0361768820080083

Kim, Y. K., Kim, Y., Jeong, C. S. (2018), "RIDE: real-time massive image processing platform on distributed environment",
EURASIP Journal on Image and Video Processing, Vol. 2018, No. 39. DOI: https://doi.org/10.1186/s13640-018-0279-5

Santana, C., Andrade, L., Delicato, F.C. et al. (2020), "Increasing the availability of 10T applications with reactive microservice",
SOCA. DOI: https://doi.org/10.1007/s11761-020-00308-8

Razzag, A. A (2020), "Systematic Review on Software Architectures for 10T Systems and Future Direction to the Adoption of
Microservices Architecture”, SN COMPUT. SCI, Vol. 1, Article 350. DOI: https://doi.org/10.1007/s42979-020-00359-w
Zolotariov, D. (2020), "The distributed system of automated computing based on cloud infrastructure”, Innovative Technologies
and Scientific Solutions for Industries, No. 4 (14), P. 47-55. DOI: https://doi.org/10.30837/1TSS1.2020.14.047

Zolotariov D., Nerukh A. (2011), "Extension of the approximation functions method for 2d nonlinear Volterra integral equations”,
Applied Radio Electronics, Vol. 10, No. 1, P. 39-44.

Nerukh, A. G., Zolotariov, D. A., Nerukh, D. A. (2012), "Properties of decelerating non-diffractive electromagnetic Airy pulses",
Applied Radio Electronics, Vol. 11, No. 1, P. 77-81.

Nerukh, A., Zolotariov, D., Benson T. (2015), "The approximating functions method for nonlinear Volterra integral equations”,
Optical and Quantum Electronics, Vol. 47, P. 2565-2575. DOI: https://doi.org/10.1007/s11082-015-0141-2

Nerukh, A., Zolotariov, D., Kuryzheva, O., Benson T. (2016), "Dynamics of decelerating pulses at a dielectric layer", Optical and
Quantum Electronics, Vol. 48, No. 89. DOI: https://doi.org/10.1007/s11082-016-0386-4

Apache Kafka (2021), "Apache Kafka", available at: https://kafka.apache.org/documentation/ (last accessed 10 January 2021).
GitHub (2021), "Ultimate Comparison", available at: https://ultimate-comparisons.github.io/ultimate-message-broker-comparison/
(last accessed 10 January 2021)

Wolfram (2021), "Wolfram Mathematica: Modern technical calculations”, available at: https://www.wolfram.com/mathematica/
(last accessed 10 January 2021).

You, X., Chen, D. R. (2018), "A new sequence convergent to Euler—Mascheroni constant”, Journal of Inequalities and
Applications, Vol. 2018, Article 75. DOI: https://doi.org/10.1186/s13660-018-1670-6

Ghorbani, M. A., Singh, V. P., Sivakumar, B. et al. (2017), "Probability distribution functions for unit hydrographs with
optimization using genetic algorithm", Applied Water Science, Vol. 7, P. 663-676. DOI: https://doi.org/10.1007/s13201-015-
0278-y

Rehman, S., Idrees, M., Shah, R. A. et al. (2019), "Suction/injection effects on an unsteady MHD Casson thin film flow with slip
and uniform thickness over a stretching sheet along variable flow properties”, Boundary Value Problems, Vol. 2019, No. 26.
DOI: https://doi.org/10.1186/s13661-019-1133-0

Zolotariov, D. (2021), "The mechanism for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 1 (15), P. 53-58.
DOI: https://doi.org/10.30837/ITSSI1.2021.15.053

Zolotariov, D. (2021), "The platform for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 2 (16), p. 12-18.
DOI: https://doi.org/10.30837/ITSSI.2021.16.012

GitHub (2021), "edenhill/kafkacat: Generic command line non-JVM Apache Kafka producer and consumer”, available at:
https://github.com/edenhill/kafkacat (last accessed 10 January 2021).

GitHub (2021), "mathworks-ref-arch/matlab-apache-kafka: MATLAB Interface for Apache Kafka", available at:
https://github.com/mathworks-ref-arch/matlab-apache-kafka (last accessed 10 January 2021).

Apache Software Foundation (2021), "Clients - Apache Kafka", available at:
https://cwiki.apache.org/confluence/display/KAFKA/Clients (last accessed 5 January 2021).

GitHub (2021), "dspeterson/dory: Producer daemon for Apache Kafka", available at: https://github.com/dspeterson/dory (last
accessed 10 January 2021).

Confluent Documentation (2021), "Confluent REST APIs", available at: https://docs.confluent.io/platform/current/kafka-
rest/index.html (last accessed 10 January 2021).

Received 23.07.2021

Bidomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

3o0J10TapHLOB Jennc OurexciiioBu4 - KaHIuIaT (bi3uKO-MaTeMaTHYHNX HaykK, Xapkis, VkpaiHa;

email: denis@zolotariov.org.ua, ORCID: https://orcid.org/0000-0003-4907-7810.

3oJ0Tapé JleHuc AnexceeBHY — KaHANAAT PU3UKO-MATEMaTHIECKNX HAayK, XapbKoOB, YKpanHa.
Zolotariov Denis — PhD (Physics and Mathematics Sciences), Kharkiv, Ukraine.

mailto:denis@zolotariov.org.ua
https://orcid.org/0000-0003-4907-7810

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

MIKPOCEPBICHA APXITEKTYPA INIOBYJOBH PO3IOAIVIEHUX _
ABTOMATHU30BAHUX OBYUCJEHb BUCOKOI JOCTYIMTHOCTI Y XMAPHIH
IHOPACTPYKTYPI

CrarTst TpHUCBSYEHA JMOCHIIKEHHIO Ta PO3POOIi PpO3MOIINIEHOI CHCTEMH aBTOMATH30BaHUX OOYHCICHb BHCOKOI JIOCTYITHOCTI
iTepauiifHUMu ajropuTMamMud Ha 0a3i MIKpOCEpBICHOI apXiTeKTypu y XMapHiil iHpacTpykrypi. IIpeamerom [oCTiKeHHS €
MPaKTU4YHI 3acagyl MOOYIOBH CHCTEM AaBTOMATH30BAaHHX pPO3PAaXyHKIB BHCOKOi JOCTYMHOCTI, IO 3aCHOBaHI Ha MIKpOCEpBiCHIN
apxiTekTypi y posmoaineHiii inppacTpykrypi Ha 6a3i XxmMapHuX TexHojoriii. Metol crarti € po3poOka Ta OOIPYHTYBaHHS
NPaKTHYHUX PEKOMEeHAaliil moxo ¢GopmyBaHHS iHOPACTPYKTYpU CHCTEMH aBTOMATH30BAHMX OOYHCICHb BHCOKOI JOCTYIHOCTI Ha
0a3i MIKpOCEpBICHOI apXiTEKTypH, BHOOpY II CKJIQJIOBHX EJIEMCHTIB Ta iX KOMIIOHEHTIB. 3aBJaHHS POOOTH: BUSBHTH HEOOXIiTHI
CTPYKTYpPHI €JIeMEHTH MiKpOCEepBICHOI CHCTEMH aBTOMATH30BaHMX OOYMCIICHb Ta HAmaTH M KOXKHOTO 3 HHX aHaNi3 CKJIAJOBUX
KOMITOHEHTIB Ta (pyHKI[IOHAJTEHOTO HAaBaHTAXXEHHS, IIOCTABUTH KOHKPETHI 3a/adi A MOOYMXOBH KOXKHOTO i3 HHUX Ta OOIPYHTYBaTH
BUOIp IHCTPYMEHTIB JUIA iX BUPIMICHHS. Y XOJi JOCIIPKCHHS BUKOPUCTAHO METOAM CHCTEMHOTO aHANI3y IS JICKOMITO3HIIIT CKIIQJTHOT
CHCTeMH Ha €JIEMEHTH Ta KOXKHOTO elleMeHTa Ha (yHKI[IOHaIbHI KOMIOHEHTH, Ta 3acobu: iHdopmamiiiHi Texuonorii Apache Kafka,
Kafkacat, Wolfram Mathematica, nginx, Lumen, Telegram, Dropbox, MySQL. V pe3yiabTaTi JOCIi)KEHHS BCTaHOBIICHO, IO
iHppacTpyKTypa CHCTEMH Ma€ CKJIAJATHCS 3: BIIMOBOCTIMKOTO MiXXCEPBICHOTO TPAaHCIOPTY, MIiKPOCEPBICY OOYHCIEHb BHCOKOI
JIOCTYITHOCTI, Ta MiKpOCEPBICIB 3B’SI3KY 13 KIHIIEBUMH KJIi€HTaMH, 110 30epiratoTb abo oOpoOsatoTh pe3yapTaTh. [KOKHOTO 3 HUX
HaJIaHi peKoMeHaIlii 1mox0 (opMyBaHHS Ta BUOOPY iHCTPYMEHTApItO U MOOYA0BH. 32 OTPUMAHUMH PEKOMEHAAIISIME PO3POOIICHHIMA
OJIVH 13 BapiaHTIiB Takoi CHCTEMH, NOKa3aHi MIPUHIUIM ii poOOTH Ta HaBeleHI pe3ysbTaTH. Jl0BEeIeHO, 0 IIPH BUKOPHCTAHHI Yepry
Kafka edexTrBHOIO € myOmikarist makeTiB pe3yJbTaTiB, a He 110 OJHOMY, IO IPU3BOJIUTH 10 3HAUYHUX MEPEBUTPAT PECYPCIB cepBepiB
Yepru Ta 3aTpUMKaM JaHWX JUIA ii KaieHTiB. JlaHi pekoMeHaalii mo/o BrpoBamkeHHs cucremu CI/CD s moOymoBu 6e3mepepBHOTO
LUKy [JOJAaBaHHS Ta BJOCKOHAJEHHS MiKpocepBiciB. BucHoBkH. Po3poOneHi mHpakTHYHI OCHOBM I peaiisamii cHcTeM
PO3MOALIEHNX aBTOMAaTH30BaHUX OOYUCIICHb BUCOKOI JOCTYIMHOCTI Ha 0a3i MiKpOCEpPBICHOT apXiTeKTYpH Y XMapHii iHQpacTpyKTypi.
[NokazaHa THy4YKiCTh y OOpoOI pe3ysbTaTiB TaKoi CHCTEMHU 4Yepe3 MOXKIHMBICTh AOTOBHEHHS ii MIKpOCepBicaMH Ta BHKOPHCTAaHHS
CTOPOHHIX AHATITUYHUX IOJATKiB, IO MIATPUMYIOTH 3aBaHTakeHHs naHuWX i3 deprm Kafka. [lokasaHa exoHOMiuHa BHTroja Big
BUKOPHUCTAHHA ONMUCaHOi cucTeMu. HaBeneHi MaiiOyTHI NUIAXH 11 BIOCKOHAICHHS.

KnrouoBi cioBa: BuCOKa JOCTYIHICTH, XMapHI TEXHOJIOTIT; po3moniieHa iH(PacTpyKTypa; aBTOMAaTH30BaHiI OOYMCICHHS;
€KOHOMIsI pecypciB Ta KOIITIB; iTepauiiiHi anroput™u; Mathematica; Kafka; Telegram.

MHUKPOCEPBUCHASI APXUTEKTYPA TIOCTPOEHUS PACIIPEJEJIEHHBIX
ABTOMATU3NPOBAHHBIX BBIYUCJIEHUU BBICOKOU JOCTYIIHOCTHU B
OBJAYHOU UHO®PACTPYKTYPE

CraThsl TOCBSIICHA HCCICAOBAHHUIO M pa3pabOTKe pPACHPEICTIeHHON CHCTEMbl aBTOMATH3MPOBAHHBIX BBIYHMCICHHI BBICOKOM
JOCTYITHOCTH HTEPALMOHHBIMU aITOPUTMaMH Ha 0a3e MHUKPOCEPBHUCHOW apXWUTeKTYphl B obmadHoil mHdpacTpykType. IIpeamerom
HCCIICIOBAHUS SIBISIFOTCS MPAKTHYECKHE OCHOBBI MTOCTPOCHHUSI CHCTEM aBTOMATH3MPOBAHHBIX BBIYMCICHHI BBICOKOW TOCTYIHOCTH,
OCHOBaHHbBIX Ha MHKPOCEPBHCHOMN apXUTEKType B pacrpeieleHHON nHpacTpyKType Ha 6a3e 06nauHbix TexHonoruii. Lledblo cratbu
sBIsieTcss pa3paboTka M OGOCHOBAHHME TMPAKTHYECKUX PEKOMEHIAlMii K (OPMHUPOBAHHIO HHQPPACTPYKTYPhI CHCTEMBI
aBTOMATH3UPOBAHHBIX BBIYHMCICHHH BBICOKOM JOCTYIHOCTH Ha 0a3e MHKPOCEPBHCHOM apXHTEKTYpbl, BBIOOPY €€ COCTaBHBIX
9JIEMEHTOB M HMX KOMIIOHEHTOB. 3aga4a paboTBI: BBISSBHTH HEOOXOIMMBIE CTPYKTYPHBIE 3JIEMEHTBI MHKPOCEPBHCHON CHCTEMBI
ABTOMATH3UPOBAHHBIX BBIYMCICHHI M MPOBECTH Ul K&KIOTO M3 HHUX aHAIN3 COCTABISIONINX KOMIIOHEHTOB WM (DYHKIHOHAIbHOM
Harpy3KH, MOCTABUTH KOHKPETHBIE 3a1a4X ISl TIOCTPOSHHS KaKIIOTO W3 HUX M 000CHOBATh BEIOOP HHCTPYMEHTOB [UISI MIX pelieHus. B
XO0JIe UCCIIEOBAaHMUs MCIIONB30BAHB METOAbI CHCTEMHOTO aHAM3a TSl IEKOMIIO3UIINN CIIOKHOM CHCTEeMBI Ha DIEMEHTHI W KaXKI0TO
9NeMeHTa Ha (YHKIMOHAIbHBIE KOMIOHEHTHI, M CPEACTBA: HH(popManuoHHbe TexHoiorun Apache Kafka, Kafkacat, Wolfram
Mathematica, nginx, Lumen, Telegram, Dropbox, MySQL. B pe3yJibTate HCCIeIOBaHUS YCTAHOBJIEHO, YTO WMH(PACTPYKTypa
CHCTEMBI JIOJDKHA COCTOSITh H3: OTKa30yCTOMYHMBOTO MEKCEPBHCHOIO TPAHCIOPTA, MHKPOCEPBHCA BBIYMCICHUI BBICOKOM
JOCTYIHOCTH, ¥ MHKPOCEPBHCOB CBf3M C KOHEYHBIMH KIMEHTAMH, KOTOPBHIC COXPAHSIOT WIIH 00pabaThiBAalOT pe3ynbrarhl. [l
KaXIOTO M3 HHUX TPEIOCTABIECHbl PEKOMEHIANH OTHOCHTENbHO (OPMHUPOBAHUS W BHIOOpAa MHCTPYMEHTOB peaim3arimu. COrnacHo
TIOJIyYEeHHBIM PEKOMEHIAIMAM Pa3paboTaH OJMH M3 BAPHAHTOB PEANM3alldH TAaKOW CHCTEMBI, TIOKa3aHBl TPUHIMUIBI €ro paboThl U
TpPUBENCHBI pe3yibTarsl. JlokaszaHo, 4To mpu Hcmoip3oBannu odepenn Kafka sddexruBHOM sBuseTcs: MyONMKamus MTakeToB
pEe3yIBTaTOB, a HE [0 OXHOMY, 4TO IPUBOIMT K 3HAYUTEIFHOMY MEPEPacXOIy PECYPCOB CEPBEPOB OUESPEH U 3aAepP/KKaM JAaHHBIX IS
ee KITHEHTOB. J[aHbl PEeKOMEHIAIMH OTHOCHTEIbHO BHeApeHus cucteMbl CI/CD Ji1st OCTPOCHHS HEMPEPBIBHOTO IUKIIA JOOABICHUS U
COBEPLICHCTBOBAHHUS MHKPOCEPBHCOB. BbIBOABI. Pa3paboTaHbl MPakTHYECKHE OCHOBBI JUIS PEAM3AlldM CHCTEM PAaCIpelelIeHHBIX
ABTOMATH3UPOBAHHBIX BBIYKMCIICHHI BBICOKOM JOCTYIHOCTH Ha 0a3e MHKPOCEPBHCHON apXHTEKTypbl B 00JauHOM HHPPACTPyKTypE.
[TokaszaHa THOKOCTH B 00pabOTKe pe3ysIbTATOB TAKOW CHCTEMOW OJarogaps BO3MOXKHOCTH JOTIOJIHEHHSI €€ MHKPOCEPBHCAMH U
HCIIOJIb30BaHMsI CTOPOHHUX aHAIMTUYECKUX TPUIIOKEHNUI, KOTOPBIE TIONIePKMUBAIOT 3arpy3Ky JaHHbX u3 odepenu Kafka. [Toxazana
9KOHOMHHYECKAsE BBITOJIa OT UCIIOIB30BAHHS OIMCAHHOM CHCTeMBI. [IprUBeNeHb! Oy AyIpe Iy TH e¢ YCOBEPIIICHCTBOBAHHSI.

KitroueBble ¢10Ba: BBICOKAS JOCTYITHOCTB; OONaYHbIEe TEXHOJOTUH; PaclpeeiieHHas HHPPACTPYKTypa; aBTOMATU3NPOBAHHBIE
BBIYHCIICHUSI; SKOHOMHS PECYPCOB U JIeHeT; uTeparronubie anropurMer; Mathematica; Kafka; Telegram.

bibnioepaghiuni onucu / Bibliographic descriptions

3onoraproB JI. O. MikpocepBicHa apXiTeKTypa MOOYAOBH PO3MOJIJICHUX aBTOMATH30BAaHUX OOYMCIIEHb BHCOKOI JOCTYMHOCTI y XMapHii
inppactpykrypi. Cyuachuii cman — HayKogux — Oocriodcens — ma — mexHonoeiu 6 npomuciosocmi. 2021, Ne3(17). C.13-22.
DOI: https://doi.org/10.30837/1TSSI.2021.17.013

Zolotariov, D. (2021), "Microservice architecture for building high-availability distributed automated computing system in a cloud
infrastructure”, Innovative Technologies and Scientific Solutions for Industries, No. 3 (17), P. 13-22. DOI: https://doi.org/10.30837/1TSS1.2021.17.013

https://doi.org/10.30837/ITSSI.2021.17.013

