THE MODEL OF DECISION SUPPORT IN CENTRALIZED HEATING MANAGEMENT ON THE CONSUMER SIDE
DOI:
https://doi.org/10.30837/2522-9818.2017.1.069Keywords:
energy saving, heat supply, model, fuzzy logic, decision supportAbstract
To manage centralized heat supply on the consumer side, it is necessary to implement an energy management system as an instrument for reducing the consumption of energy by using energy resources efficiently. The implementation of the energy management system requires monitoring, accounting, analyzing and making decisions in the management of heating system. The subject matter of this study is the information support of decision making in the management of centralized heat supply. The aim of the work is to develop a model for decision support in the management of heat supply modes on the consumer side. The tasks of the research include the selection of methods, the development of a model for making decisions while managing heat supply modes and its implementation in the decision support system (DSS). The current state of information technologies used for solving the problem of decision making support in centralized heating management is analyzed. A model for determining a regulating variable for establishing the necessary heat supply mode with the use of fuzzy set theory and methods of fuzzy logic is developed. On the basis of the expert survey, the term sets of linguistic variables of the model of fuzzy logic decision making in managing heat supply modes were determined, membership functions of each linguistic variable of the model and rules of logical deduction were developed. The result of the model operation is making the recommendation as for controlling the current mode of heat supply, which can take the values "below the required", "acceptable", "optimal", "exceeds the optimum" up to the required one among the probable values of "acceptable", "optimal" uner the temperature conditions of the environment "very cold", "cold", "moderate" or "warm". The developed model is implemented in the information technology of decision support in the management of heat supply of public sector objects. On the basis of this technology, the decision support system whuch ensures the automatization of the tasks of monitoring the current state of the heating system was developed, the assessment of the predicted volume of heat energy consumption as well as decision support of the heat supply management on the customer side. The use of the developed model in the decision support system while managing the heat supply systems on the consumer side enables reducing the level of heat energy consumption necessary to heat buildings while preserving the necessary temperature mode in heated premises.References
Parfenenko, Yu., Shendryk, V., Nenja, V., Vashchenko, S. (2014), "Information System for Monitoring and Forecast of Building Heat Consumption", Communications in Computer and Information Science, Vol. 465, pp. 1−11, DOI: 10.1007/978-3-319-11958-8_1
Shendryk, V., Nenia, V., Aleksenko, O., Parfenenko, Yu. (2017), "Information supporting of decision making for energy management in district heating", Renewable and Alternative Energy: Optimum Decision Making in Asset Management, Chapter 14, pp. 310-333, DOI: 10.4018/978-1-5225-0651-5.ch014
Parfenenko, Yu. V., Nenia, V. G., Bondarenko, A. O. (2015), "Information technology for decision-making support in the management of centralized heating supply modes", Technology audit and production reserves, No. 1/2 (21), pp. 8−13, DOI: 10.15587/2312-8372.2015.37175
Dubovoj, V. M., Kabachij, V. V., Panochyshyn, Yu. M. (2005), Control and management of heat supply networks, UNIVERSUM-Vinnytsia, Vinnytsia.
Pakhomov, P. Y., Nemtynov, V. A. (2009), Technology of decision support in the management of engineering communications, Mechanical Engineering, Moscow.
Ratushniak, O. H. (2010), Content management of innovative projects of thermo-modernization of buildings, VNTU, Vinnytsia.
Bing, Yu. (ed.), Dolf, van Paassen (ed.) (2003), Proceedings of the Eighth International IBPSA Conference, Eindhoven. Rotshtein, A. P., Rakytyanska, H, (2012), "Fuzzy Evidence in Identification, Forecasting and Diagnosis", Studies in Fuzziness and Soft Computing, Chapter 1, pp. 1-37, DOI: 10.4018/978-1-5225-0651-5.ch014
Nesticky, M. (ed), Skulavik, T. (ed), Znamenak, J. (ed) (2017), Artificial Intelligence Trends in Intelligent Systems: Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017), Springer International Publishing. DOI: 10.1007/978-3-319-57261-1_2
Kolokotsa, D., Diakaki, C., Grigoroudis, E., et. al. (2009), Advances in Building Energy Research, Vol. 3, pp. 121−146. DOI: 10.1007/978-3-319-11958-8_1
ISO 50001:2011, Energy management systems – Requirements with guidance for use, viewed 20 august 2017. Johansson, C. (2010), Towards Intelligent District Heating, Blekinge Institute of Technology, Karlskrona.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2018 Yuliia Parfenenko
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.