ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 4 (18)

UDC 681.3.06 DOI: https://doi.org/10.30837/ITSS1.2021.18.023

D. ZOLOTARIOV

AUTOMATED DEPLOYMENT OF A SOFTWARE ENVIRONMENT FOR
MICROSERVICES IN A RAPIDLY CHANGING TECHNOLOGY STACK

The article is devoted to the development and substantiation of practical recommendations regarding the formation of a mechanism
for deploying a software environment for creating and executing microservices in a rapidly changing technological stack. The subject
of the research is the basics of building a system for automated deployment of a software environment for the development and
execution of microservices. The purpose of the article is to develop and substantiate practical recommendations for the formation of a
mechanism for deploying a software environment for creating and executing microservices in a rapidly changing technological stack.
The task of the work: to determine the necessary elements of the deployment mechanism of the software environment and provide an
analysis of the functional load for each of them, set specific tasks that must be solved when building each of them, propose and justify
the choice of tools for their solution. In the course of the study, the methods of system analysis were used to decompose a complex
system into elements and each element into functional components. As of the study, it was established that such a mechanism should
consist of the following elements: a universal server initialization a result subsystem for any technological stack and a software
environment deployment subsystem for developing or executing an application of a certain type on a certain technological stack. Each
element is described in detail, its functional load is shown and its role in the overall system is substantiated. It is shown that such a
standardized approach to the deployment of the development and runtime environment allows, among other things, to solve the
problem of operating microservices in a tested environment. Conclusions. Practical recommendations for the formation of a
mechanism for deploying a software environment for creating and executing microservices in a rapidly changing technological stack
have been developed and substantiated. This mechanism is automated. It shows its flexibility and versatility in relation to
programming languages and other features of the software environment. It is pointed out that when implemented in the shell language,
bash does not need any third-party applications for its work. The economic benefit of using the proposed mechanism is shown. The

ways of its improvement are shown.

Keywords: deployment of the environment; microservice architecture; distributed infrastructure; technological stack; saving

resources and money.

Abbreviations

Analysis of publications

0T — Internet of things,

Cl / CD — (Continuous integration and continuous
delivery) systems of continuous automated testing and
updating software products as they are developed,

Production-server — a server with developed software
running under design conditions and loads, available to its
customers,

Stage-server is a server for testing the developed
software under design conditions and loads.

Introduction

The last few years in the IT industry have been
marked by the rapid development of distributed data
processing and user requests and, as a result, the
widespread use of microservice architecture. This allows
the simplest way to divide such processing between
many separate components, depending on the expected
result.

Many works have been published covering both the
microservice architecture itself as a basis for the
development of new applications [1-5], and the transition
to it in existing ones [6-8], a study of its features [9] and
applicability depending on the scale of the company
and the product [10]. This is also confirmed by the
growing popularity of related queries in Google Trends
[11].

On its basis, not only the user-server messaging is
built, but also inter-server interaction, examples of which
are modern high-load media sites and web services [12],
as well as the 10T [13].

The advantage of microservice architecture is the
ability to add and remove elements situationally without
changing the system as a whole. For example, the
Guardian uses this approach [14] to capture events
associated with a specific high-profile sporting event. For
this, a specialized microservice is created, which is easily
integrated into the media platform, and after losing its
relevance, it is simply removed from it. At the same time,
a significant load generated by users interested in the
indicated event goes to the servers dedicated for this
microservice and does not load the main system. For the
user, however, this division is imperceptible — he sees one
"seamless" website.

From the point of view of economic benefits, the
addition of a new situational microservice does not entail
changes to the main computing infrastructure, since it is
added "on the side", which means that the costs of its
deployment are the lowest of all possible.

In addition, an important advantage of the
microservice architecture is the fact that, due to the weak
connection between the elements, it allows you to use any
programming languages for their development. For
situational microservices, this means the ability to use the
latest languages for the rapid creation of software products
with simplified testing, since the life cycle of such a
software product is almost always short and the result
does not imply development. This also translates into
significant cost and resource savings and accelerates time-
to-market.

Development technologies are constantly being
improved, and this entails the constant emergence of more
and more new programming languages [15], a change in

© D. Zolotariov, 2021

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 4 (18)

their share in development [16], as well as the
disappearance of previously created ones due to the loss of
community interest in them [17]. Along with this, the
technological stack for developing situational
microservices can also change.

Despite the advantages of rapid development
languages, which include convenience due to more
thought-out syntax and speed due to many built-in
standard operations, they also have a significant
disadvantage due to their "youth" in the form of many not
yet identified internal errors.

Therefore, when choosing such a language, it is on
the developer's shoulders not only to determine its
compliance with a specific task, but also to check all the
necessary language tools for errors. This leads to a
significant slowdown in the development process at the
start.

Formulation of the problem

General approach to the construction of the
mechanism

To fully take advantage of the advantages of rapid
development languages and level their shortcomings, a
unified centralized system of checking their capabilities,
as well as preliminary and load testing, going from the
support specialists of the software environment: DevOps
specialists and server administrators to the developers, is
required, and not vice versa.

The result of such preparation should be a set of
requirements for the version of the language and its
environment (technological stack), which allows you to
create on its basis stably working servers for the
development and execution of software products.

The deployment process itself should also be
standardized, and the system based on it should be
automated and universal. To prevent the developer or
DevOps specialist during the server deployment process
from changing the version and settings of the software or
supporting services, or making a mistake in the sequence
of their installation.

Such an attempt at standardization was undertaken in
Avito [18], but for the special case of a set of languages
(PHP, Golang and Python), which uses the Docker
container development approach. The disadvantage is the
very narrow specialization of the system - deployment
depends only on the programming language, without
taking into account auxiliary services and other
components of the microservice software environment.

Therefore, the purpose of this article is to develop
and substantiate practical recommendations regarding the
formation of a mechanism for deploying a software
environment for creating and executing microservices in a
rapidly changing technological stack. This mechanism
should be automated, easy to use for users and developers,
and universal, that is, independent of specific
programming languages.

The goal of the article is to determine the necessary
elements of such a mechanism, provide an analysis of the
functional load for each of them, set specific tasks that
must be solved in the construction of each of them, and
propose and justify the choice of tools for their solution.

To achieve this objective, the mechanism being
developed must perform the following tasks:
The first is the initial server configuration, universal

for any technological stack: programming language
and tools used. Its purpose is to configure
access to the developer/administrators/CI/CD system
server and, if necessary, also configure
the version control system, proxy, web server,
attach the domain and make other basic server
settings.

The second — provides initial installation and
configuration of the necessary software for the
development or execution of a certain type of program on
a certain technological stack. Its goal is to provide a
software environment ready for development (or
execution), ideally without the need for manual additional
configuration.

Therefore, such a deployment mechanism should
consist of the following elements: a universal server
initialization subsystem for any technological stack and a
software environment deployment subsystem for
developing or executing applications on a certain
technological stack.

In general, the server deployment mechanism can be
presented as the following flowchart (fig. 1).

The figure shows that the universal initialization of
the server s started first, after its successful
implementation — deployment for a specific technological
stack. After the last successful completion, the server
deployment process is considered complete. It provides
access to the developer, sends the necessary notifications
about the successful completion of the process,
and restarts the server. In case of any failure,
the process is interrupted with sending the necessary alerts
about it.

It is worth noting that in order to accelerate the
deployment process when using cloud technologies or
other infrastructure tools using virtual machines, it is
recommended that you have ready-made images for a set
of commonly used server types (for example, in Docker).
And use the standard deployment process only if there is
no such image.

Server configuration data source

To uniquely identify the list of software products and
services that must be installed on the server during the
initialization and deployment of the environment, as well
as the order of their installation and their settings for the
needs of a certain type of microservice and technological
stack, this information must be stored centrally. It is
recommended to use a well-established method — code
storage. For this purpose, an environment configuration
file (hereinafter referred to as ".conf') is used,
the content of which is determined by the type of
microservice and the technological stack, and which
should contain:

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

- an ordered list of software that must be installed as
an environment for this microservice: data warehouses,
search engines, etc., with settings,

- access to third-party services, databases, instant

Cyuacnuti cmamn HayKo8ux O0CILONCeHb ma mexnoao2it 6 npomuciosocmi. 2021. Ne 4 (18)

- an ordered list of software to be installed during
server initialization, with individual settings,

- an ordered list of software to be installed for the
selected microservice type and process stack, with

settings, messengers and other external systems.
e N
(start)
_;/f = -
T i
o e,
4(:_\ Already created? =
"‘-\._‘__hi
Mo
initialization
Yes
—-—____,.-/ = ——
— T
o T
—c;i_\ Success? =
xﬂﬂﬁ
Yes

create environment

v

= H""‘"-..
H____.-’ —
-
o ~—
s

Success?
//jj
ihh“xxa T Yes

open access

h 4 ¢

notify

.

e N
—>(Finish /‘.

Fig. 1. Flowchart of the server deployment process

This configuration file is then used by the multiple copies of the same dependencies increases the

deployment application. As such an application, it is
recommended to use standard bash scripts as the easiest
and most reliable way. But there are no restrictions on the
deployment system itself and the tools used in its
development.

All necessary dependencies for the development and
testing of the microservice must already be deployed and
for all developed the same type of microservice are the
same. The use of common dependencies is due to the fact
that they are updated in accordance with their
improvement, the addition of new data, etc. Using

likelihood that the next update will not update all copies
correctly. This results in non-test errors that occur only on
production servers.

Dependencies can be deployed as a mock server
("plugs™), in particular, in Docker containers, but can be
full-fledged.

Server initialization

The purpose of server initialization is to first
configure it and set the general set of applications and

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 4 (18)

services required for microservice operation in a certain
sequence. A generalized version of such a mechanism can
be presented as follows (fig. 2). It should be noted that this
is only one possible option: for each type of microservice

and development features, this mechanism can both
exclude certain stages or steps in them, and include
additional ones.

o ™ ¢
{ !
'.\ Start J
i Users Project
* Log init
T T —] Mame —
- — - i L ——
- — o Add unix user Password
—Q\ Already created? ((_“;‘.} #
ERE ’/f/
— o Generate SSH key Public key-=--
Mo ¢
Monitoti .
onitoring <]| publish SSH key |
DO-agent “1=-m | #
1 |
Y
for)
Configure
Y
General #---1-4 Create directories [-1-Directories list--p
i v
9 > o Add cron tasks
Giﬁ 1™ « {Conf’igur‘e web-sewer‘|
‘ mailutils } ol o o [A »
> .
compressors =1 L
Yes
* o s T Rl 4
| - ;
notify
e It
» Finish)

Fig. 2. Flowchart of the server initialization process

The initialization process is divided into several
consecutive steps. At the beginning, it is checked whether
it has already been produced to avoid re-execution, which
almost always leads to a complete reset of settings.

The process begins with the installation of
monitoring programs necessary to collect external
statistics of the server. These can be programs specifically
designed for a specific site of virtual machines (for
example, do-agent for DigitalOcean), universal (for
example, based on Logstash from Elastic) or individual
internal development. Their task is to indicate the state of
the server in real time or close to it, as well as provide
information for the initial diagnosis of the problem.

Next, a set of utilities is installed to manage the
server and fine-tune it. This includes: git, applications
responsible for security, programs for working with
communication channels, for example, e-mail, archivers
and others.

After it, the creation and configuration of the user on
whose behalf the microservice process and the generation
of SSH keys for it begin. As well as adding a public key to
the version control system (Bitbucket, GitLab and the like,
including internal ones) for the development server or the
CI/CD system for stage- or production-servers.

The next step is responsible for creating project
directories, creating and running regular cron tasks,
configuring a local web server, and similar general tasks.

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 4 (18)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

In subsequent steps, additional microservice server
settings are made, depending on the accepted development
standards and the requirements of the server administrator.

The final step, as before, is to publish a notification
of the success of the entire process or an error with its
detailed description.

During the execution of certain steps that create or
modify something, an important result for the developer is
saved in the initialization file (label "Project.init"). The
following are stored here:

- the name of the created user and his public SSH-
key,

- paths to created directories for microservice,

- and other information used in the operation of the
server.

For a web server, for example, the added domain and
information about its SSL certificate will also be saved
here.

Also, during the deployment, the history of each
operation ("Log" label) is continuously published to allow
you to easily find the location of the error, if it occurs. If
an error occurs anywhere in the process, it is interrupted
with the publication of a notification to administrators or
DevOps specialists.

After the initialization process is complete, the server
automatically proceeds to deploy the microservice
environment.

Deploying the environment

The goal of deploying a microservice environment
on a server is to install a set of necessary applications and
services for a microservice to run on a specific technology
stack on production and stage servers. In the case of a
development server, the necessary tools for development
and local testing of the microservice are additionally
installed. A schematic block diagram of the mechanism is
shown in fig. 3 below.

The entire process is logically divided into two
stages, indicated by the "Stage N" labels, consisting of
blocks, each of which is responsible for installing and
configuring a specific application.

The first stage is the installation of a basic
development kit for a specific type of microservice, built
on a specific technological stack for a specific
programming language: Node.js, Python, Golang, PHP,
and the like. If you need to use the local storage of the
microservice state, then SQL or NoSQL databases, file
storages, queue managers, etc. are also installed for this.
Necessary third-party applications are also installed, such
as a "headless" browser or GeolP service. After installing
each application, it is fine-tuned for the needs of the
microservice.

The second stage carries out installation of utilities
intended only during development and fine-tuning
of already installed applications for development
mode.

As with initialization, the process continuously
publishes the execution history of each operation (“Log”
label) so that you can easily find the location of the error,

if it occurs. Information important for the developer is
saved in the initialization file (label "Project.init"). This
can be, for example, data for accessing the created local
stores of the microservice state or the path to the installed
software.

In the event of an error in any step, the process is
terminated and a progress report ("Log") and error
description is sent to the monitoring system or server
administrator. An environment is considered to be
successfully deployed only after all stages have been
successfully completed.

Each unit installs and configures not only the
applications themselves, but also their associated
operations, for example, performance monitoring and the
like, since within itself it "knows" all the features of the
application being installed.

In addition to the blocks themselves, it is also
important to precisely set their order within the stage, as
well as the order of the stages themselves, which avoids
collisions when installing software.

The block approach described above allows the
server administrator or specialist to DevOps select the
version of the software being installed; determine the most
acceptable settings for it, having tested in various options
and modes of operation, as well as loads.

It is worth noting that the process of building
application installation blocks is continuous. It is
recommended to check its relevance when a new version
of the software is released, when vulnerability or other
deficiency in the existing block is found in it. Therefore, it
is recommended to store .conf configuration files in the
version control system and version according to the
semantic approach [19].

Prospects for further development

The following improvements are seen as prospects
for the further evolution of the developed mechanism for
automatic deployment of the software environment for
creating microservices in the context of a rapidly changing
technological stack.

To simplify deployment of the environment, add the
second type of configuration files .conf — for "standard"
microservices or "standard" technological stack. For them,
only the keyword-name is specified in the configuration
file, which is a link and is used to load the required full-
fledged .conf file or a ready-made server image from the
version control system.

To expand the possibilities in the field of CI / CD,
add the mechanism after the stages of initialization and
deployment of the environment with the preparation of a
universal modular pipeline task in Jenkins using the
Jenkinsfile for assembly and testing.

Increase the security of the developed deployment
mechanism by running it on a third-party server that
connects via SSH to the initialized one. Or, provide the
deployment mechanism with the ability to completely or
partially remove oneself from the deployed server before
opening access to the developer in order to hide the details
of the settings and increase security.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2021. No. 4 (18)

—

I/ Start

-,

3

Stage Production Stage Development
Applications Development
Programming
server
i l} Language debug
config
e Debug software
. g .
l.). Local data
storage T *
i
i
! notify
I
i
I 2
L eintsh)
' Finish
! Y
I
i
. i
o Programming i
Language i
i
i
i
i
i
!
i
:
[> Application i
@
i
i
i
!
> !
!
i
J | i
i :
\ & v
Log
| :
h 4 h |
Project .init

Fig. 3. Flowchart of environment deployment blocks

Conclusions

The work has developed and justified practical
recommendations on the formation of a mechanism for
deploying a software environment for creating and

executing microservices in a rapidly changing
technological stack. This mechanism is automated,
flexible and versatile, and does not depend on specific
programming languages and other features of the software
environment. When developing it in the bash shell

ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2021. Ne 4 (18) ISSN 2524-2296 (online)
language, it does not need third-party applications for its It is shown that this standardized approach to
work. deploying the development environment and performing

It is shown that such a mechanism should consist of microservices allows, among other things, to solve the
the following elements: a subsystem for universal server problem of operating microservices in a tested
initialization for any technological stack and a subsystem environment, where the likelihood of malfunctions is
for deploying a software environment for developing or minimized. Hence, the proposed approach also reduces the
executing applications of a certain type on a certain non-production financial and temporary costs of dealing
technological stack. Each element is described in detail, with the consequences of such failures.
its functional load is shown and its role in the common
system is justified.

References

1. Rademacher, F., Sachweh, S., Ziindorf, A. (2020), "A Modeling Method for Systematic Architecture Reconstruction of
Microservice-Based Software Systems”, In: Nurcan S., Reinhartz-Berger I., Soffer P., Zdravkovic J. (eds) Enterprise, Business-
Process and Information Systems Modeling. BPMDS 2020, EMMSAD 2020. Lecture Notes in Business Information Processing,
Springer, Cham, Vol. 387. DOI: https://doi.org/10.1007/978-3-030-49418-6 21

2. Zolotariov, D. (2020), "The distributed system of automated computing based on cloud infrastructure”, Innovative Technologies
and Scientific Solutions for Industries, No. 4 (14), P. 47-55. DOI: https://doi.org/10.30837/1TSSI1.2020.14.047

3. Zolotariov, D. (2021), "The mechanism for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific Solutions for Industries, No. 1 (15), P. 53-58.
DOI: https://doi.org/10.30837/ITSSI1.2021.15.053

4. Zolotariov, D. (2021), "The platform for creation of event-driven applications based on Wolfram Mathematica and Apache
Kafka", Innovative Technologies and Scientific ~ Solutions for Industries, No. 2 (16), P. 12-18.
DOI: https://doi.org/10.30837/ITSSI.2021.16.012

5. Zolotariov, D. (2021), "Microservice architecture for building high-availability distributed automated computing system in a
cloud infrastructure”, Innovative Technologies and Scientific Solutions for Industries, No. 3 (17), P. 13-22.
DOI: https://doi.org/10.30837/ITSSI.2021.17.013

6. da Silva, H. H. S, de F. Carneiro G., Monteiro, M. P. (2019), "An Experience Report from the Migration of Legacy Software
Systems to Microservice Based Architecture”, In: Latifi S. (eds) 16th International Conference on Information Technology-New
Generations (ITNG 2019). Advances in Intelligent Systems and Computing, Springer, Cham, Vol. 800.
DOI: https://doi.org/10.1007/978-3-030-14070-0_26

7. Bucchiarone, A., Dragoni, N., Dustdar, S., et al. (2018), "From monolithic to microservices: an experience report from the
banking domain”, IEEE Softw, No. 35 (3), P. 50-55.

8. Levcovitz, A, Terra, R., Valente, M. T. (2015), "Towards a technique for extracting microservices from monolithic enterprise
systems”, In: Proceedings of VEM 15, P. 97-104.

9. Munari, S., Valle, S., Vardanega, T. (2018), "Microservice-Based Agile Architectures: An Opportunity for Specialized Niche
Technologies”, In: Casimiro A., Ferreira P. (eds) Reliable Software Technologies — Ada-Europe 2018. Ada-Europe 2018. Lecture
Notes in Computer Science, Springer, Cham, Vol. 10873. DOI: https://doi.org/10.1007/978-3-319-92432-8_10

10. Sorgalla, J., Sachweh, S., Ziindorf, A. (2020), "Exploring the Microservice Development Process in Small and Medium-Sized
Organizations", In: Morisio M., Torchiano M., Jedlitschka A. (eds) Product-Focused Software Process Improvement. PROFES
2020. Lecture Notes in Computer Science, Springer, Cham, Vol. 12562. DOI: https://doi.org/10.1007/978-3-030-64148-1_28

11. Google Trends (2021), "Muicroservice architecture - Google Trends", available at:
https://trends.google.ru/trends/explore?date=today%205-y&q=%2Fm%2F011spz0k (last accessed 5 February 2021).
12. CIO Dive (2021), "Guardian Life steers tech transformation with microservices”, available at:

https://www.ciodive.com/news/Cloud-Microservices-Guardian-Life/578732/ (last accessed 5 February 2021).

13. Nasiri, H., Nasehi, S., Goudarzi, M. (2019), "Evaluation of distributed stream processing frameworks for 10T applications in
Smart Cities", Journal of Big Data, Vol. 6, No. 52. DOI: https://doi.org/10.1186/s40537-019-0215-2

14. Martin Fowler (2014), "Microservices", available at: https://martinfowler.com/articles/microservices.html (last accessed 5
February 2021).

15. Chatley, R., Donaldson, A., Mycroft, A. (2019), "The Next 7000 Programming Languages"”, In: Steffen B., Woeginger G. (eds)
Computing and Software Science. Lecture Notes in Computer Science, Springer, Cham, Vol. 10000.
DOI: https://doi.org/10.1007/978-3-319-91908-9_15

16. DOU (2021), "Ranking of programming languages 2020: JavaScript is ahead of Java, and Dart entered the first league”, available
at: https://dou.ua/lenta/articles/language-rating-jan-2020/ (last accessed 5 February 2021).

17. Lee, C. Y. (2019), "Temporal Correlation Analysis of Programming Language Popularity", J. Korean Phys. Soc., Vol. 75, P. 755—
763. DOI: https://doi.org/10.3938/jkps.75.755

18. Vadim Madison (2018), "What do we know about microservices?" ["Chto my znayem o mikroservisakh?"], HighLoad ++ 2018,
Professional conference for developers of high-load systems, Moscow.

19. Semantic Versioning (2021), "Semantic Versioning 2.0.0", available at: https://semver.org/lang/ru/ (last accessed 5 February
2021).

Received 23.07.2021
Bioomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

3oJ0TapHOB Jennc OuekciiioBuu - KaHAuAaT (i3MKO-MaTeMaTHIHNX HayK, Xapkis, VYkpaiHa;
email: denis@zolotariov.org.ua, ORCID: https://orcid.org/0000-0003-4907-7810.

3oJ0Tapé JleHuc AnexceeBHY — KaHANAAT GU3UKO-MATEMaTHIECKNX HAayK, XapbKOB, YKpanHa.

mailto:denis@zolotariov.org.ua
https://orcid.org/0000-0003-4907-7810

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2021. No. 4 (18)

Zolotariov Denis — PhD (Physics and Mathematics Sciences), Kharkiv, Ukraine.

ABTOMATHU30BAHE PO3I'OPTAHHS ITPOI'PAMHOI'O OTOYEHHA AJISA
MIKPOCEPBICIB B YMOBAX HIBUJIKO MIHJIMBOT'O TEXHOJIOT'TYHHOI'O
CTEKY

CraTTa mpuUCBsiYeHa PO3poOLi Ta OOIPYHTYBAaHHIO MPAKTHYHHX PEKOMEHIAIH CTOCOBHO ()OPMYBaHHS MeEXaHI3My pPO3TOpPTaHHS
MIPOTPAaMHOTO OTOYEHHS /IS CTBOPEHHS M BHKOHAHHS MIKPOCEpBICIB B yMOBax MIIBHAKO MIHJIMBOTO TEXHOJIOTIYHOTO CTeKa.
IIpenMeToM IOCITIKEHHS € OCHOBU ITOOYZOBH CHCTEMH aBTOMATH30BAHOTO PO3TOPTAHHS IPOTPAMHOTO OTOYCHHS IS PO3POOKH it
BUKOHAHHS MiKkpocepBiciB. MeTol0 cTaTTi € po3poOka i 0OTpyHTYBaHHS MPaKTHYHUX PEKOMEHIALIH 010 (GOpMyBaHHS MeXaHi3My
PO3TOpPTaHHS NPOTPAMHOTO OTOYEHHS JUISI CTBOPEHHS i BHKOHAHHS MIKPOCEPBICIB B YMOBaX IIBHIKO MIHJIMBOTO TEXHOJIOTTYHOTO
cTeka. 3aBaaHHs poOOTH: BUSBUTH HEOOXiJHI €JIEMEHTH MEXaHi3My PO3TOPTaHHS MPOTrPaMHOTO OTOYECHHS W HAaZaTH IJIS KOXKHOTO 3
HUX aHaJi3 (QyHKIIOHAJHHOTO HABAHTAKEHHS, IIOCTABUTH KOHKPETHI 3a/adi, sIKi IOBHHHI OyTH BHpIIIEHI MpHU HOOYAOBI KOXKHOTO 3
HUX, 1 3alpPONOHYBaTH W OOIPYHTyBaTh BUOIp IHCTPYMEHTIB ISl IXHBOI'O PO3B'SI3Ky. Y XOIi NOCHIIKEHHS BHUKOPHCTaHI MeTOAH
CHCTEMHOTO aHAJI3Y Ul IEKOMIIO3MIIIi CKJIaAHOT CHCTEMM Ha €JIEMEHTH H KOXKHOTO eJIeMEHTa Ha ()YHKILIOHAIbHI KOMIIOHEHTH. Y
pe3yJbTaTi JOCHI/DKEHHS BCTaHOBJIEHO, IO TAaKWil MeEXaHi3M MOBHHEH CKIaJaTHCS 13 HACTYIHHX €JEMEHTIB: MiJICHCTEMH
YHiBepcaJbHOI iHiIiami3arii cepBepa A1 Oy Ib-IKOr0 TEXHOJIOTTYHOTO CTeKa Ta MiCUCTEMHU PO3TOPTAHHS MIPOTPAMHOTO OTOUYESHHS IS
po3poOku abo BHUKOHAHHS JOJATKa IEBHOTO THUITy HA IIEBHOMY TEXHOJOTiYHOMY crelli. KOoXXHMI eleMEeHT JAeTanbHO OIMCAHUH,
MMOKa3aHa #Oro (QyHKI[IOHaJbHE HABAHTAXKCHHSA I OOIpyHTOBaHa HOro poJb y 3araimbHid cucremi. [lokazaHo, 0 Takuit
CTaHIAPTU30BAaHMWN MiOXiZ IO PO3TOPTaHHS CEpEeNOBHINA PO3POOKH i BHUKOHAHHS [O3BOJIE, y TOMY YHCIi, PO3B'A3aTH 3agady
eKCIUTyaTamnii MiKpOocepBiciB y MpoTecTOBaHOMY OTO4YeHHI. BucHOBKH. Po3polGieHi i oOrpyHTOBaHI MPaKTUYHI pEeKOMEHIAIIl At
(opMyBaHHS MEXaHI3My PO3TOPTaHHS NPOrPAMHOTO OTOYCHHS Ui CTBOPEHHS i BHUKOHAHHS MIKPOCEPBICIB B YMOBaX IIBHAKO
MIHJIMBOTO TEXHOJIOTIYHOTO cTeka. Lleil MexaHi3m € aBToMaTn30BaHUM. [loka3aHa HOTo THYYKICTh 1 YHIBEpCaJbHICTh BITHOCHO MOB
MpOrpaMyBaHHs i IHIIUX OCOOJMBOCTEH MPOrPaMHOTO OTOYCHHS. 3a3HAUCHO, IO TPH peatizallil Horo MOBOK KOMaHIHOT 0OOJIOHKH
bash He Mae moTpeOU B CTOPOHHIX JoAaTKax Juist cBoei pobotu. [lokazaHa eKOHOMIYHA BUrofa BiJf BAKOPUCTAHHS 3allpOIIOHOBAHOTO
MexaHi3My. HaBeneHi nusixu #oro BIOCKOHAJIEHHSI.

KunrouoBi ciioBa: po3ropTaHHs OTOYEHHS; MIKPOCEPBHCHA apXiTEKTypa; po3MojiieHa iHPPaCTPyKTypa; TEXHOJIOTIYHUH CTEK;
E€KOHOMIsI pecypcCiB Ta KOIITIB.

ABTOMATU3NPOBAHHOE PAZBEPTBIBAHUE TPOTPAMMHOI'O OKPY)XXEHUSA
JJIA MUKPOCEPBHUCOB B YCJIOBUSAX BBICTPO MEHAIOIETI'OCA
TEXHOJIOI'MYECKOI'O CTEKA

Craresi TOCBsIIEHA pa3pabOTKe W OOOCHOBAaHUIO IPAKTHYECKHX PEKOMEHJAUNil OTHOCHTENbHO (HOPMHUPOBAHMS MeXaHH3Ma
pa3BepTHIBAaHUS MPOTPAMMHOTO OKPYXKSHHUS Ul CO3JaHUs W BBIOJHEHUS MHKPOCEPBHCOB B YCIOBHUSX OBICTPO MEHSIONIETOCS
TexHojoruyeckoro crexka. IlpeaMeTromM HccieNOBaHMS — SBIAIOTCS OCHOBBI IIOCTPOCHUS CHUCTEMBl aBTOMATU3UPOBAHHOIO
pa3BepTHIBaHUS MPOTPAMMHOTO OKPYXXEHHS ISl pa3paboTKH U BBIMOTHEHHsT MUKpocepBHcoB. Llesiblo cTaThu siBIsieTcsl pa3paboTka 1
000CHOBaHHE NMPAKTHIECKUX PEKOMEHanNi K (OPMHUPOBAHUIO MEXAHI3Ma Pa3BEPTHIBAHMUS IPOTPAMMHOTO OKPY>KEHUS TSI CO3TaHUS
U BBHINOJHEHNS! MHKDPOCEPBHCOB B YCIOBHAX OBICTPO MEHSIOIIETOCS TEXHOJOTHYECKOTO CTeKa. 3agaya paboThI: ONpenenuTh
HEOOXOIMMBIE >IEMEHTH MEXaHNW3Ma Pa3BEePTHIBAHUS MPOTPAMMHOTO OKPYXKEHHS M NPENOCTaBUTH IS KaXIOTO M3 HUX aHAIIN3
(YHKINOHATBHON HArpy3KH, MOCTAaBUTh KOHKPETHBIE 33a7a4M, KOTOPBIE JOJDKHBI OBITH PEIISHBI MPH ITOCTPOSHUN KaXKIOTO 3 HUX,
MIPE/UIOKUTh U 00OCHOBAaTh BBIOOP MHCTPYMEHTOB JUIsl MX pelleHHs. B Xone ncciemoBaHMs HCIOJNB30BAaHBI METOABI CHCTEMHOTO
aHanm3a JUIsl JIGKOMIIO3UIIMU CJIOXKHOW CHCTEMBI Ha JJIEMEHTHI M Ka)K/IOTO 3JIeMeHTa Ha (YHKIMOHAIBHBIE KOMIIOHEHTHL. B
pe3yJbTaTe HCCIEIO0BAHUA YCTAHOBIEHO, YTO TaKOW MEXaHM3M [OIDKEH COCTOSTh M3 CIEIYIOIIMX JJIEMEHTOB: IOACHCTEMBI
YHUBEPCAIBHOW WHMIHAIN3alUH CcepBepa I JI000r0 TEXHOJIOTHYECKOTO CTEeKa M IOJCHCTEMBI Pa3BEpPTHIBAHMS MPOrPAMMHOTO
OKpYXEHHs Ul Pa3paOOTKM WM BBIITOJTHEHUS MPHIOKEHHS ONPEIETeHHOTO THIIA HA ONpPEAEIICHHOM TEXHOJIOTMYECKOM CTEKe.
Kaxprit a1eMeHT JeTanbHO ONHMCaH, oKa3aHa ero pyHKIHMOHaIbHas Harpy3ka u 000CHOBaHa ero poib B 00mieil cucreme. [lokazaHo,
9TO TaKOH CTaHIApTH3MPOBAHHBIN MOIXOA K Pa3BEPTHIBAHUIO CPEIbI Pa3pabOTKM M BBHIMOIHEHUS MO3BOJISIET, B TOM YHCIE, PEIINTh
3amady SKCIUTyaTal[ii MHKPOCEPBHCOB B NPOTECTUPOBAHHOM OKpPY>XKEHHH. BbIBOABI. PazpaboraHel 1 000CHOBAaHBI MPAaKTHIECKHE
pekomeHmanuu s (GOPMUPOBAHWSI MEXaHW3Ma pa3BEpPTHIBAHMS IMPOTPAMMHOTO OKPY)KEHMSI JUI CO3/AHUSI W BBINOJHEHHS
MHKPOCEPBHCOB B YCIIOBHSIX OBICTPO MEHSIOIIErocsl TEXHOJOTHYECKOTO CTeKa. DTOT MEXaHHU3M SIBISIETCSl aBTOMAaTH3MPOBAHHBIM.
[Toka3ana ero rMOKOCTh M YHHUBEPCAJIHHOCTh B OTHOIICHHHU SI3BIKOB MPOIPAMMHPOBAHUS M APYTHMX OCOOCHHOCTEI MpOrpaMMHOIO
OKpY:KeHHs. YKa3aHO, 4TO NPH PeATH3alliK ero Ha si3bIKe KOMaHIHOH 060s0uky bash He HysKIaeTcss B CTOPOHHHX TPHUIIOKEHHUSIX ISt
cBoell pabotel. [loka3zaHa »KOHOMHYECKass BBITOJa OT HCIOJNB30BaHUS TIPEUIOKEHHOTO MexaHm3Ma. [lokaszaHbl IyTH ero
YCOBEPIIEHCTBOBAHNSL.

KnioueBble cjIoBa: pa3BepTHIBAHHE OKPYXKEHHS; MHKPOCEPBHUCHAS apXUTEKTypa; paclpefesleHHas HHQPACTPyKTypa;
TEXHOJIOTHYECKHH CTEK; SKOHOMHS PECYPCOB U JCHET.

Fibnioepaghiuni onucu / Bibliographic descriptions

3omoraproB JI. O. ABTOMaTH30BaHEe PO3TOPTAHHS MPOTPAMHOTO OTOYEHHS AT MIKPOCEpPBICIB B yMOBAX IIBUIKO MiHJIHBOTO
TEXHOJIOTIYHOTO CTeKy. CyuacHuii cman HAyKogux O00cCniodceHb ma mexHonoziu 6 npomuciogocmi. 2021. Ne 4 (18). C. 23-30.
DOI: https://doi.org/10.30837/ITSSI.2021.18.023

Zolotariov, D. (2021), "Automated deployment of a software environment for microservices in a rapidly changing technology
stack", Innovative Technologies and Scientific Solutions for Industries, No. 4 (18), p. 23-30.
DOI: https://doi.org/10.30837/ITSSI.2021.18.023

https://doi.org/10.30837/ITSSI.2021.18.023

