
 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17) ISSN 2524-2296 (online)

13

UDC 681.3.06 DOI: https://doi.org/10.30837/ITSSI.2021.17.013

D. ZOLOTARIOV

MICROSERVICE ARCHITECTURE FOR BUILDING HIGH-AVAILABILITY

DISTRIBUTED AUTOMATED COMPUTING SYSTEM IN A CLOUD

INFRASTRUCTURE

The article is devoted to the research and development of a highly available distributed automated computing system by iterative

algorithms based on the microservice architecture in a cloud infrastructure. The subject of the research is the practical foundations of

building high-availability automated computing systems based on microservice architecture in a cloud-based distributed

infrastructure. The purpose of the article is to develop and to substantiate practical recommendations for the formation of the

infrastructure of a high-availability automated computing system based on the microservice architecture, the choice of its constituent

elements and their components. The task of the work: to identify the necessary structural elements of a microservice automated

computing system and to analyze the constituent components and functional load for each of them, set specific tasks for building each

of them and justify the choice of tools for their creation. In the course of the research, methods of system analysis were used to

decompose a complex system into elements and each element into functional components, and tools: information technologies

Apache Kafka, Kafkacat, Wolfram Mathematica, nginx, Lumen, Telegram, Dropbox, and MySQL. As a result of the study, it was

found that the system infrastructure should consist of: fault-tolerant interservice transport, a high-availability computing microservice,

and communication microservices with end customers, which save or process the results. For each of them, recommendations are

provided regarding the formation and selection of implementation tools. According to the recommendations, one variant of

implementation of such system has been developed, the principles of its operation are shown and the results are presented. It has been

proven that when using a Kafka queue it is efficient to publish batches of results rather than one at a time, which results to significant

overhead on queue servers and data latency for its clients. Recommendations are given on the implementation of the CI/CD system to

build a continuous cycle of adding and improving microservices. Conclusions. Practical foundations have been developed for the

implementation of high availability distributed automated computing systems based on microservice architecture in a cloud

infrastructure. The flexibility in processing the results of such a system is shown due to the possibility of adding microservices and

using third-party analytical applications that support connection to the Kafka queue. The economic benefit of using the described

system is shown. Future ways of its improvement are given.

Keywords: high availability; cloud technologies; distributed infrastructure; automated calculations; saving resources and funds;

iterative algorithms; Mathematica; Kafka; Telegram.

Introduction

Recent years have been marked by the rapid

development of software products built on microservice

architecture: web services [1-2], Internet banking [3], data

streaming [4-5], Internet of Things (IoT) [6-7] and others.

Its advantages include: ease of construction, updating and

modification of elements (microservices), ease of

addition, removal and replacement due to the

independence of operation – as a consequence, much

greater flexibility in the development of the system as a

whole. In addition, the distribution of infrastructure in

such systems is an integral part: the elements are

interconnected only through data delivery mechanisms –

queue managers or other.

Therefore, it is not surprising that the advantages and

prospects of such architecture are appreciated by more and

more developers of complex services, and gradually bring

its elements to non-profit areas. As shown in [8], the

achievements of modern applied science are largely the

result of interdisciplinary teams of scientists, researchers

and engineers, resulting in the use of each member of the

group familiar in its field tools for development, research

and analysis that can be combined only through

specialized interaction systems for the transfer of results

between participants. Also, such systems that allow the

exchange of research results in automatic mode in real or

near real time, have become relevant in today's

environment, when researchers may be distributed around

the world or otherwise not be able to be with the team.

The introduction of calculation systems based on

microservice architecture in scientific systems aims to

give each participant the opportunity to process or

generate data with the usual tools and transfer the result to

other colleagues through a unified for all researchers’

communication mechanism - queue manager. With the use

of cloud IaaS-technologies, which allow to approach the

construction of infrastructure by renting the technology

park for the right time in the right amount and with the

right resources, you can achieve maximum efficiency

from the cost of deployment and maintenance of such a

system.

This work is a logical continuation and extension of

the ideas presented for the first time in [8]. This article

focuses on the problem of building a system of automated

calculations based on microservice architecture

for the use of iterative algorithms based on cloud IaaS

service, and is designed to use the widest range

of both service microservices and end customers

through the use of queue manager as a communication

channel.

Iterative algorithms are chosen because their feature

is the "natural" ability to save the state after each iteration

– the results of all previously calculated iterations can be

saved and loaded, thus completely restoring the saved

state of the program for a certain step of the algorithm.

"Window" algorithms, such as those used in [9-12], are

best suited for these purposes. Non-iterative algorithms

that are able to store their state and the results of

intermediate calculations for processing can also be used.

© D. Zolotariov, 2021

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

14

The purpose of this article is to develop and

substantiate practical recommendations for the formation

of the infrastructure of such a system, the choice of its

components and their components. The task is to identify

the necessary structural elements and provide for each of

them an analysis of the components and functional load,

to justify the choice of tools for their construction.

General structure of the system

To build a system of automated calculations by

iterative methods for microservice architecture, we

identify the problems that need to be solved. These will

be, first, the construction of inter-service transport for the

transmission of near-real-time messages from one

microservice to another. Secondly, launching the

calculation program as the sole initiator of calculations

and automatic supervision of its correct operation. Third,

long-term storage of computational results in

a random access system. And, fourth, maintaining

backward compatibility with the customer system

developed in [8].

To solve the problems we formulate problems in the

form of characteristics of elements by directions.

Transport – is a channel of communication between

microservices that generate or process data, transmits in

real time the results of their work to other microservices,

and is fault-tolerant in understanding the construction of a

cluster and the failure of one of the servers.

Computing microservice – consists of a computing

initiator and a computing server. The first – has secure

network access to the second, launches the calculation

program itself. The second – provides secure network

access for the initiator of calculations, executes this

program, instantly notifies of failure in the calculation

process, transfers results of calculation of each iteration to

interservice transport.

Long-term data storage microservice - accepts the

results of calculations of each iteration from the transport,

processes them for storage suitability in a relational

DBMS and saves.

Microservice, which is responsible for maintaining

backward compatibility with the system described in [8], -

receives the results of calculations of each iteration from

the transport, processes them for storage in separate files

in the format of the specified system, saves and sends

them to Dropbox.

Also, the system can have many other microservices,

which is implied in the architectural approach. These can

include both computational results processors and

ancillary services: sending notifications to various

communication channels, constructing graphical images

of the calculation progress, and so on.

The block diagram of the basic implementation of

such a system of calculations, which will be considered

below, is shown in fig. 1. It should be noted that this is

one of its possible implementations: each element of the

system, including transport, can be replaced according to

specific circumstances.

Fig. 1. Decomposition of the system of automated calculations into structural elements

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17) ISSN 2524-2296 (online)

15

The system consists structurally of Apache Kafka

transport and subsequent microservices.

The main complex microservices "Initial generator

microservice" is the center of computing, and

"Mathematica microservices" are the main clients with

mathematical processors.

Auxiliary microservices: "Telegram Bot

microservice" is responsible for providing a mechanism

for sending messages to the Telegram messenger,

"Telegram Graph microservice" is responsible for

displaying to Telegram in real time the progress of

calculations and the form of text and graphs.

Designed for backward compatibility: "Dropbox

microservice" is used to save the results of calculations on

a third-party service, Dropbox and "DB microservice" is

used to display progress in the web browser of the end

customer.

The system also assumes in the future the possibility

of connecting to the transport of other arbitrary

microservices, which are indicated in fig. 1 as "Custom

microservices", in unlimited quantities.

Let's consider each element of the system in more

detail.

Transport

In the original work [8], a third-party Dropbox

service was used as a transport, which has the main

disadvantage of not being controlled by the administrator,

and is a "bottleneck" of the whole system – in case of

failure, the whole complex fails due to lack of

communication. To avoid these shortcomings when using

the queue manager, you need to achieve the following

goals:

- use only own or leased servers,

- use a distributed server system that minimizes the

possibility of their failure at the same time,

- as the software part to choose the most fault-

tolerant products that work in real time,

- and those that are available for connection to

customers from various fields of research and engineering.

The Apache Kafka real-time content delivery

platform meets all these requirements. This is one of the

most frequently used [14] and fault-tolerant queue

managers, which allows you to build a distributed system

of brokers, able to dynamically adapt to the load and, if

necessary, easily scale both vertically and horizontally. It

has many libraries already built to connect to the queue of

different software packages and open mechanisms for

developing their applications in different programming

languages.

To be able to run smoothly on N servers from the

queue cluster, the cluster must include at least 2N + 1

servers, which is also noted in the Kafka documentation.

It is also worth noting that the use of the queue

manager as a delivery mechanism is not the only way to

use it. With the correct queuing time, it can also be used

for easy and fast operation of the calculation results

storage mechanism, which guarantees their delivery to the

client even when connected to the queue with a significant

delay or even after the publication of data from the source.

And gives the chance, having saved once results of

calculation, to process them by various analytical and

statistical software complexes, without disturbing the

computing microservice or even having excluded it from

system.

As a result, the transport configured in this way

allows easy duplication of the microservice of calculations

in case of failure of the working copy, and guarantees data

preservation even in the event of a physical accident on

any of the components of the microservice of calculation.

Microservice of calculations

The Wolfram Mathematica mathematical processor

[15] was chosen as a tool for building a computational

microservice through internal client-server architecture:

Mathematica client and WolframKernel kernel - and

server platform independence. It is one of the world

leaders in the field of symbolic and numerical data

processing and is used in almost every field of engineering

and science, which is clearly seen, for example, in

publications [16-18], where it is used to solve various

application technologies.

The generator is a complex system, built by analogy

with that in [8], consisting of a computer-initiator of

calculations with a client of the mathematical processor

Wolfram Mathematica and a calculation server based on

the Mathematica kernel. It has network access between

them organized through the ssh-channel using asymmetric

encryption keys, which ensure the security of command

transmission and reception of results from the computing

server.

Monitoring the operation of the Mathematica core on

the server with instant notification in case of failure is

carried out in the same way as in the original work [8],

with the addition of using as a notification channel

Telegram messenger, which is connected using the

microservice "Telegram Bot microservice ».

As shown in [19], the Wolfram Mathematica

processor does not have built-in mechanisms to connect to

the Kafka queue cluster. This opportunity to work in two

directions: publishing messages in the queue and

consuming messages from it - provides the use of a

package with [19] with the extension [20] for use on a

computing server. To run it on the computing server,

Apache Kafka is additionally installed as a queue client

and third-party Kafkacat software [21].

The following principles are used to construct the

interaction of the Mathematica kernel with the Kafka

queue manager. A separate queue is created for each

calculation, which in its name has all the input parameters

for unambiguous identification "calculation - queue".

When you restart calculations, if such a queue already

exists, it is cleared. This approach allows you to have only

one source of truth for the results of calculations. All

additional data to be stored with the iteration result is

added to the headers fields of the message being written to

the queue.

The system intentionally does not use the ability to

store calculation results locally in dump files due to the

use of the DumpSave function in Mathematica. This is

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

16

done to follow the paradigm of the only source of truth,

which is the turn of Kafka. Of course, this approach leads

to a longer recovery of the program while continuing the

interrupted calculation.

The protocol of the calculation program is stored on

a hybrid basis. On the computation initiator, it is output to

the document and automatically saved with it using the

Mathematica NotebookSave function or the

NotebookAutoSave document option. On the computing

server it is stored locally in separate files without access

from external systems, quite similarly [8]. Despite the fact

that the microservice does not have a built-in possibility of

external use of the work protocol, it can be implemented

according to [8] through a specially created application

based on bash-scripts or other tools. This will allow it to

be duplicated in Dropbox files, in a separate database

table or even in a separate queue Kafka - in each case, the

advantage will be the formation of a remote independent

of the microservice computing copy, which is always

stored, and access to it does not load the calculation

server.

Microservices based on mathematical processors

For random processing of calculation results, the

system may have microservices based on mathematical

processors. Which allow flexible processing of results

using all available arsenal of built-in analytical and

numerous tools, various processing and analysis tools, as

well as changing algorithms of such processing at any

time. To implement this capability, it is necessary to have

an appropriate mechanism for connecting the mapacket to

the Kafka queue.

For example, MathWorks MATLAB already has

such a module [22] with a rather rich functionality for

publishing and consuming messages from the queue.

For the Wolfram Mathematica package, such a

package was developed in [20], which allows a group of

similar clients to connect to the queue through a single

proxy server. For individual connection to the queue

without additional implementation of the proxy server,

you can use the method described in [19]. But it requires

additional software to be installed locally on the client

computer.

Such microservices can have a similar [8] functional

load, and another depending on the challenges facing

researchers at the moment. As noted above, these

microservices can appear in the system and be excluded

from it if necessary without affecting its other elements.

The disadvantage of such microservices is that

access to the analysis results is available only on the

computer where they were obtained. To provide access to

them to other microservices or end customers, they can

publish their results to Kafka queues specially designated

for such tasks.

Backward Compatibility Microservices

The source system describes [8] the processing and

visualization of the calculation process on client

computers in close to real time is implemented in two

ways. First, through a Mathematica-based client that

processes files obtained through a third-party Dropbox file

service into the computer's local directory. Second, a

browser on the end-user device connecting to the web

server connects to the database server where the

calculation results are stored.

The following two microservices have been added to

maintain backward compatibility with the previous

system [8].

To display the calculation progress in the client

browser, a microservice "DB microservice" has been

added to the system, which in real time receives

the results of calculating each iteration from the queue,

parses them, prepares them for inclusion in the database

and stores them in a dedicated database. Web servers are

already connected to the latter, which are

described in detail in [8], through which end

users receive an integrated environment in a mobile or

computer browser with display of graphic and

text results.

The importance of maintaining this backward

compatibility is due to the fact that through the multi-

client architecture that is present in any web server, the

number of clients connected through the browser is

limited only by the power of the server and can be

increased if necessary. In addition, the number of web

servers connected to a single database is also limited only

by the power of the latter. That is, despite the fact that the

tool for analyzing results on the web server and in the

browser is very limited, this is compensated by the speed

of processing requests and the lack of load on the central

microservices and the Kafka queue.

The second microservice is designed to preserve the

ability of clients to work based on processing files

containing the results of each iteration calculation.

"Dropbox microservice" in real time receives data from

the queue, formats it to write to a file, and saves these files

on a third-party Dropbox file service according to the

same principles as described in [8].

Maintaining this backward compatibility is important

because Dropbox does not limit not only the number of

service clients, but also the number of simultaneously

running applications on one client, parallel processing the

same data in different ways. That is, the same – this

microservice and its customers load other microservices

and the Kafka queue.

Auxiliary Microservices

The proposed system architecture has two auxiliary

microservices.

The first microservice "Telegram Bot microservice"

is responsible for providing a mechanism for sending

messages to the Telegram messenger and processing

feedback from the user. Messages with text or image can

be sent through it, and already existing messages can be

updated (replaced).

Microservice in the process of work refers to a

specially registered bot in Telegram. It is important to

note the security side: at the moment, Telegram does not

provide for private bots, so privacy is achieved due to the

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17) ISSN 2524-2296 (online)

17

restriction of message processing only from certain

Telegram users.

Unlike all others in the system, this microservice

does not work through the Kafka queue, but through

REST access using the HTTPS protocol. It is used, among

other things, to work as a notification mechanism for

starting the Mathematica kernel, closing it, and failing the

Initial generator microservice calculation server.

To report real-time calculation progress in the form

of graphs and text notifications, the Telegram Graph

microservice is used, which is a constantly running set of

systemd system services, with an automatic restart in case

of failure.

Each service is responsible for monitoring a separate

calculation (queue in Kafka): it receives messages from its

Kafka queue, processes them, creating notifications about

the calculation progress, and sends them to Telegram

through the use of the capabilities of the previous

microservice. At the first start - saves the identifiers of

these Telegram messages, and in future work updates

them. This achieves compactness and information for the

end user.

The microservice has the following capabilities for

operating services: Adds a service to a specific Kafka

queue that creates a service description file and adds it to

systemd but does not start. Start and stop running a

previously added service for a specific Kafka queue.

Deletes the service for a specific Kafka queue from the

systemd and its description file. Also displays a

description of all added services with queue names and the

current status obtained by executing the systemctl status

command.

Other Microservices

The set of microservices is not limited to those

described above. Arbitrary consumers can be connected to

the Kafka queue, having an integrated queue connection

mechanism and the ability to process messages in JSON

format.

It is also possible to develop individual-purpose

microservices through the use of libraries created by

Kafka developers and other users for almost every of the

common programming languages [23]: C, PHP, Python,

Go, Node.js and others.

Notes on iterative algorithms

Finally, we provide remarks on improving the

efficiency of the considered system for iterative

algorithms of computational programs.

The proposed system is based on a microservice

architecture and allows simultaneous parallel processing

in real time of the results of calculating each iteration by a

set of distributed clients. With the ability to stop, restart

and replace at any time of each client microservice

system, including central microservice computing.

The latter is possible due to the automatic full recovery of

the iterative algorithm of the program after loading

from the queue the results of all previously calculated

iterations.

In the case of missing or damaged iteration results,

the program must take only the results up to the first

correct and full inclusive, and discard others. Its

implementation will begin so that the allegedly rejected

iterations are not yet calculated.

This way of working with iteration results is logging

for high availability. This principle is well described by

the authors of Apache Kafka: "the process that performs

local calculations can be made fault-tolerant by leaving

the changes that it makes to its local state so that another

process can reload these changes and continue if it fails"

[13]. This principle is used in the proposed system to

significantly increase its reliability and fault tolerance of

calculations.

It should also be borne in mind that in cases of short-

term interruption of a network connection, data may be

duplicated in the queue due to re-sending by the

microservice. To solve this problem, you need to save the

results of calculations in a way that relies not on order, but

on the unambiguous difference between the results of two

arbitrary iterations.

To create a more economical system, you can store

the intermediate data of each step of the current iteration

(and only its) in a separate queue, designed only to restart

the calculations in case of a failure. This allows you to

load the results of all the calculated iterations and the

results of the intermediate steps of the last iteration from

the queue, and fully restore the saved state of the program

with accuracy to a certain step of the algorithm.

Demonstration of the work

To demonstrate the operation of the proposed

system, cloud technologies were used as a basis for

infrastructure construction. Choosing them has the

following key benefits: Servers can be quickly deployed

and quickly configured to meet the needs of the task. One

of the world leaders in cloud technologies DigitalOcean,

where servers based on Ubuntu 20.04 LTS x64 OS were

located, was chosen as the capacity:

- Kafka queue cluster servers in the amount of 3

pieces based on Apache Kafka 2.6.0,

- computing server with Wolfram Mathematica

11.3.0 for Linux x86 (64-bit), Kafkacat 1.5.0 and Apache

Kafka 2.6.0, built according to [8,20] for a computing

microservice,

- intermediary server for queuing with Kafkacat

1.5.0 and Apache Kafka 2.6.0, built according to [20] for

microservices "Mathematica microservices",

- server based on Lumen 8.x framework and MySQL

8.0.20 Community Server database for DB microservice,

- server based on nginx 1.18.0 web server and

Lumen 8.x framework for REST-microservice "Telegram

Bot microservice",

- server based on the Lumen 8.x framework for

Dropbox microservice and Telegram Graph microservice,

the latter using the high-performance Amenadiel \

JpGraph php library, which is responsible for plotting near

real time.

The capabilities of the implemented microservice

"Telegram Graph microservice" are presented in fig. 2 and

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

18

fully comply with the requirements set out above and

include the following: "Add" - adding a service for a

specific queue Kafka, returns an error if the queue does

not exist. "Start" / "Stop" - starts / stops the previously

added service for the specified Kafka queue. "Remove" -

removes the service for the specified Kafka queue.

"Status" - returns the status of all services.

Fig. 2. Capabilities of microservice "Telegram Graph microservice"

The result of the Status command, which returned a

description of the only added service instance to handle

messages from the math-list queue that is currently

running, is shown at the bottom of figure 2.

The calculation of the Airy momentum propagation

[10,12] in a one-dimensional plane-layered medium by the

method of approximating functions [9,11] is chosen as a

problem. Simulation area: normalized time t = [0, 100]

and normalized space x = [0, 1], simulation step h = 0.01.

The result of solving the problem is the value

of the desired function in the nodes of the simulation

grid.

The intermediate progress of calculating the task

built by the Telegram Graph microservice for the slice at x

= 0.6 is shown in figure 3 below. The graphs are obtained

at arbitrary times and are arranged chronologically as

follows: from the top left, from the bottom left, from the

right - and are displayed by replacing each other in a

single message of the Telegram messenger, which is

pointed to the right.

Graphs are built in two types at once and combined

on one image for easy reading: red dots for each

individual value of the function (grid node), and blue lines

for clarity. Fig. 3 (right) shows a complete graphical

Telegram message, which includes: a dynamically

updated schedule, action buttons with the service (from

left to right: start, get current status, stop). The buttons

duplicate the same from fig. 2, but are designed for instant

action, because they do not require entering the name of

the service in contrast to the universal in fig. 2.

At the top of each graph is given the information

about the name of the queue from which the data is taken,

and the number of points - the values of the function

present on the graph. Due to the fact that the microservice

is designed to be universal, only the ordinal numbers of

the graph points are given on the abscissa axis without

using the real coordinates of the modeled area. This can be

changed as needed, as the graphics library itself supports

scaling of various kinds and relative markers on the

coordinate axes.

After testing the system on a complete simulation

and obtaining a complete solution for the problem, the

experiment was continued in the direction of stress testing.

To do this, the Kafka queue cluster was replaced by a

single server with 1GB of RAM, a single processor core

and an SSD - the minimum available server configuration

on DigitalOcean. The Apache Kafka process was

allocated RAM of at least 150MB. Using the

solution of the initial problem obtained above allowed to

send the finished result to the queue as quickly

as possible without the cost of calculation. Thus, the

testing of the system is artificially achieved

at maximum loads on the queue manager and

microservices-consumers.

The essence of the experiment is as follows. The

initiator of the calculation selects a "window" of

simulation, which contains 1000 point values of the

desired function in the nodes of the grid, and publishes up

to the queue 1000 messages with a single point value.

Pauses for 1 minute, shifts the "window" to the next and

repeats the operation. This algorithm emulates a real

calculation on a high-performance workstation or server,

where during one iteration lasting 1 minute, the solution

of the problem for 1000 nodes of the simulation grid is

obtained. The experiment was repeated 5 times to exclude

error with the same result.

On the message generator side, 1000 messages are

published almost instantly. On the side of the Telegram

Graph microservice and Mathematica microservices,

consumption is also almost real. But queuing messages

takes a few minutes for every 1000 messages,

and the Kafka process CPU load on the queue server is

constantly around 17%. Confirmation that the system

bottleneck is the queue server is provided by the fact that

after full processing of all messages by the queue

manager, the above microservices were restarted

for the purity of the experiment and showed almost

instantaneous retrieval of all values from the queue and

their processing.

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17) ISSN 2524-2296 (online)

19

Fig. 3. Display of calculation progress in the form of graphs to Telegram through the microservice "Telegram Graph microservice"

The conclusions from the experiment are as follows.

Improving the performance of the computing server will

lead to the need to improve the performance of the Kafka

cluster in the first place, and only in the second – the

notification microservice or clients implemented on the

basis of the mathematical package Mathematica.

Publishing a large number of small messages is not

effective for the Kafka queue manager, who works in

compressed resource conditions.

The next step in the experiment was to change the

publishing method to the opposite: the values of the

function for one "window" of 200 points with the same

pause were completely published once in a row. To create

such a data package, you must first convert an array of

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

20

values to a JSON object by using the following construct

in Mathematica.

str = ExportString[arr, "JSON", Compact -> True];

On the Mathematica client side of the queue, the

inverse transformation takes the form:

json = ImportString[str, "JSON"];

payload = "payload" /. json;

points_array = ImportString[payload, "JSON"];

This approach put a negligible load on the Kafka

queue manager on the CPU of the queue server with a

peak value of 5-6% for 1-2 seconds. As a result, all

customers received data in near real time. The speed of

micro-client services and micro-service notifications

remained at the same level. To confirm the result, the

experiment was also repeated 5 times.

The conclusion from the experiment is as follows.

Batch data acquisition and analysis by the above

microservices does not lead to significant delays. Unlike a

single publication of the results of calculations to the

Kafka queue, batch publishing gives an insignificant and

inconspicuous load on the servers of the queue and in no

way slows down the work of its clients, so this method of

publishing in the system can use much cheaper servers.

Prospects for further development of the system

Prospects for further development of the developed

system are the following architectural improvements.

Transfer the proxy server from the mechanism of

interaction with clients described in [20] to RESTfull

interaction according to the HTTPS protocol. A similar

mechanism has already been developed in [24-25],

although at the moment none of them has built-in

capabilities for queuing - only publishing or receiving

messages.

Microservice architecture allows easy dynamic

addition and change of its elements, often situational - for

a specific task of analysis or data processing, followed by

removal of the service from the system. Therefore, it is

important to anticipate that the proposed system will

dynamically add new elements and improve existing ones.

To facilitate this process, it is promising to build a

specially designed CI / CD system that will meet modern

requirements for the creation, testing and implementation

of software and infrastructure components.

Conclusions

The ideas developed in [8] on the formation of a

system of flexibly interconnected elements were further

developed in the work. Developed and substantiated

practical bases for the implementation of a system of

distributed automated calculations of high availability by

iterative algorithms based on microservice architecture in

the cloud infrastructure.

One of the possible options for such a system is

implemented, consisting of: Apache Kafka distributed

content delivery platform as high-reliability interservice

transport, calculation microservice based on the core of

the Mathematica math package, microservices for

processing calculation results, including based on this

matpack, microservice of visual notification of the

calculation progress to the Telegram messenger, REST

microservice of interaction with Telegram bot, and

microservices of saving results to the database and

Dropbox.

The backward compatibility with the elements of the

original system [8] is preserved for easier replacement of

the latter with the developed one.

It is explained that the proposed system has the

greatest advantages when using iterative algorithms to

build a calculation program that allows it to be interrupted

at any step and continue from the last completed iteration,

and with the described additional state savings - and the

last interrupted iteration step.

The approaches described in the article to the

formation of the system have increased the reliability of

saving the results of calculation through the use of a

failover queuing cluster and their duplication in Dropbox

microservices and databases. Analyze and process data by

various means and on different servers or computers with

the ability to connect to the queue, provide user-friendly

remote monitoring of computing progress and response to

computing microservice failures through any smartphone

or tablet.

It has been proven that publishing a large number of

small messages is not effective for the Kafka queue

manager operating under compressed resource conditions

and leads to significant resource overruns of queue servers

and data delays for queue clients. It is shown that batch

publishing is much more profitable due to the fact that it

gives an insignificant load on queue servers, does not slow

down the work of its clients and provides the possibility of

using less powerful, that is cheaper, queue servers.

It is shown that using the developed version of the

proposed system, increasing the performance of the

computing server will lead to the need to increase the

performance of the Kafka cluster earlier than

microservices clients.

The flexibility of the proposed system is due to the

possibility of dynamically adding and eliminating

situationally necessary microservices at an arbitrary

moment of time without impeding the operation of the

entire system and its individual elements. Prospects of

development of this peculiarity are shown through

implementation of CI/CD system for continuous

improvement of microservices.

The economic benefit of using the described system

is achieved through maximum automation, which leads to

improved quality of work of researchers. Also due to the

reduction of computer costs of employees - each of them

has the opportunity to conduct research on the results of

calculations on available and convenient for him

equipment, if it has access to the queue. Due to the use of

cloud technologies, the cost of ownership of the system

infrastructure and the cost of its modification are the

lowest.

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17) ISSN 2524-2296 (online)

21

References

1. Lichtenthäler, R., Prechtl, M., Schwille, C. et al (2020), "Requirements for a model-driven cloud-native migration of monolithic

web-based applications", SICS Softw.-Inensiv. Cyber-Phys. Syst., Vol. 35, P. 89–100. DOI: https://doi.org/10.1007/s00450-019-

00414-9

2. Fernández-García, A. J., Iribarne, L., Corral, A. et al. (2019), "A microservice-based architecture for enhancing the user

experience in cross-device distributed mashup UIs with multiple forms of interaction", Univ Access Inf Soc, Vol. 18, P. 747–770.

DOI: https://doi.org/10.1007/s10209-017-0606-0

3. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., Mazzara, M. (2018), "From Monolithic to Microservices: An Experience

Report from the Banking Domain,", IEEE Software, Vol. 35, No. 3, P. 50–55, DOI: 10.1109/MS.2018.2141026.

4. Alaasam, A. B., Radchenko, G., Tchernykh, A. et al. (2020), "Analytic Study of Containerizing Stateful Stream Processing as

Microservice to Support Digital Twins in Fog Computing", Program Comput Soft, Vol. 46, P. 511–525.

DOI: https://doi.org/10.1134/S0361768820080083

5. Kim, Y. K., Kim, Y., Jeong, C. S. (2018), "RIDE: real-time massive image processing platform on distributed environment",

EURASIP Journal on Image and Video Processing, Vol. 2018, No. 39. DOI: https://doi.org/10.1186/s13640-018-0279-5

6. Santana, C., Andrade, L., Delicato, F.C. et al. (2020), "Increasing the availability of IoT applications with reactive microservice",

SOCA. DOI: https://doi.org/10.1007/s11761-020-00308-8

7. Razzaq, A. A (2020), "Systematic Review on Software Architectures for IoT Systems and Future Direction to the Adoption of

Microservices Architecture", SN COMPUT. SCI, Vol. 1, Article 350. DOI: https://doi.org/10.1007/s42979-020-00359-w

8. Zolotariov, D. (2020), "The distributed system of automated computing based on cloud infrastructure", Innovative Technologies

and Scientific Solutions for Industries, No. 4 (14), P. 47–55. DOI: https://doi.org/10.30837/ITSSI.2020.14.047

9. Zolotariov D., Nerukh A. (2011), "Extension of the approximation functions method for 2d nonlinear Volterra integral equations",

Applied Radio Electronics, Vol. 10, No. 1, P. 39–44.

10. Nerukh, A. G., Zolotariov, D. A., Nerukh, D. A. (2012), "Properties of decelerating non-diffractive electromagnetic Airy pulses",

Applied Radio Electronics, Vol. 11, No. 1, P. 77–81.

11. Nerukh, A., Zolotariov, D., Benson T. (2015), "The approximating functions method for nonlinear Volterra integral equations",

Optical and Quantum Electronics, Vol. 47, P. 2565–2575. DOI: https://doi.org/10.1007/s11082-015-0141-2

12. Nerukh, A., Zolotariov, D., Kuryzheva, O., Benson T. (2016), "Dynamics of decelerating pulses at a dielectric layer", Optical and

Quantum Electronics, Vol. 48, No. 89. DOI: https://doi.org/10.1007/s11082-016-0386-4

13. Apache Kafka (2021), "Apache Kafka", available at: https://kafka.apache.org/documentation/ (last accessed 10 January 2021).

14. GitHub (2021), "Ultimate Comparison", available at: https://ultimate-comparisons.github.io/ultimate-message-broker-comparison/

(last accessed 10 January 2021)

15. Wolfram (2021), "Wolfram Mathematica: Modern technical calculations", available at: https://www.wolfram.com/mathematica/

(last accessed 10 January 2021).

16. You, X., Chen, D. R. (2018), "A new sequence convergent to Euler–Mascheroni constant", Journal of Inequalities and

Applications, Vol. 2018, Article 75. DOI: https://doi.org/10.1186/s13660-018-1670-6

17. Ghorbani, M. A., Singh, V. P., Sivakumar, B. et al. (2017), "Probability distribution functions for unit hydrographs with

optimization using genetic algorithm", Applied Water Science, Vol. 7, P. 663–676. DOI: https://doi.org/10.1007/s13201-015-

0278-y

18. Rehman, S., Idrees, M., Shah, R. A. et al. (2019), "Suction/injection effects on an unsteady MHD Casson thin film flow with slip

and uniform thickness over a stretching sheet along variable flow properties", Boundary Value Problems, Vol. 2019, No. 26.

DOI: https://doi.org/10.1186/s13661-019-1133-0

19. Zolotariov, D. (2021), "The mechanism for creation of event-driven applications based on Wolfram Mathematica and Apache

Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 1 (15), P. 53–58.

DOI: https://doi.org/10.30837/ITSSI.2021.15.053

20. Zolotariov, D. (2021), "The platform for creation of event-driven applications based on Wolfram Mathematica and Apache

Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 2 (16), P. 12–18.

DOI: https://doi.org/10.30837/ITSSI.2021.16.012

21. GitHub (2021), "edenhill/kafkacat: Generic command line non-JVM Apache Kafka producer and consumer", available at:

https://github.com/edenhill/kafkacat (last accessed 10 January 2021).

22. GitHub (2021), "mathworks-ref-arch/matlab-apache-kafka: MATLAB Interface for Apache Kafka", available at:

https://github.com/mathworks-ref-arch/matlab-apache-kafka (last accessed 10 January 2021).

23. Apache Software Foundation (2021), "Clients - Apache Kafka", available at:

https://cwiki.apache.org/confluence/display/KAFKA/Clients (last accessed 5 January 2021).

24. GitHub (2021), "dspeterson/dory: Producer daemon for Apache Kafka", available at: https://github.com/dspeterson/dory (last

accessed 10 January 2021).

25. Confluent Documentation (2021), "Confluent REST APIs", available at: https://docs.confluent.io/platform/current/kafka-

rest/index.html (last accessed 10 January 2021).

Received 23.07.2021

Відомості про авторів / Сведения об авторах / About the Authors

Золотарьов Денис Олексійович – кандидат фізико-математичних наук, Харків, Україна;

email: denis@zolotariov.org.ua, ORCID: https://orcid.org/0000-0003-4907-7810.

Золотарёв Денис Алексеевич – кандидат физико-математических наук, Харьков, Украина.

Zolotariov Denis – PhD (Physics and Mathematics Sciences), Kharkiv, Ukraine.

mailto:denis@zolotariov.org.ua
https://orcid.org/0000-0003-4907-7810

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 3 (17)

22

МІКРОСЕРВІСНА АРХІТЕКТУРА ПОБУДОВИ РОЗПОДІЛЕНИХ

АВТОМАТИЗОВАНИХ ОБЧИСЛЕНЬ ВИСОКОЇ ДОСТУПНОСТІ У ХМАРНІЙ

ІНФРАСТРУКТУРІ

Стаття присвячена дослідженню та розробці розподіленої системи автоматизованих обчислень високої доступності

ітераційними алгоритмами на базі мікросервісної архітектури у хмарній інфраструктурі. Предметом дослідження є

практичні засади побудови систем автоматизованих розрахунків високої доступності, що засновані на мікросервісній

архітектурі у розподіленій інфраструктурі на базі хмарних технологій. Метою статті є розробка та обґрунтування

практичних рекомендацій щодо формування інфраструктури системи автоматизованих обчислень високої доступності на

базі мікросервісної архітектури, вибору її складових елементів та їх компонентів. Завдання роботи: виявити необхідні

структурні елементи мікросервісної системи автоматизованих обчислень та надати для кожного з них аналіз складових

компонентів та функціонального навантаження, поставити конкретні задачі для побудови кожного із них та обґрунтувати

вибір інструментів для їх вирішення. У ході дослідження використано методи системного аналізу для декомпозиції складної

системи на елементи та кожного елемента на функціональні компоненти, та засоби: інформаційні технології Apache Kafka,

Kafkacat, Wolfram Mathematica, nginx, Lumen, Telegram, Dropbox, MySQL. У результаті дослідження встановлено, що

інфраструктура системи має складатися з: відмовостійкого міжсервісного транспорту, мікросервісу обчислень високої

доступності, та мікросервісів зв’язку із кінцевими клієнтами, що зберігають або обробляють результати. Для кожного з них

надані рекомендації щодо формування та вибору інструментарію для побудови. За отриманими рекомендаціями розроблений

один із варіантів такої системи, показані принципи її роботи та наведені результати. Доведено, що при використанні черги

Kafka ефективною є публікація пакетів результатів, а не по одному, що призводить до значних перевитрат ресурсів серверів

черги та затримкам даних для її клієнтів. Дані рекомендації щодо впровадження системи CI/CD для побудови безперервного

циклу додавання та вдосконалення мікросервісів. Висновки. Розроблені практичні основи для реалізації систем

розподілених автоматизованих обчислень високої доступності на базі мікросервісної архітектури у хмарній інфраструктурі.

Показана гнучкість у обробці результатів такої системи через можливість доповнення її мікросервісами та використання

сторонніх аналітичних додатків, що підтримують завантаження даних із черги Kafka. Показана економічна вигода від

використання описаної системи. Наведені майбутні шляхи її вдосконалення.

Ключові слова: висока доступність; хмарні технології; розподілена інфраструктура; автоматизовані обчислення;

економія ресурсів та коштів; ітераційні алгоритми; Mathematica; Kafka; Telegram.

МИКРОСЕРВИСНАЯ АРХИТЕКТУРА ПОСТРОЕНИЯ РАСПРЕДЕЛЕННЫХ

АВТОМАТИЗИРОВАННЫХ ВЫЧИСЛЕНИЙ ВЫСОКОЙ ДОСТУПНОСТИ В

ОБЛАЧНОЙ ИНФРАСТРУКТУРЕ

Статья посвящена исследованию и разработке распределенной системы автоматизированных вычислений высокой

доступности итерационными алгоритмами на базе микросервисной архитектуры в облачной инфраструктуре. Предметом

исследования являются практические основы построения систем автоматизированных вычислений высокой доступности,

основанных на микросервисной архитектуре в распределенной инфраструктуре на базе облачных технологий. Целью статьи

является разработка и обоснование практических рекомендаций к формированию инфраструктуры системы

автоматизированных вычислений высокой доступности на базе микросервисной архитектуры, выбору ее составных

элементов и их компонентов. Задача работы: выявить необходимые структурные элементы микросервисной системы

автоматизированных вычислений и провести для каждого из них анализ составляющих компонентов и функциональной

нагрузки, поставить конкретные задачи для построения каждого из них и обосновать выбор инструментов для их решения. В

ходе исследования использованы методы системного анализа для декомпозиции сложной системы на элементы и каждого

элемента на функциональные компоненты, и средства: информационные технологии Apache Kafka, Kafkacat, Wolfram

Mathematica, nginx, Lumen, Telegram, Dropbox, MySQL. В результате исследования установлено, что инфраструктура

системы должна состоять из: отказоустойчивого межсервисного транспорта, микросервиса вычислений высокой

доступности, и микросервисов связи с конечными клиентами, которые сохраняют или обрабатывают результаты. Для

каждого из них предоставлены рекомендации относительно формирования и выбора инструментов реализации. Согласно

полученным рекомендациям разработан один из вариантов реализации такой системы, показаны принципы его работы и

приведены результаты. Доказано, что при использовании очереди Kafka эффективной является публикация пакетов

результатов, а не по одному, что приводит к значительному перерасходу ресурсов серверов очереди и задержкам данных для

ее клиентов. Даны рекомендации относительно внедрения системы CI/CD для построения непрерывного цикла добавления и

совершенствования микросервисов. Выводы. Разработаны практические основы для реализации систем распределенных

автоматизированных вычислений высокой доступности на базе микросервисной архитектуры в облачной инфраструктуре.

Показана гибкость в обработке результатов такой системой благодаря возможности дополнения ее микросервисами и

использования сторонних аналитических приложений, которые поддерживают загрузку данных из очереди Kafka. Показана

экономическая выгода от использования описанной системы. Приведены будущие пути ее усовершенствования.

Ключевые слова: высокая доступность; облачные технологии; распределенная инфраструктура; автоматизированные

вычисления; экономия ресурсов и денег; итерационные алгоритмы; Mathematica; Kafka; Telegram.

Бібліографічні описи / Bibliographic descriptions

Золотарьов Д. О. Мікросервісна архітектура побудови розподілених автоматизованих обчислень високої доступності у хмарній

інфраструктурі. Сучасний стан наукових досліджень та технологій в промисловості. 2021. № 3 (17). С. 13–22.

DOI: https://doi.org/10.30837/ITSSI.2021.17.013

Zolotariov, D. (2021), "Microservice architecture for building high-availability distributed automated computing system in a cloud

infrastructure", Innovative Technologies and Scientific Solutions for Industries, No. 3 (17), P. 13–22. DOI: https://doi.org/10.30837/ITSSI.2021.17.013

https://doi.org/10.30837/ITSSI.2021.17.013

