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CONSTRUCTION OF STABILITY AREAS FOR CONTROLLED SYSTEMS WITH
PARAMETRIC AND DYNAMIC UNCERTAINTY

The subject of research in the article is sigularly perturbed controllable systems of differential equations containing terms with a
small parameters on the right-hand side, which are not completely known, but only satisfy some constraints. The aim of the work is to
expand the study of the behavior of solutions of singularly perturbed systems of differential equations to the case when the system is
influenced not only by dynamic (small factor at the derivative) but also parametric (small factor at the right side of equations)
uncertainties and to determine conditions under which such systems will be asymptotically resistant to any perturbations, estimate the
upper limit of the small parameter, so that for all values of this parameter less than the obtained estimate, the undisturbed solution of
the system was asymptotically stable. The following problems are solved in the article: singularly perturbed systems of differential
equations with regular perturbations in the form of terms with a small parameter in the right-hand sides, which are not fully known,
are investigated; an estimate is made of the areas of asymptotic stability of the unperturbed solution of such systems, that is, the class
of systems that can be investigated for stability is expanded, the formulas obtained that allow one to analyze the asymptotic stability
of solutions to systems even under conditions of incomplete information about the perturbations acting on them. The following
methods are used: mathematical modeling of complex control systems; vector Lyapunov functions investigation of asymptotic
stability of solutions of systems of differential equations. The following results were obtained: an estimate was made for the upper
bound of a small parameter for sigularly perturbed systems of differential equations with fully known parametric (fully known) and
dynamic uncertainties, such that for all values of this parameter less than the obtained estimate, such an unperturbed solution is
asymptotically stable; a theorem is proved in which sufficient conditions for the uniform asymptotic stability of such a system are
formulated. Conclusions: the method of vector Lyapunov functions extends to the class of singularly perturbed systems of differential

equations with a small factor in the right-hand sides, which are not completely known, but only satisfy certain constraints.
Keywords: asymptotic stability; Lyapunov vector functions; parametric uncertainty; small parameter.

Introduction

Most control systems are largely uncertain.
Uncertainties significantly affect the performance of
control systems and can lead to its loss. In this regard, a
very important task in the study of the efficiency of
control systems is the task of studying the stability of their
movement. A control system is called coarse with respect
to some of its properties, if sufficiently small deviations of
parameters in the equations of motion of such a system do
not lead to the loss of this property. In practice, the
uncertainties (possible deviations of the parameters of the
system under study) can be so large that it leads to a loss
of stability.

When studying the properties of solutions of
differential equations describing control systems, one of
the most important tasks is to study different types of
stability. First of all, this is due to the fact that in most
technical problems, stable solutions are the most
interesting. Second, when developing control systems, it is
necessary to be aware of unstable solutions in order to
avoid them. Third, the solutions can be quite sensitive to
errors in the mathematical model of the control system.

In the classic setting of A.M. Lyapunov, problems
with stability of motion are considered only perturbations
of the initial conditions. However, practical problems lead
to the need to study the dynamics of systems in the
presence of perturbation of the right parts.

Most often, perturbations of the right parts
(uncertainty) are formed in the form of a vector of
uncertainty, which contains components due to
uncertainties:

- coefficients of equations of motion,

- initial conditions,

- boundary conditions,

- undesirable for nonlinearity control systems,

- external influences.

In many cases, the influence of these factors
(uncertainties), although they seem insignificant, can
significantly change that information about the process.
To avoid this, you need to develop an extended process
model that takes into account those small factors that were
not represented in the original model, and then explore the
similarity of the solutions obtained from the simplified
and extended models.

Analysis of the problem and existing methods

The problem of studying the stability of singularly
perturbed equations is far from complete. Intensive
development of the theory of singular perturbations began
in the middle of the 20th century, thanks to the work of
A.N. Tikhonov [1], which describes the formulation of the
problem of the theory of singularly perturbed systems of
differential equations. This theory was further developed
in the works of Vasilieva A.B., Butuzova V.F. [2],
Hoppensteadt F. [3], which investigates the behavior of
solutions singularly of such systems. Methods of singular
perturbations are widely studied in our time. In particular,
in the works of Kachalov V.I. [4], [5] the method of
obtaining solutions of singularly perturbed problems in the
form of series that coincide in the usual sense by degrees
of small parameter is presented. Works [6], [7] are
devoted to the construction of an asymptotic schedule of
singularly perturbed equations with singular points.

Singular perturbations are present in many classical
and modern control systems based on low-order systems
and those that ignore parasitic dynamics. This led to the
development of methods of separation of movements.
These methods have been found to be useful for high-gain
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feedback analysis and low-order models. These methods
are used to model and control dynamic systems and
certain classes of large-scale systems. In the works of
Binning H.S., Goodell D.P. [8], Kodra K.; Gajic Z. [9]
and Y. Li, Y.Y. Wang, D. Y. Yao [10] consider singularly
perturbed control systems and investigate the behavior of
their movements. The work of H. S. Liu, Y. Huang [11] is
devoted to the study of the behavior of the trajectories of
the manipulator robot, whose movements are described by
means of singularly perturbed control systems. [12], [13]
study the existing methods of the theory of singular
perturbations extend to the class of controlled systems, on
the right part of which parametric, not completely known
perturbations additionally act.

[14], [15] are devoted to the study of the asymptotic
stability of solutions of singularly perturbed systems of
differential equations. The problems considered in these
works are formulated for a class of singularly perturbed
systems, which do not take into account external
perturbations and uncertainties acting on the system. In
addition, these works use special Lyapunov functions to
study stability, which are suitable for studying the stability
of solutions of equations of a particular class and usually
cannot be applied to other types of equations. Meanwhile,
the practice of automatic control requires the development
of methods for studying the stability of motion for a wide
class of control systems, which are described using
nonlinear singularly perturbed systems of differential
equations with incompletely known right-hand sides. In
[16], [17], the study of the asymptotic stability of
solutions of singularly perturbed systems of differential
equations extends to the class of systems with parametric
uncertainty.

When studying the behavior of control system
solutions, it is important not only to investigate the
stability of these solutions, but also to estimate the size of
their areas of gravity, ie to conduct a large-scale study of
stability. Due to the effects of perturbations on the control
system in many cases it is impossible to ensure asymptotic
stability of program movements. Therefore, the size of the
program traffic around the state space, which is
guaranteed to include solutions, is important.

The aim of this article is to estimate the region of
gravity of solutions of singularly perturbed systems of
differential equations with parametric (small factor in the
right part of equations) and dynamic (small factor in the
derivative) uncertainties, finding the upper limit of a small
parameter such that for all values of this parameter than
the obtained estimate, the undisturbed solution of a
singularly perturbed system of differential equations is
asymptotically stable. This problem is solved using
Lyapunov vector functions. A theorem is proved in which
sufficient conditions for uniform asymptotic stability of
solutions of such a system are formulated.

The practical value is that the class of systems that
can be tested for stability is expanding. Necessary
researches are made and the formulas allowing to analyze
stability of systems even at the conditions of the
incomplete information on disturbances operating on them
are received.

Task solving

Let’s consider a system of differential equations

x =f(xzt) +&f(x21) O

e1=9(xzt) +&£0,(xz,1t) ’
where f and f; — n-measurable vector functions, g and
g; — m-measurable vector functions, & — small
parameter, ¢>0, f; and g; unknown and satisfy only

some of the limitations discussed below. Members
efi(x,z,t) and &gq(x,z,t) make up the parametric

uncertainty of the system, the second equation of the
system (1) contains a small parameter when the derivative
determines the dynamic uncertainty.

We set the initial conditions:

2(0,6)=12°, )
x(0,6)=x". 3)

Let's explore the solution (x(t,&),z(t,&)) of tasks

(1) - (3) on the interval 0<t<T . Ifweputin(l) ¢=0,
we get the system

X = f(xs,zs,t), (4

0=g(x,2°.t), (5)

which in the terminology of A.N. Tikhonov is called a
degenerate system?

The order of the system (4) - (5) is equal to n, ie is
lower than the order of the original system. For the system
(4) - (5) a smaller number of initial conditions is given,
namely

x*(0)=x". (6)

Let’s solve equation (5) with regard to z5(t), if such
an operation is possible.

° = g(Xt). 7

Due to the nonlinearity of the function g(xs,zs,t),

this operation is ambiguous and the choice of solution
arises.
Substitution (7) in (3) gives

X = f (xs,qﬁ(xs,t),t), (8)
x*(0)=x, 9)

z° :go(xs,t), generally does not satisfy the initial
condition (2) for Z, that is, z°(0)= 2%, and therefore, in

some vicinity of the starting point =0 the solution z°(t)

of the degenerate system will not be close to the solution
2(x,t) of the original system (1).

Let’s enter a new variable
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n=z-¢(xt). (10)

Let the following conditions be met:;
a) Functions f(x,z,t) and g(x,z,t) are continuous

and satisfy the Lipschitz condition by x and z in some
region G of the space of variables (x,z,t), i.e. for some

positive Ny, N5, N3, N4 inequalities are performed

[f(xz0)-f(Rz<Nfx=%], (D)
[z )= f(x2t)]<N,[z=2],  (@2)
lo(xzt)-g(xzt)<Nyx-g. (3
lo(xzt)-g(x 20| <N fz=2], (@4

where | y||= VY2 + Y2 +...y2 - Euclidean norm.

b) Solution (3.6) has in some closed area D such
properties:

1) (p(XS,t)
2) (<ol t)t)ec foranl (x,t)ec D .
3) The root z° =go(xs,t)

- continuous function in D,

is isolated in D, that is,
there is 4>0 such that g(xs,zs,t);to when
“zs —(/)(Xs,t]‘ <A, (xs,t)e D.

c) The system (8), (9) has a single solution xs(t) on
the interval 0<t<T, besides in this interval the point
(Xs,t)eD where D is the set of inner points D . In

addition, suppose that f(xs,¢1(xs,t)t) satisfies the

Lipschitz conditionat x* D .
That is, there is such a constant L >0 that for any
y, and v, , the inequality is performed

[0y t) = F (vt <Ly -yl
Let's now introduce a connected system
dz
= t 15
Foil I CSEA /N (15)
In which x* and t are considered as parameters,

7 =¢&7't (stretched time).
Obviously 7>0. According to condition b) 3,

Z(r)zgo(xs,t) is an isolated resting point of the system
(15) at (xs,t)e D.

Also, let

d) The resting point Z(r):go(xs,t) of the system
(15) is asymptotically stable according to Lyapunov even
in regard to (x°,t)]eD. This means that Vu>0.
35 (#)>0 (common to all (xs,t)e D, such that for all
solutions Z(r) of the equation (15) for which

“f(r)—w(xs,t]‘ <u, (Xs,t)e D.

At >0 i Z(r)—>go(xs,t) when 7 — .
Let’s consider a connected system (15) when
x$=x% t=0:

dz 0 =
— X,Z,t 16
5o =90z (16)
with the initial condition
Z(O) =7° @an

Since the initial value z°, in general, is not close to

the resting point (p(XO,O), the solution Z(z) of the task

(16), (17) may not go to ¢)(x°,0) when 7 =%,
Let
e) The solution Z(z) problems (16) with initial
conditions (17) satisfies the conditions
1. lim f(r):¢(xo,0),
N—o0

2. point (xo,'i(r),t)eG ,when 7>0.

f) Functions f;(x,z,t), g;(x,z,t) are continuous
and satisfy the Lipschitz conditions by variables x and
z, but there are summarized functions M, (t) and

M, (t) with constants M, and M, such that in narea G
there is inequality

[5.(ez0]<m,

lo. (x.z.t)|<M,,  (18)

T T
[M(O)<MT, M, (1) <MiT . (19)
0 0

Theorem. Let
fulfilled:

a) For systems (4) and (16) there are positively
defined Lyapunov functions V(x,t) and W(x,z,t),
accordingly, satisfying estimates that are peculiar to
quadratic forms, such that

N 8V

the following assumptions be

= (x B(x 1), ) —ay*(x),  (20)
‘2’;’9( 1)<, 0% (), 1)

where w(x) and 6(;7) — functions that are zero at point 0

and different from zero for other argument values.
b) Interconnection conditions V(x,t) and W(x,z,t)

satisfy inequalities
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oW 5
E(g(x,z,t)—g(x,z,t))sgkyx(x)@(n), (24)
oV
af (X z,t) <yt (), (25)
w — f . (xz.t) <y’ (x), (26)
ox
oW oW
EJF—Zgl(X-th)SC‘//(X)@(’?)’ (27)
where o, B K r1,72,73 —  positive  constants.
Then for any 0 <d <1 linear combination
U(x,zt)=1-d)V(xt)+dW(x,z1) (28)

dU (x,z,t) :(1—d)(ﬁ v
dt ot

+d(aﬂ+aﬂf( t)+aﬂ5
ot ox OX

Let’s convert an expression to a view that allows to
apply inequalities (20), (27):
From the above inequalities we get
du (x,z,t)

v v .
il L) (Gt — (X 8(x 1), 1)+
v

+&( f(xzt)-f (x5,¢(x5,t),t))+2—\;gf1(x,z,t))+

oW oW

G T (12 )+%—V>\(/gf (x.2.t)+

+§(Z—Vzv(g (x,z,t)-g(x,2,t)+g(x, Z,t))+aa—vzvgl(x1 z,t)).

From the above inequalities we get

Ws-u_d)wqx) 9 0% (n) +dew (x)0 )+
+(1-0) B ()0(n) + dky ()0 () +£(1-0) 7 () + (31
+edyy” (x)+dysp (x)0(n) =
_ (v} [v(0)
{50 )J i (n)J
where
(1-0)e e (1-d)y, ey, ~LIrICKen) -
| @-d)prd(erker) d '
2 g’

For negative certainty U, it is necessary that the
matrix T be positively defined. We will demand
that
—¢edy, >0 (33)

(1-d),—e(1-d)y,
and

detT > 0. (34)

(30)

is a Lyapunov function of the system (1) and exists

¢ (d)- 2 :
d +((1—d)ﬂ+d(c+k+y3))
1-47? 4d(1-d)a,

(29)

nt
such that for all & <& (d) the solution x=x°(t), =0 at
the system (1) is resistant to constant disturbances.

Proof. The complete derivative of the function (28)
in time along the trajectory is

—f (x,z,t)+%g fl(x,z,t)j+

1ow oW
f ’ yt - ’ 1t — ' lt .
(%2 )+g pe g(xz,t)+ pe 9,(xz )j

From the inequality (33) it follows that

e<g(d)= % (35)
7’1+m72
From (35)
£<g,(d)= % ~.(36)
L. d (1-d)p+d(c+k+7,))
AT LL 4d(1-d)a,

Obviously, & <&, =¢ (d). Thus, for all e<¢ (d)
matrix T positively defined, as a result of which the
derivative U(x,z,t) is negatively defined. In addition,

1
a factor =:
&

U(x,z,t) contains a term with

lddﬂ g(x,Z,t), which in force (21) increases unlimitedly
& dz

when &— 0, respectively negative derivative U(x,z,t)
increases in absolute value. Hence the function U(x,z,t),

remaining negative, rapidly decreasing in magnitude and
solving problems (4) and (16) in a short period of time
approaching the origin, remaining in a small
neighborhood of this point. This proves that an undrilled
solution is resistant to perturbations that operate
continuously.

Conclusions

In this work the following has been done:

- A method for studying the asymptotic stability of
solutions of a singularly perturbed system of differential
equations based on the use of Lyapunov vector functions
that satisfy the estimates inherent in quadratic forms is
considered;
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- The above method is extended to the case when the
systems are affected not only by dynamic (small factor in
the derivative), but also parametric (small factor in the
right part of the equations) uncertainties. In addition, the
right parts are not fully defined, but only satisfy some
restrictions. These uncertainties are due to the
uncertainties of the coefficients of the equations of
motion, the uncertainties of the initial and boundary
conditions, undesirable for control systems of
nonlinearities and external influences. Uncertainties are
formed in the uncertainty vector with a small factor in the
right part of the system of singularly perturbed differential
equations.

- An estimate of the upper limit of a small parameter
is made such that for all values of this parameter, smaller
than the obtained estimate, the undisturbed solution of a
singularly perturbed system of differential equations with
dynamic and parametric uncertainties is asymptotically
stable.

- A theorem is proved in which sufficient conditions
for uniform asymptotic stability of solutions of such a
system are formulated.

- The class of systems that can be tested for stability
has been expanded. Necessary researches are made and
the formulas allowing to analyze stability of systems even
at the conditions of the incomplete information on

disturbances operating on them are received.
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MOBYJIOBA OBJACTEM CTIMKOCTI )11 KEPOBAHUX CUCTEM 3
ITAPAMETPUYHOIO TA JTUHAMIYHOIO HEBU3HAYEHOCTAMU

IIpeamerom noCTiPKEHHA B CTATTi € CUTYJISAPHO 30ypeHi KepoBaHI CUCTEMH TU(EpEHIIaTbHUX PiBHSIHbB, IO MICTATh JOTAHKHU 3
MaJIMM MHOYKHMKOM Y IIpaBill YacTHHI, SIKi HE € HOBHICTIO BiIOMHMH, a JIUILE 3aJ0BOJILHIIOTH AEIKUM 0OMexxeHHSIM. MeTa poboTn —
MOLIMPHUTU JOCHIPKEHHSI MOBEIIHKH PO3B’A3KIB CHTYJSIPHO 30ypeHHX cucTeM IudepeHIiadbHUX pPIBHAHb Ha BHIAJOK, KOIH Ha
CHCTEMY BIUIMBAIOTh HE TUIbKM JUHAMIYHI (Majauii MHOXKHHK TIPH TIOXITHIN), a Ie i mapaMeTpudHi (MaJMi MHOXXHHK Y TIpaBiit
YaCTHHI PIBHSIHB) HEBH3HAYCHOCTI Ta BU3HAYHUTH YMOBH, 32 SKHX PO3B’SI3KH TAKUX CHCTEM OyIyTh aCHMITOTHYHO CTIHKUMH J10 Oy 15~
SIKMX 30ypeHb, OI[IHNTH BEPXHIO IPAHUII0 MAJIOTO MapaMeTpy, TAKUM YMHOM IO JUIS BCIX 3HA4€Hb IEOTO MapaMeTpy, MEHIINX HiK
OTpHMaHa OIliHKa, He30ypeHMil pO3B’S30K CHCTEMH € aCHMITOTHYHO CTIHKMM. B cTarTi BHpINIYIOTBECS HACTYNHI 3aBIAHHS:
JOCITIKYIOTBCS. CHHTYJIPHO 30ypeHi cHcTeMH AudepeHUiaibHUX PiBHAHb, 10 MAIOTh PEryJusIpHi 30ypeHHS y BUIJIAI TOJAaHKIB 3
MaJIdM MHOXKHUKOM y TPaBUX YacTHHAX, SKi HE € MOBHICTIO BIOMHMH; POOHTHCS OLiHKA OOJacTel acCHMOTOTHYHOI CTIHKOCTi
He30ypeHOTo po3B’A3KYy TaKHX CHCTEM, TOOTO PO3IIMPIOETHCS KJIAC CHCTEM, SIKi MOXKHA JOCIIIKYBaTH Ha CTiHKICTb, OTPUMYIOTHCS
¢dopmynu, IO IO3BOJAIOTH aHAII3YBaTH ACUMITOTHYHY CTIMKICTh PO3B’SA3KIB CHCTEM HaBiTh 32 YMOB HEMOBHOI iH(popMaliil mpo
30ypeHHs, IO JiI0Th HAa HUX. BUKOPHUCTOBYIOTECS Taki MeTOAW: MaTeMaTHYHE MOJICTIOBAHHS CKIaHUX CHCTEM KepyBaHHs; BEKTOPHI
¢GyHkuii JIAmyHoOBa NOCIIDKEHHS aCHMITOTHYHOI CTIHKOCTI PO3B’SI3KIiB CHCTEM audepeHuiabHUX piBHAHb. OTpHMaHO HACTYyIHI
pe3yJbTaTH: 3po0ieHa OIliHKa BEPXHBOI MPaHUIll MAJOro MapaMeTpa JUlsl CUTYJIIpPHO 30ypeHUX cHCTeM Qu(epeHIiaIbHUX PiBHSIHB
MapaMeTpUYHUMH (HETIOBHICTIO BiJOMHMHM) i AWHAMIYHMMH HEBH3HAUCHOCTSIMU , Taka IIO JUIS BCIX 3HA4€Hb I[OTO Iapamerpy,
MEHIINX HDK OTpUMaHa OILliHKa, He30ypeHHil po3B 30K TaKol € aCHMIITOTHYHO CTIHKUM; JOBEJeHa TeopeMa, B sKiii copmyiboBaHi
JIOCTaTHI YMOBH PiBHOMIPHOi aCHMIITOTHYHOI CTIMKOCTI Takoi cucreMHu. BMCHOBKHM: MeTon BeKTOpHUX (yHKUiK JIamyHOBa MOXKe
OyTH HOIIMPEHNM Ha KJIaC CHHTYJISIPHO 30ypeHHX CHcTeM An(epeHLialbHIX PIBHAHD 3 MaJMM MHOKHHUKOM y MPaBUX YacTHHAX, K1
HE € MOBHICTIO BiIOMUMH, 2 JIMIIIE 3aJOBOJIBHSIOTh JEIKUM OOMEKEHHSIM.
Kuro4oBi c10Ba: aciMOTOTHYHA CTIHKICTh; BeKTOpHI QyHKIIT JIgmyHOBa; mapaMeTpUYHa HEBU3HAYCHICTH; MAIIMI TapaMeTp.

IHOCTPOEHHE OBJIACTE?I YCTOMYUBOCTH AJIA YIIPABJISIEMBIX CUCTEM
C TIAPAMETPUYECKOU U IMHAMUWYECKOU HEOIIPEJAEJIEHHOCT MU

IIpenMeToM ucciieoBaHKs B CTAaThe SIBISETCS CUTYJSIPHO BO3MYIIECHHBIE YIPABIsieMble CHCTEMbI AU(epeHInaIbHBIX YPaBHEHHH,
COJIepKallMX CcllaraeéMble ¢ MalblM MHOXHTENEM B IIPaBOM 4YacTH, KOTOpBIE HE SIBISIOTCA IOJHOCTHIO HM3BECTHBIMM, a JIMIIb
YIIOBJIETBOPSIIOT HEKOTOPHIM orpaHuueHusM. Lleqb paboTBl — pacIIMPHUTH HCCIENOBAaHHWE IOBEACHMS PEIICHUH CHTYJSIPHO
BO3MYILICHHBIX cucTeM MU (epeHInaTbHBIX YPaBHEHHI HA CIIydaif, Korja Ha CHCTEMY BIHSIOT HE TOJIBKO AWHAMHYECKHe (MaJiblit
MHOXXHUTENb IIPU MIPOU3BOJHON), HO M MapaMeTpHIecKue (Majblii MHOXHTETb B MPAaBOH YaCTH yPaBHEHMI) HEOIPENENCHHOCTH U
OTIPENENUTh YCIIOBHS, NMPH KOTOPHIX PEIICHUS TAKHUX CHCTeM OyIyT aCHMOTOTHYECKH YCTOMYMBBIMH K JIOOBIM BO3MYIICHUSM ,
OLIEHNTh BEPXHIOI0 TPAHUIly MaJoro IapamMerpa, TaKUM OOpa3soM 4YTO Ui BCEX 3HAYEHMIl 3TOr0 IapaMeTpa, MEHBIINX YeM
MOJy4eHHas OLICHKA, HEBO3MYIIEHHOE PEIICHUE CUCTEMBI ABJIUIOCHh aCUMITOTHYECKU YCTOMYMBBIM. B cTaThe pemarorcs cieryromme
3aJa4M: UCCIIEAYIOTCS CHHTYJISIPHO BO3MYIIEHHbIE CHCTEMBI AU(GepeHINnaIbHBIX YPaBHEHHH, NMEIOIINX PETYIIsIpHbIe BO3MYILCHUS B
BUJE CJAaraeMbIX C MaJbIM MHOXMTENIEM B IPaBbIX YacTsAX, KOTOpble HE SBISIFOTCSA IOJHOCTBIO M3BECTHBIMHU; NEJIAETCS OLIEHKa
obJacTell aCHMIITOTHYECKOH YCTOHYMBOCTH HEBO3MYIIIGHHOTO PEIIEHHS TAKUX CHCTEM, TO €CTh PACIIMPSETCs KIIACC CHCTEM, KOTOpBIE
MOXXHO HCCIIEIOBaTh Ha YCTOWYMBOCTB, NMOJY4YeHBI (DOPMYJIbI, MO3BOJISIONIME aHAJIM3HMPOBATH ACHMMITOTHYECKOW YCTOHYMBOCTH
peIIeHni CUCTEM Jake B YCIOBHUAX HEMONHOW MH(POPMAIA O BO3MYIICHUs, ISHCTBYIONINE HA HUX. VICTIONB3yIOTCS TaKie MeTObI:
MaTeMaTHIeCKOe MOAEIUPOBAHNE CIOXKHBIX CHCTEM YNPABICHHS; BEKTOpHBIE (yHKIMHK JIAITyHOBa MCCIIEIOBAHNS AaCHMIITOTHYECKOH
YCTOMYMBOCTH peUIeHui cucteM muddepeHaIbHEIX ypaBHeHNH. [lomydeHs! crnenyronie pe3yabTaThl: cAelaHa OIEHKA BepXHEH
TPaHUIBl MaJOTO TapameTpa Ul CHTYJSIPHO BO3MYIIEHHBIX cHUCTeM () (epeHINaTbHbIX YPaBHEHHH € IMapaMeTpuuecKuMu (He
MIOJTHOCTBIO U3BECTHBIMHU) M AUHAMMYECKUMH HEONpPEICICHHOCTAMY, Takasi YTo AJIs BCEX 3HAUEHWH 3TOro napamerpa, MEHbIIUX YeM
MOJIydeHHas OLICHKA, HEBO3MYILEHHOE PELICHUE TAaKOW SBISIETCS AaCUMITOTHYECKH YyCTOMYMBBIM; JOKa3aHa TEOpeMa, B KOTOPOM
chOopMyIMPOBaHbl JOCTATOYHbIC YCIOBUS PABHOMEPHOH aCHMNTOTHYECKOW YCTOWYHMBOCTH TakoW cHUCTEMbL. BBIBOABI: MeToxn
BEKTOPHBIX (GyHKIMI JIamyHOBa MOXKET OBITh PACIIMPEH Ha KJIAacC CHHTYJSIPHO BO3MYIICHHBIX CHCTEM MG (epeHIHaTbHBIX
YPaBHEHUH C MallbiM MHOXKHUTEIEM B IPaBbIX YaCTAX, KOTOPHIE HE SBJAIOTCS MOJHOCTBIO U3BECTHBIMH, a JIUIIb YJOBICTBOPSIOT
HEKOTOPBIM OTPAHUYECHHSM.

KnioueBble cj10Ba: acCHMITOTHYECKAsT YCTOMINBOCTD; BEKTOpHBIE GyHKINH JIAmyHOBa; MapaMeTprudeckasl HeOIpeAeIeHHOCTE;
MaJlblil mapamerp.
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