MATRIX-STRUCTURAL ANALYSIS OF THE STRESS-DEFORMED STATUS OF THE FLEXIBLE INTERFACES AND MEMS COMPONENTS

Authors

DOI:

https://doi.org/10.30837/2522-9818.2020.11.122

Keywords:

microelectromechanical systems, interconnections, finite element method, stress-strain state, deformation, displacement

Abstract

The designs of modern electronic technology are complex mechanical systems with many rigid bonds, and their microminiature in many cases has reached the physical limit of the dimensional, charge and energy quantization of components. For such mechanical systems, with non-classical methods for mechanics of fastening of separate structural elements, it is difficult to build a design model, simple enough and at the same time one that well reflects physical and dynamic properties. To ensure mechanical strength of interconnects and ultra-thin electronic components, it is necessary to determine the stress-strain state of structural elements. These reasons necessitate the use of numerical methods to calculate the dynamic parameters of the design of electronic equipment interconnections, which will improve the reliability of the developed tools that meet the requirements of regulatory technical documentation on mechanical characteristics, shorten the time and cost of their creation. Subject matter of this work is the study of beam deformation of constant cross section under the action of axial forces, bending moments and torque relative to the longitudinal axis. Goal this work is to determine the deformation of the elements of the structure of the devices using the stiffness matrix with a known vector of external forces. To achieve this goal, it is necessary to solve the following tasks: to consider the existing methods of description and analysis, which take into account the specificity of the structures and technological processes used to manufacture specific structures MEMS; explore the nature of these methods; calculate displacements and deformations using the finite element method; using the stiffness matrix to determine the deformation of the structural elements of the devices; to calculate the deformation of the beam of constant cross-section under the action of axial forces, bending moments and torque relative to the longitudinal axis. Conclusions: stiffness matrix, constructed using functional analysis, allows for the calculation of deformation of MEMS elements and electronic interconnect flexible.

Author Biographies

Igor Nevliudov, Kharkiv National University of Radio Electronics

Doctor of Sciences (Engineering), Professor, Head of the Department of Computer-Integrated Technologies, Automation and Mechatronics

Nataliia Demska, Kharkiv National University of Radio Electronics

Senior Lecturer of the Department of Computer-Integrated Technologies, Automation and Mechatronics

Victor Palagin, Kharkiv National University of Radio Electronics

Doctor of Sciences (Engineering), Associate Professor, Professor of the Department of Computer-Integrated Technologies, Automation and Mechatronics

Irina Botsman, Kharkiv National University of Radio Electronics

PhD (Engineering Sciences), Associate Professor of the Department of Computer-Integrated Technologies, Automation and Mechatronics

References

Nevliudov, I. Sh., Ponomarova, H. V., Bortnikova, V. O. (2018), "MEM аccelerometers production technological process simulation" ["Imitatsiina model tekhnolohichnoho protsesu vyhotovlennia mikroelektromekhanichnykh akselerometriv"], Scientific notes of Taurida National V.I. Vernadsky University". Series : Technical Sciences, Vol. 29 (68), Part 1, No. 1, P. 204–210.

Pupena, O. M., Elperin, I. V., Mirkevych, R. M. (2017), "Modern standards of integrated management and ways of their implementation in Ukraine" ["Suchasni standarty intehrovanoho keruvannia i shliakhy yikh vprovadzhennia v Ukraini"], Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii, Vol. 23, No. 1, Р. 25–41.

Gong, N. W. (2013) "Design and applications of inkjet-printed flexible sensate surfaces", Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/91434

Wong, W. S., Salleo, A. (ed.) (2009), Flexible electronics: materials and applications, Springer Science & Business Media, Vol. 11, 461 p. DOI: https://doi.org/10.1007/978-0-387-74363-9

https://www.scopus.com/authid/detail.uri?authorId=6701370245&eid=2-s2.0-85021303139">Timoshenkov, S., https://www.scopus.com/authid/detail.uri?authorId=7005901413&eid=2-s2.0-85021303139">Kalugin, V., https://www.scopus.com/authid/detail.uri?authorId=55316511700&eid=2-s2.0-85021303139">Korobova, N., https://www.scopus.com/authid/detail.uri?authorId=56521113100&eid=2-s2.0-85021303139">Shalimov, A., https://www.scopus.com/authid/detail.uri?authorId=57194624033&eid=2-s2.0-85021303139">Kalmikov, D., https://www.scopus.com/authid/detail.uri?authorId=57194624125&eid=2-s2.0-85021303139">Golovinsky, M., https://www.scopus.com/authid/detail.uri?authorId=57194243453&eid=2-s2.0-85021303139">Aung, K.M., https://www.scopus.com/authid/detail.uri?authorId=57194624541&eid=2-s2.0-85021303139">Zhora, V., https://www.scopus.com/authid/detail.uri?authorId=14032014300&eid=2-s2.0-85021303139">Plis, N. (2017), "Providing of MEMS inclinometer operation under external influencing factors ", Paper presented at the 2017 IEEE 37th International Conference on Electronics and Nanotechnology, ELNANO 2017, Proceedings, P. 88–91. DOI: 10.1109/ELNANO.2017.7939721

Nevliudov, I. Sh., Razumov-Fryziuk, Ye. A., Demska, N. P., Hurina D. V. (2017), "Influence of mechanical stresses on the possibility of miniaturization of flexible structures of electronic equipment on the example of ZIF connector" ["Analiz vplyvu mekhanichnykh napruzhen na mozhlyvist miniatiuryzatsii hnuchkykh struktur elektronnoi tekhniky na prykladi ZIF z’iednuvacha"], Problemy tertia ta znoshuvannia, No. 3 (76), Р. 74–80. DOI: 10.18372/0370-2197.3(76).11953

Davydovskyi, Y., Reva, O., Artiukh, O., Kosenko, V. (2019) "Simulation of computer network load parameters over a given period of time", Innovative Technologies and Scientific Solutions for Industries, No. 3 (9), P. 72–80. DOI: https://doi.org/10.30837/2522-9818.2019.9.072

Palagin, V., Razumov-Fryziuk, I., Botsman, I., & Nevliudova, V. (2018), "Development of multi-probe connecting deviceson flexible polyimide base for MEMS components testing ", Paper presented at the 2018 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018, Proceedings, P. 232–235. DOI: 10.1109/MEMSTECH.2018.8365740

Nevliudov, I. S., Borshchov, V. M., Palagin, V. A., Razumov-Fryziuk, I. A., Tymchuk, I. T., Nevliudova, V. V., & Petrova, A. Y. (2019), "Mathematical model of bending two-layer film aluminium-polyimide structure due to temperature changes", Functional Materials, No. 26 (2), Р. 342–346. DOI: 10.15407/fm26.02.342

Nevliudov, I. Sh., Palahin, V. A. (2017), Microsystem technology and nanotechnology [Mikrosystemna tekhnika ta nanotekhnolohii], Kyiv, NAU, 528 p.

Hantmakher, F. R. (2001), Lectures on analytical mechanics [Lektsyy po analytycheskoi mekhanyke], Moscow, Fyzmatlyt, 264 р.

Pavlovskyi, M. A., Putiata, T. V. (1985), Theoretical mechanics [Teoretycheskaia mekhanyka], Kyiv, Vyshcha shkola, 478 р.

Przemieniecki, J., Przemieniecki, S. (1968), Theory of matrix structural analysis, Vol. 1, New York : McGraw-Hill, 501 р.

Bobalo, Yu. Ya Volochii., B. Yu., Lozynskyi, O. Yu., Mandzii, B. A., Ozirkovskyi, L. D., Fedasiuk, D. V., Shcherbovskykh, S. V., Yakovyna, V. S. (2013), Mathematical models and methods of reliability analysis of radio-electronic, electrotechnical and software systems [Matematychni modeli ta metody analizu nadiinosti radioelektronnykh, elektrotekhnichnykh ta prohramnykh system] : monograph, Lviv, Vydavnytstvo Lvivskoi politekhniky, 300 р.

Hancq, D. A., Walters, A. J., Beuth, J. L. (2000), "Development of an object-oriented fatigue tool", Engineering with computers, Vol. 16, No. 2, P. 131–144. DOI: https://doi.org/10.1007/s003660070016

Nevlyudov, I., Palagin, V., & Botsman, I. (2017), "The general principles of electromagnetic compatibility improving with microsystem technology using", Paper presented at the 2016 3rd International Scientific-Practical Conference Problems of Infocommunications Science and Technology, PIC S and T 2016, Proceedings, P. 237-238. DOI: 10.1109/INFOCOMMST.2016.7905393.

Balan, N. N. (2004), "Determination of the elastic properties of movable elements of MEMS structures" ["Opredelenye upruhykh svoistv podvyzhnykh elementov MEMS-struktur"], Nano-y mykrosystemnaia tekhnyka, No. 2, P. 14–19.

Tesliuk, V M. (2011) Automation of MEMS design at the component level [Avtomatyzatsiia proektuvannia MEMS na komponentnomu rivni], Lviv, Vydavnytstvo "Lvivska politekhnika", 192 р.

Woinowsky-Krieger, S. (1956), "Über die verwendung von bipolarkoordinaten zur lösung einiger probleme der plattenbiegung", Ingenieur-Archiv, No. 24 (1), P. 47–52. DOI: 10.1007/BF00536955.

Nevliudov, I., Razumov-Fryziuk, Ie., Palagin, V. (2017), "Improved reliability of interconnects of electronics components", Paper presented at the 2nd International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo 2017, Proceedings, P. 1–5. DOI: 10.1109/UkrMiCo.2017.8095396.

How to Cite

Nevliudov, I., Demska, N., Palagin, V., & Botsman, I. (2020). MATRIX-STRUCTURAL ANALYSIS OF THE STRESS-DEFORMED STATUS OF THE FLEXIBLE INTERFACES AND MEMS COMPONENTS. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1 (11), 122–133. https://doi.org/10.30837/2522-9818.2020.11.122

Issue

Section

ENGINEERING & INDUSTRIAL TECHNOLOGY