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USE OF TRIANGULAR MODELS OF NON-STATIONARY PROCESSES IN
MODELING VARIABILITY OF HEART RHYTHM

The subject matter is a mathematical model describing the process of heart rhythm variability, which is based on the use of triangular
models of non-stationary random processes in the Hilbert space. The goal of the research is to develop a mathematical model of non-
stationary processes of cardiac activity based on a triangular model. This research was the basis for the development of a Matlab
model that implements the proposed method for analyzing heart rate variability. Tasks are: to give a description of the variability
heart rate as a non-stationary process in Hilbert space in terms of correlation functions; to research the possibility of constructing a
correlation and spectral theory of a non-stationary process using triangular models; to synthesize the mathematical model of
nonstationary process on the basis of correlation theory for solving mathematical processing and forecasting tasks on the basis of ECG
data. Using the proposed mathematical method, we implemented the Matlab model of a heart signal generator, which allowed us to
synthesize an ECG with different variability parameters in noisy conditions. Methods of mathematical statistics, simulation modeling,
theory of random processes and control theory are used in this work. Results of this research are as follows: 1) It has been shown that
the new approach to the description of the HRV as a random process in the application of the triangular model in the Hilbert space
made it possible to obtain expressions for the correlation function. 2) The imitation simulation showed the sensitivity of the method
within the 5% error rate under the conditions of different types of influence on HRV. The qualitative assessment of the possibilities of
the proposed models to generate artificial ECG provided the possibility of visual analysis by the cardiologist of the identity of the
interpretation of real ECG records. The identities of modeling results were checked on time samples of electrocardiographs of 7
patients from open PhysioNet cardiographic libraries on samples with the duration T = 10 s. 3) The standard low-frequency
oscillations and "white noise" barrier are clearly differentiated on the applied correlation function by the distribution of spectral
density power within the frequency range of 0,15-0,3 Hz. Conclusion. The simulation results confirmed the correctness of the
theoretical conclusions about the possibility of using models based on the representation of non-stationary processes in a triangular
Hilbert space.

Keywords: heart rhythm; non-stationary random process; electrocardio signal; correlation function; triangular model;
simulation modeling.

Introduction At this time, there is no common methodology in

which it is possible to analyze the properties of a

Currently, one of the topical problems of modern non-stationary random process of any type, using its

medicine is the development of new methods of
mathematical analysis of the aggregate of quantitative
characteristics, obtained as a result of registration of
certain parameters and that reflect the state of the human
body. The need for development of this direction is
dictated by the possibility of using the proposed
mathematical approach to determine the availability and
the degree of various pathological changes, to identify the
early stages of the development of any disease.

The basic information on the state of the systems,
that regulate the heart rhythm, is enclosed in the
"functions of the spread” of the parameters of the cardio
signal. One of the methods for assessing the state of the
mechanisms of regulation of physiological functions in the
human body is the variability of the heart rhythm (VHR)
[1]. In case of heart arrhythmia of different origins the use
of special mathematical methods for the restoration of the
stationarity of the process under research or of specific
analytical approaches is required [2-4].

The structure of the heart rhythm includes not only
oscillating components in the form of respiratory and non-
respiratory waves, but also non-periodic processes (so-
called fractal components). The origin of these
components of the heart rhythm is associated with the
multilevel and non-linear nature of the processes of
regulation of the heart rhythm and the presence of
transient processes. Thus, the rhythm of the heart is not a
strictly  stationary random process with ergodic
properties [5].

individual implementation. Therefore, stationary random
processes are used to analyze non-stationary
processes [6, 7]. This highlights the need for the
development of special simulation methods, which can
only be used for certain classes of non-stationary
processes.

Most often these random processes of heart rhythm
are unique and can not be repeated under statistically
similar conditions. One of the main issues is the study of
non-stationary random processes that are considered as
functions or sequences in the corresponding spaces, using
triangular and universal models.Furthermore, the
triangular models give the opportunity to construct some
"elementary" non-stationary processes, and, with the help
of universal models, to collect from them more
general classes of non-stationary random functions or
sequences [8].

The objectivity of the interpretation of the variability
of the heart rhythm depends on the choice of optimal
approaches to the mathematical processing of a numerical
array in the form of which it appears. The urgency of the
topic is determined by the need to improve the methods of
studying the process of forming the heart
rhythm and mathematical models that allow the synthesis
of artificial electrocardiograms (ECG). The development
of the method of generation of artificial
electrocardiograms with variations of parameters under
one or another random law. This will simulate the ECG
with more informativity.
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Analysis of literary data and problem statement

The ECG signals can easily be described using three
different approaches for any research such as: time
domain, frequency domain, and frequency-time domain.
The classic approach in electrocardiology is to use
techniques for analyzing the time domain of the signal.As
a rule, the ECG mathematical models are represented as a
Fourier series [9], polynomial functions [10, 11] or by
derivatives [12].

Such models determine the ECG value at any given
time, often describing each segment or ECG deflection,
but they are not always sufficient to describe all features
of the ECG signal. In addition, due to a large number of
variables, they are quite complex for further
implementation.

A more realistic form of cardiac signal is provided
by models in which individual elements are approximated
by Gaussian functions. The variants of description and
approximation of an ECG signal with application of
Gaussian pulse and piecewise-specified function have
been considered inthe work[13].

The proposed mathematical models do not take into
account the effect of internal and external perturbations on
the heart rhythm, that limits their scope of application.

Some authors use the ECG signal simulation in one-
dimensional and  two-dimensional planes. The
construction of a one-dimensional signal of its phase plane
is considered in [14]. The application of this approach
allows to analyze both the amplitude and the speed
parameters of any elements of the ECG, and to detect
deviations in them in comparison with the traditional
analysis of the ECS in the time domain. Thereafter, this
made it possible to approximate the ECG  with
interpolation models described in the works [15, 16].

The similar approaches are used in a number of other
works. In [17], the model based on the Fourier analysis of
the phase plane obtained from two synchronized cardio
signals was considered. In [18], the proposed method for
describing the dynamic system of the cardio signal by
constructing a three-dimensional phase space and
equations describes the trajectory of the motion of points
in this space.

However, such interpolation models do not take into
account the physical and biological features of the
pathological states of humain cardiovascular and
respiratory systems.

The systematization of the results of the above-
mentioned studies of the time domain suggests that the
existing mathematical models allow to synthesize the
cardio signal of a realistic form, considering it to be
stationary.

For cases of non-stationary signals, which is a cardio
signal, two approaches are used. First, the local Fourier
transformation, which is a traditional one, it results in a
frequency spectrum of the signal. In this case, the non-
stationary signal, as with the stationary, is pre-divided into
segments (windows) whose statistics do not change over
time. The disadvantage of the Fourier transformation is
that frequency components can not be localized over time,
that is why it is sometimes impossible to get exhaustive

signal information.The second approach is a wavelet
transformation. In this case, the non-stationary signal is
analyzed by decomposition of the basic functions obtained
from a certain prototype by compression, stretching and
shifts [19].

In cases where the heart rhythm is significantly non-
stationary, that may be due to random effects, the
most appropriate is the use of correlation analysis
methods [4].

In this article we propose to use another approach,
which is to consider the random process as a curve in a
special Hilbert space. [6, 7]. This approach was used in
the simulation modeling of non-stationary random
processes in the technique [20].

The study of random scalar processes as
mathematical objects of a rather complicated nature
essentially reduces to the application of already regular
functions. This allows the use of a well-designed
functional analysis apparatus, in particular the theory of
functional analysis and triangular models [21], for
constructing a correlation and spectral theory of non-
stationary random processes. The essence of the
proposed transformation is the variability of
cardiointervals as a random variable. With this approach,
the  correlation  function  of  the  dynamic
series of cardiointervals for the ideal ECG and the
one that is changed by this or that random process is
determined.

Given that the cardio signals include deterministic,
stochastic and chaotic components, this approach can be
used for the analysis and modeling of heart activity
processes.

The changing of the heart activity state in functional
samples can be monitored visually or automatically using
appropriate algorithms that take into account the non-
stationarity and the non-linearity of the process. The ECG
analysis can have an independent diagnostic and
prognostic value. In practice, the repetition of samples is
not always possible. Therefore, there is reason to believe
that it is important to build a mathematical model of non-
stationary process of heartactivity, it will allow the
simulation modeling of behavior of the heart in a variety
of influences, leading to significant variations in its
monitored parameter.

Purpose and objectives of the research

The purpose of the work is to develop a
mathematical model of non-stationary processes of heart
activity based on a triangular model.

To achieve this goal the following tasks were solved:

- give the description of the variability of the heart
rhythm as a non-stationary process in the Hilbert space in
terms of correlation functions;

- to study the possibility of constructing a correlation
and spectral theory of a non-stationary process using
triangular models for this;

-to construct a mathematical model of a non-
stationary process based on the correlation theory for
solving mathematical processing and prediction tasks
based on ECG data.
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Materials and methods for studying the variability of
the heart rhythm. Study of the random process in the
Hilbert space

The methods of mathematical statistics, simulation
modeling, theory of random processes and control theory
are used in this work.

The proposed method of using a triangular model
may be used in cases when on the background of
monotony of the rhythm there are sudden violations due to
recording defects, to the appearance of various noises or
to the occurrence of various types of arrhythmias, that can
be represented as random processes.

Since the correlation function K (t, s) is the kernel,
which determines the random process & (t) as a curve in
the Hilbert space, the characteristic properties & (t) are
found in the properties of the function K (t, s). The
stochastic process ¢ (t) generated by the Cauchy problem
is considered in this paper:

dé(t) _
T A(t)g(t)_

$0) = Z,

With certain restrictions on operator A (t), which is
convenient to formulate in terms of K (t, s), it is possible
to analyze the random process &(t). In applied problems
they arrive, more often, to partial differential equations for
the correlation function K(t, s). In this connection, the
classes of non-stationary evolutionarily depicted random
processes generated by the equations for correlation
functions are of interest, while non-linear evolution
operator equations are obtained for the operator A (t). The
solution of these equations explicitly gives the possibility
to obtain new spectral solutions of some classes of non-
stationary random curves.

Since the random process &(t) in the Hilbert space
H.,, then

1)

&) =e"£(0), )

so any stationary curve in this space has a represantation
(2), where A is a self-connected unbounded operator

[6, 22].
Suppose K (t, s) satisfies the equation
ot 0
——-— |K(t,s)=0. 3
(22 Juen o

For the ermitian integral of the function K (t, s) we
assume that the operator has form A(t) = iA. From the
definition for the correlation function K (t, s) [6, 22] and
expression (2) for the random process & (t) we have:

6(a<§<t),§(s)>
o°K _

ot ]z <(dA(t)

e p ot (t)jé(t),§(5)>, (4)

K dAES) |
= _<§(t),( o A (s))g(s)>. (5)

Then we get the ratio
<[‘(‘j—’f e (t)jf(t), §(s)> _ <5(t),(2—A s (s)jg’(s)>. ©)
S

Or
(B()E(L), £()) = (£(1), B(S)E(S)) »

where B(t):i—'?+ A’(t), which does not depend on t,

from the ratio (6) we get self-adjoint operator B = B*, and
for A(t) Riccati operator equation [23]:

—+A’=B. 7

o ()

Taking into account the previous assumptions, for

the random process ¢ (t) we have a differential equation of
second order with a constant operator coefficient:

d(S'®) d(A(t)Cf(t)):[dA(t)
d

t at

()= +A2(t)}s(t):sé(t). @)

If you use the spectral decomposition and look for a
solution of equation (7) in the form of

A= [ g(t, A)CE, | (9)

then for the function ¢ we obtain Riccati scalar equation,
the solution of which is a function which depend from the

spectrum of the operator the following form
#(t, 2) =J2thJat and, so
At) = | NAthJZtdE, | (10)

and for the random process &(t) from the equation (8) we
get the spectral expression

£ = | oA (), (11)

where dg(1) =dE,&,, that is {(t) — the standard curve in

space H with orthogonal increments.

From the ratio (9) we have representation for the
correlation function K(t, s):

If the operator B(t) > 0 in equation (8), then

Ae [O, +oo)

K(t,s) = %T[chﬁ(t—s)+chﬁ(t+s)}dp(z) (12

If the operator B(t) < 0, then A & (—x,0]
K(t,s)= %T [cosﬁ(t —s)+cos\A (t+ s)]dlf(/i) . (13)

where  AF(4) =(£(A1+A2)-¢(A).¢ (A+A2) =< (D)) ;
F(1)=-F(-2).

It should be determined that from the ratio (11), the
random process &(t) can be represented as the sum of two
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orthogonal random processes where &(t) =2 (t)+&£9(t),

£9(t) = chwatdg,(4) , €9 (1) = | chatde, (4).

Then, the correlation functions K(j)(t, s), (j = 1, 2)
are as follows (12) and (13) and

<§1(/1)’§2 (/1)> :0, ac ﬂe[o,-i-oo),

As an example, the case was considered when the
operator has the following form:

0 o, o
A=|-io, 0 o, (14)
—iw, —-iw, 0
where @, @, — some constant values, and

E)={1.@t), f,@t), f,(t)} — three-dimensional vector in
spacel®. The coordinates f,(t), (=123 satisfy the
following system of equations:

df
d—t1=—a)1(fl+ f,)

df
d_tz =of -of, (15)
df

d—s=0)1f1+(02f2

Then we have a matrix representation of the
dé AE

_|_
random process of appearance (2).
Since the operator A (t) does not depend on t, then
for the operator B (t) we obtain the following form:

expression the solution of which is a

2
20 0,0, -0,
_ 2 2 2
Btt)=| @, o +, @, (16)
2 2 2
-0,0, ; o + o,

The random process ¢ (t) set by the system (15) and
the operator B (t) satisfy the equation (8).

If you enter coordinates f,(t)=y(t), f,({t)=y(t),
f,(t)=v(t), where v() — "White noise", that is,
oscillation with any frequencies and phases [24], and give

T
constants ¢, = |2,

1

2
W, = , where T, T, — some time constants of the
2T, '

dynamic link, then the differentiation of the first line and
the substitution in it from the second and third lines of the
system (15) gives the equation

the following value to the

y) =——% y(t) —%

oT / T V(t)—?)/(t) \/;,’ T y().

T2Y(t) +T,y() + y(t) = v(t) ,

which defines the differential equation of the dynamic link
of the second order, the correlation function of the random
process y (1) is given by the formula (13).

In this case, for the operator A in the expression (2)
of the random process ¢ (t), the condition holds

I - A"A=(e,g) g, whereg — channel operator vector A.
After taking elemental calculations, we obtain that

82

—K(ts)-K(t, 5)=—((1-AA)EW).£(65)) . (17)

Since operator A is a quasionary operator of rank

r = 1, then for formula (17) there is a representation

o — i

—K(t,9)-K(t,5) =~p()(s) , where 4() = (€"&,9).

Using the expression of the matrix exponent of the
linear bounded operator A [6, 22], we obtain that

1 itA 2
¢(f)=—ggfe (&), f(M))dr,  (18)

f)=(A-11)"g,

where I' — an arbitrary closed loop that covers the whole
spectrum of the operator A.

If the model space is implemented as a Hilbert space
12, the operator is given as follows:

AN =210+ 3 ((DAA (K=IN). (9)

Thus, the matrix expression for the operator has the
form

A BB, 18,5
I I V¥
A= (20)
A
0 0
(e 0]
If you choose in this space the basis {h,} -1’

h ={1,0,0,..},h, ={0,1,0,...},.. h, ={0,0,...0,10,...} ...
Then the function ¢(t) can be represented in the
following form:

o= fo<k){—2iﬂi§ e“‘gk(z)dz},

(21)
.« _\1
where f (k) =(f,,h,), gk(ﬂ)=<(A*—}tlj g,hk>.
For further calculations,

an expression for the

resolvent of the operator is found A". Considering

o 710
R (ﬁ)z(A"—M] g=f,wegot

*
A
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k1A, —
- Aa

p

(22)

For the function g, (1) the following formula is
used (22):

— B 1l — z:ﬁm@ki'z
G- - @
Having added
, k-1 /’l
A(U_———Jmmz§e _AII—f—nz (24)
we got
#(0) = L&A 0. (25)

The formula (24) shows that the function Ak (t) is
uniquely constructed on the spectrum of the operator A,
and Ak (t) can be represented as

iljt

A®) =3P, 0", (26)

where B, ;(t)
point less than the multiplicity of the eigenvalue 4, .

Determination of the correlation function of the
random process
If the random process has the following look:

— a polynomial,the degree of which is one

it
st)=2%e 7,
where the average value of ¢ is zero, and 4, is a real

constant (/10 =ZO)

Such process describes the periodic oscillation of the
circular frequency 4, with a random amplitude and a
random phase. In this case

E(t) = £(& cos At + &, sin At)+i (& sin At —&, cos At ), (28)

where £=¢ —i-¢,.
The actual part of each implementation can be
represented by a sinusoidal of the following form

n(t) =asin(4t+6), a=,/e§f+§§ ,
& S -
—= —=2__, with a and 6
JE+E N&E+&E
varying from implementation to implementation.
For this case let's consider the model space 1%, and

(27)

where

sin@ = cosf =

the operator A in the form of: At = At. This is a case for

an operator with a discrete spectrum and, by the
expression (26), the A-function has the formof

A(t) = p,e”, where p, — constant value. Then for ¢(t)
we will get the following expression
¢(t) =G, poeimt = é,oeMOt :

Since ImA=0 and the operator A has
completeness, in this case it is a dissipative asymptotically
fading process, whose correlation function can be found
by the following formula

K(t,s) =be'" 0, (29)

where b is the mathematical expectation of the square of
the amplitude, proportional to the mean energy of the
oscillation per unit time.

It should be noted that the correlation function does
not depend on the statistical characteristics of the phase of
oscillation. It is obviously possible to show that any
stationary process can be obtained as a boundary of the
sequence of processes with a discrete spectrum. Thus,
each random process &(t) can be arbitrarily well
approximated by a linear combination of harmonic
oscillations. The random stationary processes of general
form are obtained by considering the linear combinations
of the processes of the type (27).

Having considered the processes that are the
superposition of n-random periodic oscillations with
different frequencies

E0=15e™ (30)
where M &1=M &2 =..
M &(t) = 0, we have

.= M &n=0, taking into account that

M§a+ﬂaﬁzmggjéw+
e e ®

k,m=1
(k::m)

n e—i(ﬂk —m)t+izk e )

In order for the random process (30) to be stationary
in the narrow sense, it is necessary that the last expression
i(%k=2m)t

(31) does not depend on t. As the functions e i

g k=)t (i 2 m) are linearly independent, there fore, this
expression does not depend on t, in case if M&E =0,

with k #m.
Thus, the random process (30) will be stationary, if

§k(k:1,_n) — are uncorrelated random variables with

value of zero. Consequently, &) describes the
superposition n of non-correlated (in particular,
independent) oscillations with different frequencies and
random amplitudes and phases.

Since the correlation function of the sum of
uncorrelated random processes is equal to the sum of the
correlation functions of these processes, then by virtue of
expression (29) for the correlation function of the
stationary random process (30) we have

Ka—g:équﬂ, (32)

where the coefficients b, > 0 determine the average energy
of the individual harmonic oscillations included in the

expression (30), and A — multitude {4}, in this case, is
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the spectrum of a random process. Considering in equality
(32) t—s=0, we have

K(0) = ibk . (33)

Thus, in the case of superpositions of the periodic
oscillations with uncorrelated amplitudes the middle
energy of the cardio pulse equals the sum of the energies
of certain periodic components.

In order for the process (30) to be valid, the number
n is to be pair (equal 2n) and 2j summands (30), must fall
into j pairs of complex additions. In this case
the random process &(t) can be represented in the
following form:

£ =X, (sin4t+4), (34)

where taking into account (28) M7, =0 at all index
Mnam =Mg,. ¢ =0a t#l, a
T ¢

————=—=, C0S6, = )
h]IZ +éf|2 /UIZ +é’|2

valuesk, land

Mnl =M¢P =b, sing =
3 =\ +¢7 (I:l,_n).

The correlation function (32) taking into account the
variable z = t — s can be represented as:
K(z)= ZJ;bI COSAT . (35)

1=1

The obtained theoretical conclusions provide the
basis for further simulation modeling.

Results of mathematical modeling of heart rhythm
variability

A computer simulation modeling method for heart
rhythm variability has been developed on the basis of the
mathematical model of the correlation function of the
non-stationary random process with a discrete spectrum.
A series of simulation experiments has been conducted to
confirm and statistically substantiate the adequacy of the
developed model. The heart rhythm system is a dynamic
system. The dynamics of heart rhythm changes is
constantly influenced by the central nervous system
(CNS) and the vegetative-vascular system (VVS),
respiratory  oscillations, blood oxygen saturation
and other characteristics [25]. The HRV signal can be
represented as a periodic curve formed by a common
overlay of  high-frequency and  low-frequency
oscillations.

If we assume that the input of the system simulating
the cardio signal is "white noise", then there is an
occasional process at the output reflecting the variability
of the heart rhythm.

Each implementationXv(t) of the random process &(t)
can be represented as follows:

X,®O=Y'O+Y, O, (36)
V=2, Y, () =Yasin(at+g)  (37)

where Y,(t) — an occasional process that is a particular
case of a random stochastic process with the value t = 0,
Y,'(t) — random process, and @, — initial phases. It is
proved that the correlation function of the stochastic
process X, (t) has the following form:

v

K (@) =[a a| cosat . (38)

2 10
+>2r
w=1

In [8] the connection between the correlation
function KX(z) of the random process &(t) and its spectral
density is considered SX(w). It is shown that the spectral
density SX(w) is equal to the square of the amplitude-
frequency characteristic of the link or system.

Using the mathematical model of heart rhythm
variability, presented in [25], with slight simplifications,
when simulating you should take into account the low-
frequency oscillations of the central nervous system to the
sinus node and oscillatory behavior of blood pressure.

Thus, the transfer function of the forming dynamic
system of cardiac pressure, which transforms the "white
noise” v(t) into a random process &(t), can be represented

k
(Tap? +T, +1)(Tip* +T,, +1)

W(p) = ., (39)

the spectral density has an analytical form
k2
2 2\? 22 22 \? v | (
(1-0'T2) +o le}[(l—w T2) +o TH}

Sx(p)= 40)
[

The result of the simulation of the influence of
random processes on the character of the VHR is
presented as a series of two vibrational dynamic links with

W,(p)=—— &

functions —_—
(Tip?+T,+1)

transmitting

W, (p) :( , equations of which are written

1
Tip* +T, +1)
in the form of:

{Tﬁym +T,y(0) + () =kv(t);

; ) (41)
T221X (t) +T22X (t) +X (t) = y(t)-

In the normal form the Cauchy system (41) looks

like:
Xl(t):Xz(t);
S W S IFY K-
X,(t) = T X, (t) TﬁxZ(t)JrTﬁ v(t); o
Xo(0) = X, () B
S N S Y k
X, (t) = Tzzlxs(t) T221X4(t)+T221X1(t)
where  x(t)=y(t), xO)=y(1), x(t)=X(),
X, (t) = X (t).

The solution of the system (42) uses the Runge-Kutta
method [18, 22]. This method has a high degree of
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accuracy and, despite its complexity, is the most suitable
for algorithmization. In addition, the important advantage
of this method is the possibility of applying an "alternate
step”.

The simulation of heart rhythm variability was
performed in Simulink / Matlab software using Runge-
Kutta 4th order method with variable step of integration.

The initial data were obtained by digitizing the real
ECG of seven patients from open PhysioNet cardiographic
libraries [26]. The simulation was carried out on samples
of duration T =10 s.

The temporary indices of artificial ECG series,
generated using the developed mathematical model [27],
are comparable to those of real ECG series with the same

spectral  characteristics,  therefore  the  obtained
models on this criterion can be considered substantial and
adequate.

The fig. 1 shows the synthesized ECG signals and
signal-noise functions: red lines — basic ECG signal, blue
lines - random signal.

According to fig. 1 and taking into account the
conclusions of Section 4, the correlation functions

obtained (fig.2) and the spectral density power
distribution functions (fig. 3).
Correlation ~ functions  for ECG  signals,

corresponding fig. 1, pictured on fig. 2.
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Fig. 1. Synthesized ECG signals and signal-noise functions: a — basic ECG signal excluding HRV and noise; b — ECG signal with a
change in cardiac rhythm in random law; ¢ — ECG signal with the addition of perturbation of the type of "white noise"
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The developed simulation model allows to consider
and to simulate a random process as a superposition of
elementary random variables for confirmation of
theoretical assumptions.

Discussion of the results of the study of the
influence of random processes on the variability of the
heart rhythm.

The obtained results of mathematical modeling
indicate that the proposed method for studying non-
stationary random processes can be used to simulate
random processes in cardio signals.

As a result, correlation functions have been obtained
for various random processes. Indeed, from the fig. 2, a
the correlation function is periodic with the period of R-R
interval, this allows to conclude that the correlation
coefficients approach the maximum value at the moments
of the R-deflections of the ECG.

With the appearance of the variability of the heart
rhythm, one can observe that the correlation function of
fig. 2, b has both positive and negative peaks with
oscillatory character of influence. This indicates the
presence of components with frequencies of 0.17-0.3 Hz,
reflecting the influence of sympathetic and
parasympathetic activity of the central nervous system.

The analysis of the correlation function, obtained
with the help of the triangular model, showed a high
sensitivity, even at noisy areas of the ECG, and allowed to
accurately identify the influence of both external and
internal factors on the humain heart rhythm.

It should be noted that during the modeling of the
effect of "white noise" (10-4 W) it was found that it does
not affect the distribution of power of spectral density.
The obtained result can be explained by the fact that its
spectral density is a constant throughout the frequency
range (fig. 3, b). The proposed method can be used when
the spectrum of the analyzed signal has clearly expressed
peaks. Indeed, in fig. 3, it is possible to observe the
presence of both low-frequency and high-frequency

C

sections in the distribution curve of the spectral density of
the simulated signal. This indicates the sensitivity of the
method in the analysis of the effects of both the
sympathetic and parasympathetic CNS branches on the
HRV. These parts correspond to the previous assumed
availability of oscillation circuits with different steady
time.

The direction of further research may relate to a
more detailed identification of the effects of random
processes on HRV, as well as methods of hardware
implementation of the determination of the parameters of
the ECG [28].

The proposed method opens up additional
possibilities for refinement and improvement of the
model, bringing it to the level of the maximum full
quantitative description of the experimental data.

Conclusions

1. It has been shown that the new approach to the
description of the HRV as a random process in the
application of the triangular model in the Hilbert space
made it possible to obtain expressions for the correlation
function.

2. The imitation simulation showed the sensitivity of
the method within the 5 % error rate under the conditions
of different types of influence on HRV. The qualitative
assessment of the possibilities of the proposed models to
generate artificial ECG provided the possibility of visual
analysis by the cardiologist of the identity of the
interpretation of real ECG records. The identities of
modeling results were checked on time samples of
electrocardiographs of 7 patients from open PhysioNet
cardiographic libraries on samples with the duration
T=10s.

3. The standard low-frequency oscillations and
"white noise" barrier are clearly differentiated on the
applied correlation function by the distribution of spectral
density power within the frequency range of 0,15-0,3 Hz.
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BUKOPVCTAHHS TPUKYTHUX MOJEJIE HECTAIIIOHAPHUX ITPOIIECIB
TP MO EJIIOBAHHI BAPIABEJIBHOCTI CEPIHEBOI'O PUTMY

IIpenMeT mociiKeHHS € MaTeMaTH4Ha MOJENb, sIKa ONHMCYE MPOLEC BapiabelbHOCTI CEpIieBOTO PUTMY, B OCHOBI SKOI JIGKHTH
BUKOPUCTAHHS TPUKYTHHUX MoJiejell HeCTal[lOHApHNUX BHIAJKOBUX MPOLECIB B TiNBOEPTOBOMY mpocTopi. MeTa MOCTIIKEHHS —
po3pobka MaTeMaTHYHOT MOJENI HECTAalliOHAPHUX MPOIECIB CepleBoi MisSUIHOCTI Ha OCHOBI TpuKyTHOI Mogemi. Ile mociimkeHHs
CTajyio OCHOBOIO I po3poOKu Mozen Matlab, 1o peainizye 3ampornoHOBaHUN METO I aHaJIi3y BapiaOeIbHOCTI CEPLIEBOTO PUTMY.
3aBaaHHA: JaTH OMUC BapiabeNBbHOCTI CEpPIIEBOTO PUTMY SK HECTAIiOHAPHOTO TPOIecy B TiOEPTOBOMY MPOCTOPI B TEpPMiHAX
KOpeILUIHHAX (YHKIIIH; JOCHIAUTH MOMIIMBICT TOOYIOBH KOPEIMIKHOI Ta CIIEKTPAIbHOI Teopii HECTAIl[iOHApHOTO MPOLECy 3
BUKOPUCTAHHSIM TPUKYTHUX MOJEINeH; CHHTe3yBaTH MaTeMaTHIHy MOJENh HECTAIIOHAPHOTO MTPOIeCy Ha OCHOBI KOPENAIiifHOI Teopil
JUIL po3B'sI3aHHSA 3a4ad MaTeMaTHuHol oOpoOkM i mporHo3yBanHs Ha ocHOBi ngaHux EKI. 3a momomororo 3amporoHOBaHOTO
MaTeMaTH4HOro Merony Oyia peaiizoBaHa Mojeir Matlab reneparopa cepieBoro curiaity, 1o ao3sonwio cuntedyBatn EKI 3
pI3HMMH TapamMeTpamMH MIiHJIHMBOCTI B yMOBax ImymMy. Y poOOTi BUKOPHUCTaHI METOAM MAaTEMAaTHYHOI CTATUCTHKH, IMITAIliiHOIrO
MO/ICIIIOBAHHSI, TEOPii BUMAJKOBHX IPOLECIB i Teopii ympasniHHA. Pe3yabTaTm mporo mocmimkeHHs taki: 1) Bynao mokasano, mo
HOBUH mifxix xo omucy BCP sk BHMagkoBOro mporecy Impu 3acTOCYBaHHI TPHKYTHOI MOJENi B TiTEOEPTOBOMY IPOCTOPI TO3BOJIUB
OTpHUMATH BUpa3H A KOpeIiiHoi QyHKIil. 2) ImiTaniliHe MoeIroBaHHS MOKa3ajao UyTIUBICTH METOMy B Mexkax 5% IIOMHIIOK B
yMoBax pi3HuX THmiB BBy Ha BCP. fIkicHa oIiHka MOXIJIHMBOCTEH NPOIIOHOBAaHMX Mojened it renepanii mrydnoi EKI™ Hagama
MOJKJIMBICTh Bi3yaJlbHOT'O aHAIli3y KapIioJoroM iIeHTHYHOCTi iHTepmpetamii peanbHux 3amuciB EKI. InmeHTHYHICTH pe3ynbraTiB
MOJICIIIOBaHHs Oyna TepeBipeHa Ha THUMYACOBHX BHOIpKax enekTpokapniorpadiB 7 mNamieHTIB 3 BIIKPUTHX KapriorpadidHux
6i6miorex PhysioNet Ha BuGipkax tpusanictio T = 10 c. 3) CranaapTHi HU3bKOYAaCTOTHI KOJMBaHHsA 1 6ap'ep "Oimoro mymy" 4iTko
TU(EPEHIIOITHCS 32 3aCTOCOBYBAHO KOPEIAIIIHHOT QYHKIIT 3 PO3MOAIIY MOTYKHOCTI CIIEKTPAILHOI NIUTBHOCTI B Jialla30Hi 4acToT
0,15-0,3 T'u. BucHoBoOk. Pe3ynpTaTéi MOJENIOBAHHS MiATBEPMIN IPAaBHIBHICTD TEOPETHYHHX BHCHOBKIB IPO MOXKJIHBICTH
BUKOPUCTAHHS MOJIeNeil, 3aCHOBaHNX Ha YSBJICHHI HECTAI[IOHAPHUX MTPOLECIB B TPUKYTHOMY T1iTEO€PTOBOMY IIPOCTOPI.

KnrouoBi cioBa: cepueBmii pUTM; HECTalliOHApHWI BHUIIAJKOBHI IIPOIEC; ENEKTPOKAPIIOCHTHAJN; KOpewAliifHa (YHKIiS;
TPUKYTHA MOJIEJIb; IMHTAIliI{HE MOJIETTIOBAHHSI.
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HCIOJb30BAHUE TPEYT'OJIbHBIX MOJEJEN HECTAIIMOHAPHBIX
IMPOLOECCOB ITPH MOJAEJIMPOBAHUU BAPUABEJIBHOCTH CEPAEYHOI'O
PUTMA

[peameT uccnenoBaHUs NPENCTABIAET COOOH MaTEMAaTHUECKYI0 MOJENb, OMHMCHIBAIOLIYIO IpOLECC BapHabEIbHOCTH CEPAEYHOTrO
pUTMa, B OCHOBE KOTOPOM JISKUT HCIIOIH30BAHHE TPEYTOJIBHBIX MOJEIEH HECTAlMOHAPHBIX CIYYaiHBIX MPOLECCOB B THILOEPTOBOM
npoctpancTse. Llesb nccnenoBanus — pa3paboTka MaTeMaTHYECKOW MOJIENM HECTALIMOHAPHBIX IPOLIECCOB CEPACUHON NESTENbHOCTH
Ha OCHOBE TPEYTOJIBHON MOJIEITH. DTO HCCIEIOBAHUE CTAJI0 OCHOBOM s pa3paboTku Matlab Mozenun, peanu3yromei mpeanoKeHHbIH
METOJA JJIsl aHalu3a BapuaOelbHOCTH CEpJCYHOTO PHTMA. 3aJadM: JaTh ONWCAHUEC BapHaOEIBHOCTH CEpJCYHOTO PHTMA Kak
HECTAI[MOHAPHOTO TPOIeCca B THIBOCPTOBOM MPOCTPAHCTBE B TEPMUHAX KOPPEILSIIUOHHBIX (DYHKIIHMIA; HCCIIECAOBATH BO3ZMOXKHOCTD
MMOCTPOCHUST KOPPEIAIUOHHON M CIEKTPAbHON TCOPUH HECTAMOHAPHOTO MPOIECCa C HCIOJIB30BAHUEM TPEYTOJIBHBIX MOJEICH;
CHHTE3UPOBATh MATEMAaTHYECKYI0 MOJENb HECTALMOHAPHOIO Mpoliecca Ha OCHOBE KOPPEISIMOHHOW TEOpUH [UI PEUICHUS 3a1ad
MaTeMaTH4eCKol 00pabOTKU U MPOTHO3UpOBaHus Ha ocHOBE MaHHBIX DKI'. C moMoIpio NpeasoKeHHOr0 MaTeMaTHYECKOTr0 METOAa
OblTa peaau3oBaHa Mojnelb Matlab reHeparopa cepAeYHOTO CHTHaja, 4YTO IO3BOJMWIO cUHTe3upoBaTh OKI' ¢ pa3audHbIMU
napamMeTpaMi U3MEHYMBOCTH B YCIOBHUAX IIyMa. B paGore mcronap30BaHBI METOAbI MAaTEMaTUYECKOH CTATUCTUKU, UMHUTAIIIOHHOTO
MOJICITUPOBAHYSI, TCOPUH CIYYaiHBIX MPOIECCOB M TECOPHH yIpaBlicHHs. Pe3yJbTaThl 3TOro uccienoBaHus cienyronmme: 1) Beuto
MMOKa3aHo, YTO HOBBIH Moaxo k onucanuio BCP kak ciydaiiHoro mporecca npu NPUMEHEHUH TPEYTOJIbHON MOJICIH B THILOSPTOBOM
MPOCTPAHCTBE MO3BOJIMI TOJYYUTh BBIPAKCHHS I KOPPEIIMOHHOW (yHKIMH. 2) VMHTaMOHHOE MOJCIMPOBAHUE IOKA3alIo
YYBCTBHUTEIILHOCTh METOJa B Mpenenax 5% ommOoK B YCIOBHAX pa3UuHBIX THIOB BiusHus Ha BCP. KauecTBeHHas oreHka
BO3MOXKHOCTEH TpejiaraeMbIX Mojelei uid rerepauun MckycctBeHHod DKIT mpemocTtaBuia BO3MOKHOCTh BH3YaJIbHOTO aHAJIM3a
KapIUOJOTOM HACHTHYHOCTH HHTepupeTannu peaidbHbIX 3amuceid OKI. WaeHTHYHOCTH pe3ynbTaTOB MOICTUPOBAaHUS ObLIa
MPOBEPEHA Ha BPEMEHHBIX BHIOOPKAX AJIEKTPOKapAHOrpadoB 7 MAMEHTOB M3 OTKPBITHIX Kapaunorpaduueckux oudmuorek PhysioNet
Ha BbIOOpKax muTenbHOCThIO T = 10 c. 3) CranmapTHble HH3KOYACTOTHBIC KojecOaHus W Oapbep "Oemoro mryma" dYeTKo
muddepeHIupyY0TCS N0 MPUMEHIEMOH KOPPEISIMUOHHON (YHKIUH IO PacIpelesIeHHI0 MOIIHOCTH CIEKTPAIFHOH IUIOTHOCTH B
nquanasose yactoT 0,15-0,3 I'n. 3aknouyenue. PesynbraTtel MoenupoBaHus NOATBEPIUIN IPABUIBHOCTh TEOPETUUECKUX BBIBOJOB O
BO3MOXXHOCTH HCIIOJIb30BaHHUS MOJICNICH, OCHOBAaHHBIX Ha MPEJCTABICHUMA HECTAIIMOHAPHBIX TMPOIECCOB B TPEYroJbHOM
THIILOEPTOBOM IIPOCTPAHCTBE.
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