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METRICS FOR EVALUATING CONSISTENCY IN DISTRIBUTED DATASTORES

The subject of the paper is metrics for evaluating consistency of distributed datastore as one of main CAP-guarantees, more precisely,
criteria for reliable distributed datastore. The goal of the research is investigation of the ability to develop such a program on the
earlier stage of building distributed network and build some components of decision-making algorithm, which purpose is to build
optimal network topology. This decision-making algorithm should be suitable for any business model and its requirements. To be
more detailed, for that purpose the following tasks had been done: mathematical model for stochastic metric for consistency in
distributed datastore is built; the conditions of consistency convergence time are investigated in initial perfect datastore environment.
Methods used are: theory of number partitions, basics from graph theory and probability theory, computer modeling and program for
running sets of experiments. As a result, it is established that in the conditions of data loss absence the consistency convergence after
first write request is equal or less than diameter of graph that represents topology of distributed network. Such convergence has the
same unit of measure as the link cost of each link in the network; the stochastic model is proposed for metric to evaluate consistency.
Making a final conclusion, this will give the opportunity to investigate or monitor the current state of the system in the given time
interval. This research is the base to form some elements of decision-making algorithm for building topology in a distributed network
and the elements of the algorithm for monitoring such a system. Also, based on trends of requests frequency of data modification and
reading, the strategy of nodes allocation in the topology is suggested, which can improve the response time and speed of convergence
of the distributed storage to the fully consistent or close to that state. The practical role of the components of the decision-making
algorithm is that the network architect could apply the algorithm at the stage of building the network for a distributed database, so that
CAP characteristics will be optimized in the context of specific business needs. The mathematical model for the stochastic metric of
distributed storage consistency can be applied both at the system design stage, for testing the satisfactory level of consistency, and at

the system operation stage, as a component of the network monitoring system.
Keywords: distributed datastore; response time; CAP-theorem; stochastic consistency metric; methods of building distributed

network.

Introduction

In the epoch of popular usage of IoT, Big Data,
Cloud Computing, the data become more and more
important thing and require larger, more reliable storage
[1]. This leads to increasing size of distributed storages.
They become bigger and require the huge network across
all the distributed nodes. But there are several unsolved
problems using large distributed datastores and some of
them tied to the CAP-theorem.

Given that the ACID strategy cannot be supported
for systems of this class, mechanisms for delivering data
across distributed storage still lack fast eventual
consistency convergence, reliability and tolerance to
network partitions (basic factors of the reliable datastore
that are defined in [2]).

In this paper we concentrate on efficient and widely
used consistency model - BASE (Basically Available, Soft
State, Eventual Consistency), specifically, on eventual
consistency as one of the component of this model.

Problem statement

For that we propose stochastic metric for eventual
consistency / inconsistency instead of binary one.

Also, we would like to know if it is possible to find
the optimal interval between writable operations occurring
on distributed systems so that system can eventually be
consistent in that interval. To achieve that, we develop
consistency model defined in the previous paper (analyzed
and referenced in the next section) and extend by the
formula of inconsistency metric for a distributed datastore.
Then we approximate the time that is needed for
consistency convergence — state of the distributed system
when all nodes have consistent replicas. Afterwards, we
conduct experiments that prove the correctness of metric
defined in previous section. Finally, we provide diagrams
of the implemented application that we use for carrying
out experiments and make some assumptions for decision-
making algorithm for building optimal network topology
for a distributed datastore that is the goal of the current
research.

Analysis of related research

Supporting replicas of an evolving distributed system
up-to-date in the conditions of BASE is important, but
hard problem. Thus, we need to provide a set of indicators
of main characteristics of the distributed data store to
assess the risk of a wrong decision because of the data
inconsistency or unavailability.

In this work, we focus our study on the problem of
metrics investigation for evaluating data consistency in a
distributed data store. We want to demonstrate the useful
concept of defining the consistency metric as stochastic
value and abilities that it gives so far.

During the latest decade the problem of scaling
distributed systems and their effectiveness is investigated
quite deeply. The evaluation of scaling such systems and
its reasonability is presented in [1]. But needs for storing
more data are growing fast and new research works are
needed.

In [3] mainly used models for such systems and its
comparative characteristics was considered (ACID and
BASE). But here appears some problem. Historically,
before final proof of CAP-theorem Eric Brewer had been
investigating the opportunity of strong consistent, highly
available and partition-tolerant distributed datastore and
made a CAP-hypothesis [4]. The formal proof of the
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theorem had been presented
clarifications appeared in 2012 [6].
This theorem became one of important blockers on
the step of distributed datastores enhancement and the
theorem and BASE and ACID models has been deeply
investigated during 15 years [3]. Since lots of systems
have chosen BASE model, sacrificing strong consistency
and durability, eventual consistency was deeply analyzed
in [7]. The problem of that it is impossible to fulfill
consistency, partition tolerance and availability, is also
investigated in [8]. There it is considered if there is an
ability to reach a trade-off between AP (availability,
partition tolerance), CP (consistency, partition tolerance)
and CA. This work is mainly devoted to the analysis of
theorem, but it does not declare the formal model for
methods overcoming the problem. Microsoft came closer
and had developed algorithms for maintaining strong
consistency in [9]. But the problem is investigated in the
conditions of about 15 nodes in a system and scaling in
this paper seems to be for the future work. Also, in [10]
the problem of replicas conflicts is investigated in
conditions of parallel write requests to many nodes.
Methods of evaluating of consistency metrics have been
defined in [14] and the methods of improvement of
consistency state value have been proposed in [15].

in 2002 [5], some

Materials and methods

In the previous paper [11] we considered the metrics
for all three elements of CAP-theorem. Now our paper is
mainly devoted to consistency question and how fast it
can converge. From that paper we are taking the
developed mathematical model and expand it with
elements, needed for the current research. We specify this
model as

(N,L,0,D,r,N,,I(Ny).n.), (1)

where N — finite set of nodes in a datastore; L — finite set

of links in a datastore; 8:L — 2N — mapping where each
link is associated with two adjacent nodes; D — finite set

of stored data units; r:D—>2N - mapping that
associates each of data unit to a set of nodes that store the
replica of this data unit; Ny — finite set of nodes that store

the given data unit d; I(Ng) — the number of nodes that
store data unit d; n, — the number of nodes in a subset
Ng , where all the nodes have the same version of replica.

So, we expanded the model now with three last
assumptions above.

Our mathematical model for inconsistency | will be
able to define the inconsistency state of distributed
datastore (see (1)), and afterwards will focus on time
which distributed datastore require to become fully
consistent. Further we call it consistency convergence
time.

For this metric we created the probabilistic event
taking two random nodes from the set N, they can be

consistent with some probability. Carrying out this event

many times, we can obtain the average probability of that
two nodes will be consistent.
Thus, we have the following sample space:

0={0,0,1,0,1,0,1,1,0,1,1,...}, )

where 0 denotes the event when two nodes are consistent
and 1, on the contrary, when two nodes are inconsistent.
Also let's claim that p is the probability that two nodes
are consistent, and q=1-p - the probability that two
nodes are inconsistent. So, we introduce the stochastic
metrics for inconsistency/consistency instead of binary
ones. Carrying out experiments, we will "freeze" the
simulated distributed datastore and time of that "freezing"
we call time t. Thus, we will be able to investigate the
current state of the system. Let's denote | as a value
calculated by probabilistic formula. We are thinking that
having this formula will help us to eventually fully specify
the mathematical model for consistency, so let it be one of
mathematical model components. So, the probability of
that two nodes taken at random are from consistent subset
is

— N . n -1 — nc*(nc_l)
I(Ng) I(Ng)=-1 I(Ng)*(I(Ng) =D’

where n; is length of consistent subset in the system at

time t.
Obviously, inconsistency probability then is

n. *(n. —1)
I(Ng)*(I(Ng)-1)
Taking into account that minimum number of

consistent nodes will be equal to 1, and the maximum
number of consistent nodes is equal to I(Ny), we have
following consequences:

Two nodes are inconsistent if p;; =1.

Two nodes are consistent if p;, =0.

We developed the inconsistency formula for two
nodes. Let's now extend it to more general one. We still
suppose that a data unit is represented by replicas on Ny
servers. Let's denote it as temporary N .

Let we have K classes of mutually consistent
replicas. Then we denote by N, a number of replicas in

Pc @)

p=1-p=1- *)

k™ consistency class (1<k <K). It is evident that
Ny >0 for all k=1,...,K and N =N;+...+N,. Such

representations N =N;+...+ Ny are called integer
partitions. Thus, in this case any integer partition

describes some inconsistency state. We take integer
partitions well-known example from [12] book.
Example. All integer partitions for 5 (5) are
5 4+1
3+1+1 2+2+1
1+1+1+1+1

3+2
2+1+1+1
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into  account  this  consideration
inconsistency metric  for a data
term of the corresponding integer
partition. Let’s suppose that the studied data
unit d is  represented by N replicas,
which are being described by the integer partition
N=N;,...,Mg.

Then the inconsistency metric 1(d) is defined by the

formula

Taking
we define
unit in the

1(d)=1- g':l((;k D ®)

Let’s look at one more example:

Example. Let us suppose that a data unit U are
being stored on five servers. Then the corresponding
inconsistency states (see Example (5)) have the following

values of the inconsistency metric (6)
1(5)=0
2 3
1(4+) == 1(3+2)=—
(4+1) c 3+2) c

7
1(3+1+1)=— 12+2+1)=—
( ) 10 ( )

9 I1+1+1+1+1) =1
|(2+1+1+1):E

The meaning of 1(d) is the value of probability to

establish the fact of inconsistency by the way of
comparison two randomly chosen replicas.

Example (7) demonstrates that the proposed
metric is equal to 0 for the absolutely consistent
data unit (the case with 5 partitions) and is
equal to 1 for the absolutely inconsistent
data wunit (the case 1+1+1+1+1 partitions) in the
subset Ny .

Now we are interested to calculate the time that can

be taken for consistency convergence. We want to prove
the following:

Proposition. Let we have a distributed datastore
where all links are available and reliable (network
partitions do not happen in a datastore and nodes are
stable and respond in approximately equal time); the
interval between writing operations is t, . If and only if

such input conditions are met, then t, is less than the

diameter of network graph ensures eventual consistency of
the datastore.  (7)

Proof. Let us denote as T, time for consistency

convergence (time that is needed for the whole
system to become consistent). Let we have

the trivial network where all links have link
cost 1. Thus, as the input we have the connected graph G
with set of nodes N and set of edges E . Let us assume
now that weight of each edge eeE satisfies
the equality

w(e) =1. (8)

Let us take the nodes n; and n, that are at the
largest distance each from other. So we can count that the
time of delivering replica between n, and n, is the
shortest path from n; to n,. Extrapolating this to all the

system and taking into account that in the distributed
datastore nodes are broadcasting each to other in parallel,
we obtain the upper boundary of T, is the maximum of
shortest paths in the worst case. It is well-known that such
maximum is diameter of the graph satisfies the
definition of graph diameter. (see [13]). So, then we can
conclude:

T, = diameter (G) 9

Let us complicate the system introducing the
different link cost for links in distributed datastore that
means that now our graph G is weighted and w(e) e N

forall ecE.
Thus, the diameter is the path P =[e,....e,] where ¢
has own weight and

(10)

where w; is the weight of edge e; of the path P. T, is

the number of time slots that a datastore requires to
become fully consistent. This means that after T, time

points, all replicas become consistent. This also means
that a datastore is again available to accept writing
requests, so that datastore will be able to store all the
replicas passed before, and no accidental updating happen
in the meantime.

Case Study

The study in the previous section had
been checked by the following experimentation: we
implemented a code that allows to test the
accuracy of the inconsistency metric. Probability intervals
for different partitions are demonstrating that
the formula is correct — values obtained are around values
obtained  theoretically. To be more intuitive
we took the same number of nodes and same
partitions. It is obviously that we do not have exact
matching, because the experiment is based on number of
iterations where two nodes are taken from a given set of
nodes randomly, but all we need is that value should vary
slightly around theoretical value. Look in the figures
below:
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Fig. 1. Datastore is fully inconsistent and datastore is fully consistent

1(d)

Firstly, it can be seen that for one consistent partition
is equal to 0 and when the system is fully

inconsistent 1(d) is equal to 1 (see in fig. 1).

and

10

Let us compare now the situation when we have two
consistent partitions: the set which contains 2 and 3 nodes
that consistent in the own subset, and the set with 4 and 1-
length consistent subsets (see results in fig. 2).

1.0
o8 = 0.8
;;()‘2 %;0.2*
0.0 T T T T T T T T T 0.0 T
o 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Fig. 2. The datastore has two consistent partitions: (1,4) and (2,3)
Then we can easily see that: and
|(3,2):1_£_£:§, (11) |(2,2,1):1_ﬂ_ﬂ_ﬂ:f. (14)
54 5.4 5 54 5.4 5.4 5
And the final one:
4.3 1.0 2
14)=1-——-—=—. (12) 21 1.0 9
. . 12,,1,)=1-—-3-=—=—. 15
54 54 5 @11 =1-c= =371 (15)

Following this procedure for three consistent

partitions (presented in fig. 3) in Ny :
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See results in fig. 4.

10

o
=3

| vt M A g

0.8011249999909899
o
o

o
s

({1, 2, 2}

o
[N

0.0

Fig. 3. The datastore has three consistent partitions: (1,1,3) and (1,2,2)
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So, we had easily shown on a simple subset, that our
inconsistency metric value corresponds to theoretical one.
Now we present the graphic that demonstrates the verity
of that claim about that consistency convergence time T,

for graph G will be no greater than diameter of G .

WAA PRV A AN, e
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0.44

0.24

(1, 1,1 2N

0.0

I'_‘} 2|5 SID 7"5 160 155 150 11"5 260
Fig. 4. The datastore has four consistent partitions (1,1,1,4)

To be more intuitive, we carried out the set of
experiments on our simulation model: having simulated

distributed datastore, we easily could run the imitation of
one message broadcasting through the datastore and

calculate the number of time slots it is taking in the real
time. We have done it for graph with each edge of link
cost of 1. Below there are graphics for 100, 200, 1000
experiments respectively (see in fig. 5). We draw graphics
in the following manner: obtain the diameter of graph G
(ordinates) and calculated by the simulation T, (axis). We

can easily see that either we have the line demonstrating
that T, =D(G), or points that are showing that
T. <D(G).

So, now the case of an unweighted graph is
considered. But the general situation requires to consider
weighted one. In this case, weight of an edge means the
average time for delivering a message via the
corresponding link.

However, algorithms to simulate this case are more
complex. Therefore, this general case will be considered
in the future, expanding experiments for random regular
graph. Now we are able to present some results for
random regular graph, that substantiate our proposition
(1.8) in the general case (see in fig. 6). We can observe
that all points have a location in the graphics such that T,

is less or equal to D(G) for weighted random regular
graph.

16 . 16 ]
[ ] L} [ ]
144 . b b 144 . e = .
L [ ] L] [ ]
* * ° . ° . .
121 * » * °
. . ° . ° . 12 A . * ° . ° . .
04 @ L] . ] L] ® . L4 . . * L * .
g. » L] . [ [} gm » . * ® L] L) 1]
81 ® . . [ [ . [} [ *
* e . g1 e ® e ®
61 ® [ ] .
. ® ® ® N
4l 64 ® .
® [ ] L]
2 4{ ®
2 3 4 5 6 7 3 9 10 2 4 6 8 10
Tc Tc
16 ] * o L) ®
) e« & & & & 0o @ [
14 A * ° @ & ® ® °
® & & @& & ® ® 5 0° 0
121 @ & & @ ¢ & & & ®
e & & @ & & ® 8 o
Zio01 ® & e @ @ ® e ®
]
® & & & @& & @
81 ® o * @ e @ ®
* ¢ ¢ @
61 ® o @
* ¢ @
441 ®
2 4 6 8 10 12 14
Tc

Fig. 5. Graphics for consistency convergence time on non-weighted graph
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Fig. 6. Graphics for consistency convergence time on weighted graph

Simulation Model to Estimate Inconsistency Ratio of
Data. To carry out experiments, we needed to implement
the simulation model that will do experiment and calculate
all needed values. This model is implemented as a
computer program in Python language and available our
project page. We assume that it would be useful to present
the short class diagram for the simulation model (see fig. 7
below).

Also, we would like to present the state machine
diagram for the algorithm that was implemented to carry

DDSs

Base class for all
simulations

out experiments of consistency convergence estimation on
a distributed datastore (see fig. 8).

For experiment simulation we had chosen random
regular graph. During simulation we could see that for
degree great than 2, calculating the time-slots taken for
consistency convergence for one iteration, we can take a
minimum between paths to neighbors and it will be the
correct choice.

Because for regular graph if the path to another
neighbor is greater, there will be another path with lesser
link cost that will take less time to converge.

Y| initialize common instances
for experiments

ConsistentPartitions

DDSMessaging

- runs experiment for partitions
for a given datastore
- does necessary calculations

- simulates a datastore
- controls messages broadcasting
- does necessary calculations

Visualisation
- animate_graph
- draw_graph
- draw_graphics

o _calls
draw_graphics 7

<&~~~ ~ ariimate_graph.
draw_graph and

1

Icall to control
:a-:.tions on graph
jto visualize

GraphControlling

call

draw_graphics

Fig. 7. Class diagram for simulation model of a distributed datastore
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message incoming

W

current node = random node;
TS = 0; processed =[]

W

{add random node to prucessed]

W

length of processed <

neigbors = neighbors of ~]
cumrent node

¥
L TS += minllink costs between ]

source node and neighbors)

[ add neighbors to processed 1

o

W

new neighbors = neigbors of \I
for each of current neighbors J

J total number of nodes

length of processed ®
reached total number of nodes Y

Fig. 8. State machine of simulation of message broadcasting through a datastore

Based on the research of current paper we can make
following recommendations for those who build the
network topology of the distributed datastore:

- in the case of your datastore is a system with a
domination of read operations, it must be sufficient to
choose such network topology where frequency of write
operations will be no greater than diameter of the graph
representing network topology of a distributed datastore;

- if frequency of write operations is greater than the
diameter of the graph, it may be useful to evaluate current
inconsistency state of the graph;

- if inconsistency state is close to 0 enough for
current requirements, it means that there are inconsistent
nodes that are far enough to not conflict with new replicas.
Thus, developer or administrator of a datastore can choose
as source available for writing that node that is in
consistent list and far enough for inconsistent ones. But
for that developer needs to provide such an algorithm for a
datastore so that he will be able to obtain the current list of
consistent nodes;

- if still more strict consistency needs to be satisfied
and inconsistency state is close enough to 0, a developer
or administrator of a datastore can choose as source node
for writing the node closest to the source node where
previous write operation occurred,;

-if replica’s history is not important for
requirements, it may be possible to solve the problem
fixing conflicts. This problem has been investigated in the
paper [10].

Also, we would like to notice that the ways of
improving routing on some types of networks has already
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METPHUKH AJI51 OBUMCJIEHHS Y3TrOJKEHOCTI Y PO3INOALIEHUX
CXOBHIIAX JAHAX

ITpeaMeTOM IOCTIKSHHS CTaTTi € METPUKU IJIsi OOYMCIICHHS CTaHy Y3TO/DKEHOCTI Y PO3MOALICHOMY CXOBHILI JaHUX SIK OJHOT 3
HAWBAKITMBIIINX KPUTEPIiB HAIIHHOTO PO3MOMIIEHOrO CXOBHIINA AaHUX. MeT0 pPOOOTH € MOCHTIHKEHHS MOKIHUBOCTI PO3POOIICHHS
nporpamu, sika Oy/ie IpaIoBaTH Ha paHHIX eTarnax MpoeKTyBaHHs PO3MOALICHOI Mepexki Ta HoOyAyBaTH KOMIIOHEHTH IS aJlTOPHTMY
NPUHAHATTS pillieHb, METOI0 SIKOTO € MOOYIyBaHHS ONTHMAIBHOI TOMOJOTII Mepexi. Takuil aIropuTM Mae 3aJ0BOJIBHATH OYyab-SKY
Oi3Hec-Mozenb Ta ii motpebu. s mporo HacTymHi 3agadi Oyiu BHpIiNIeHi: MOOyIOBaHA MaTeMaTUYHA MOJENb IS CTOXACTHYHOL
METPHUKH OIIHIOBAaHHS CTaHY y3TO/DKEHOCTi, COPMOBaHi YMOBH IS 301KHOCTI Yacy y3rOKEHOCTI B TIOYaTKOBUX YMOBAX 1/1€alTbHOTO
CepeIOBHIIa PO3IO/IICHOr0 CXOBHIA. BUKOPHUCTaHI METOAM: TEOpis YMCIOBHUX PO3JiJieHb, 0a30Bi MOHATTI Ta (GopMmynu 3 Teopil
rpadiB Ta Teopil HMOBIPHOCTI, KOMII'IOTEPHE MOJCIIOBAHHS Ta IMporpamMa s IPOBEJCHHS EKCIepUMEHTIB. Sk pe3yibTar,
BCTaHOBJICHO, 1110 B YMOBaX CepeJoBHILa 0e3 BTpaT AaHUX 3HAUCHHs 30DKHOCTI CTaHy y3rOJDKEHOCTI MiCHs MEpIIOro 3aluTy Ha 3aIic
MeHIIe abo JopiBHIOE niamerpy rpady, mo BimoOpaxae Ttomosorito Mepexi. Take 3HaueHHs Mae Taky K caMy OJMHHIIIO
puMiproBaHHs, o i "link cost" kokHOTO 3B’s13Ky B Mepexi. Takoxk, MPOMOHOBAaHA CTOXAaCTHYHA MOJENb JJISI METPUKH OI[IHFOBaHHS
cTaHy y3rojpkeHocTi. Lle 1acTh MOXKIINBICTE MOHITOPHHTY IMOTOYHOTO CTaHy Y3TrO/PKEHOCTI CHCTEMH Y 33/laHOMy YaCOBOMY iHTepBaJli.
Le mocmimkeHHs € 6a30t0 A (GOPMYBaHHS €EMEHTIB alTOPUTMY NPUHHSATTS PIlICHb JUIS MOOYIOBH TOIOJOTII B PO3MOALICHIH
Mepexi Ta eJEMEHTIB alrOpUTMY MOHITOPHHIY cHCTeMH. TakoK, Ha OCHOBI YacTOTH 3allMTiB Ha 3allUC Ta YHTAHHS [aHHX,
NPOTMOHOBAHA CTPATETisl PO3TAIlyBaHHs BY3JIB y MEpexi, II0 MOXKE 3MEHIINTH 4Yac Ha BiJMOBiJb CHCTEMH, MOPIBHIHO, SIKIIO HE
BHKOPUCTOBYBAaTH L0 CTpaTerio. PoOJsYM BHCHOBOK, NMPAaKTHYHA POJIb KOMIIOHEHTIB alrOPUTMY MPUHHATTS pillleHb — J0MOMOra
apXiTEeKTOpY BEJIHMKOI PO3MOALICHOT MEpeXi CXOBHINA Ha eTami NMpoeKTyBaHHs, i sk pe3yibrat, CAP-xapakrepucTuku OyIyTh
3a/I0BUIBHCHI ONTHMAJBHO 11 KOHKPETHHX Oi3Hec-moTped. MaTemMaTHdHa MOJENb Ul CTOXAaCTHYHOI METPUKM OLiHIOBaHHS




ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2020. No. 2 (12)

Y3TOKEHOCTI PO3MOALTICHOTO CXOBHUINA MOKe OyTH 3aCTOCOBAHA SK 1 Ha eTali IPOCKTYBaHHS CUCTEMH, U1 TECTYBaHHS 3310BUILHOTO
PIBHS Y3rOo/UKEHOCTI, TaK i Ha eTali onepamiifHol MiATPIMKI CHCTEMH Y SKOCTI KOMIOHEHTa MOHITOPHHTY.

KmiouoBi ciaoBa: posnoxineHi cxoBumia; 4ac Ha BigmoBigs; CAP-Teopema; croxacTMUHa METpPHKa Y3TOMKEHOCTi; METOIU
o0y {yBaHHS PO3MOALICHOT MEpexKi.

METPUKH JIJI1 BRIYACJIIEHUA COTJIACOBAHHOCTH B PACIIPEJEJIEHHBIX

IIpeamerom uccienoBaHUs SBISIOTCA METPUKU U BBIYUCICHHSA COCTOSIHUS COIVIACOBAHHOCTU B PACHPEACICHHOM XpaHWIMIIE
JAHHBIX KaK OJHM M3 BAXHEHIIMX KPUTEPUEB HAAEKHOIO pachpeieneHHoro xpaHuiuima. ILleqb paboThl — HCCIETOBAHHA

BO3MOXKHOCTH Pa3pabOTKH MpOrpaMMbl, KOTopas OyneT paboTaTh Ha PaHHMX 3Talax HPOSKTHPOBAHHUS PACIPE/CTICHHON CeTH U
MOCTPOUTH KOMIIOHEHTBI JUISl alTOPUTMA NIPUHATHS PEIICHHS, KOTOPbI CTPOUT ONTHMAIIBHYIO TONOJIOTH0. TaKo# alrOpuT™ OIKEH
YAOBIETBOPATH TpeOOBaHMs JIt000i Om3Hec-monmenu. sl 3TOTo ClieAyromue 3aJa4yM ObUIM PELIeHBI: MOCTPOCHA MaTeMaTHYeCKast
MOJIEb JUISl CTOXACTHYECKOH METPUKH OIEHKH COCTOSHHMS COTJIACOBAaHHOCTH, C(HOPMHUPOBAHBI YCIOBHS JUII BPEMEHH CXOJIUMOCTH
COTJIACOBAHHOCTH B HAYaJbHBIX YCIOBHSAX HICATEHOTO OKPYXKEHHsS paclpelelIeHHOTO XpaHWIHNIIA. VICIoib30BaHbI ClieyIoIue
METOABI. TEOPHS YHCIIOBBIX Pa3JieNeHni, 6a30BbIe MOHATUS TEOPHUH rPpa)OB M TEOPUH BEPOSITHOCTH, KOMIBIOTEPHOE MOAEIUPOBAHNE
U KOMIIBIOTEpHasi IporpaMma JUisl NMPOBEAEHHs SKCIEPHMEHTOB. Kak pe3y/bTaT yCTaHOBICHO, YTO B YCIOBHSX OKpY)XEHHS Oe3
[OTEPh AHHBIX 3HAYCHUS BPEMEHU CXOJMMOCTH COCTOSHHUS COIVIACOBAHHOCTH IIOCJIE NEPBOTO 3alpoca Ha 3allUCh MEHBIIE HIH
paBHsIETCsI quaMeTpy rpada, KOTOphIi 0TOOpaKaeT TOMOJOTHIO ceTh. Takoe 3HaUueHHE UMEET Ty JKe eUHHIYY u3Mepenus, 4to u "link
cost" kaxmoit cBs3u B ceTu. Taroke, MPEeIOKEHA CTOXaCTHYECKash MOAEIb Ul METPUKH OLICHUBAHMS COCTOSIHUSI COTJIACOBAHHOCTH,
YTO JIaCT BO3MO)KHOCTh MOHHUTOPHHTIA TEKYLIEr0 COCTOSIHHUS COTJIACOBAHHOCTHU B 33JJaHHOM 4aCOBOM MPOMEXYTKE. DTO HCCIIEI0OBaHUE
sIBIIsIeTCsl 0a30H Il (POPMHUPOBAHHS DJIEMEHTOB aJTOPUTMA NPHHSTHS PEIICHU IS TOCTPOCHNUS TOTIOJIOTHH PACIIPEICIICHHON CeTH U
9JIEMEHTOB aJITrOPUTMa MOHHMTOPHHIA CHUCTEMBL. Takke, Ha OCHOBE YacTOTHI 3allPOCOB Ha 3aIliCh W YTEHHE JAHHBIX, NPEIJIOKEHa
CTpaTerust PacrojOKeHUsI y3JI0B B CETH, YTO MOXKET COKPAaTHTh BpeMs Ha OTBET OT CHCTEMBI IIOJb30BATENI0, B CPaBHEHHU C
CHUTYyaIMell HeHCIIOJIb30BaHUs 3TOH cTpaTeruu. /lenast BBIBOABI, IIPAKTHYECKas POJIb KOMIIOHEHTOB alTOpUTMa NPUHATHS PEIIeHHi —
TIOMOIIb apXUTEKTOPY OOJNBINON CeTH pacrpeneneHHOW 0a3bl TaHHBIX Ha JTale MPOCKTHpOBaHWS, B ciexctBun dero CAP-
XapaKTepUCTUKH OyayT ONTHMAJIbHO COaJaHCHUPOBAaHBI Ul KOHKPETHBIX OHM3Hec-TpeOoBaHMil. MaTemaTHueckas MOJAEIb UL
CTOXAaCTHYECKOH METPUKHM OLICHHBAHHUS PACIPEIECHHOTO XPaHWIMIA MOXET OBITh NPUMEHEHA KaK Ha JTale MPOCKTUPOBAHUS
CHCTEMBI, @ UMEHHO, JUIsl TECTUPOBAHMS Y/IOBJICTBOPUTEIBHOTO YPOBHS COTJIACOBAHHOCTH, TAK M HA 3Talle ONEPALMOHHO HOICPKKH
CHCTEMBI B Ka4eCTBE KOMIIOHEHTa MOHUTOPHHTa.

KiroueBbie ci10Ba: pacnpeselicHHble XpaHWIia; BpeMs oTkianka; CAP-Teopema; croxacTuueckas METpHUKa COTJIACOBAHHOCTH;
METO/IbI IOCTPOCHHUS PacpeeICHHOH ceTu.
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