ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 1 (19) ISSN 2524-2296 (online)

UDC 004.49 DOI: https://doi.org/10.30837/ITSSI.2022.19.055

W. CA0, V. KOSENKO, S. SEMENOV

STUDY OF THE EFFICIENCY OF THE SOFTWARE SECURITY IMPROVING
METHOD AND SUBSTANTIATION OF PRACTICAL RECOMMENDATIONS FOR
ITS USE

The subject of research in the article is a way for evaluating the effectiveness of the software security improving method. The aim of
the article — study of the effectiveness of the software security improving method and substantiation of practical recommendations for
its use. Tasks to be solved: analysis of methods for describing the software security testing process and evaluating its effectiveness,
developing a scheme and method for evaluating the effectiveness of a method for improving software security, developing a
simulation model for the software security testing process, studying the effectiveness of a method for improving software security,
researching and substantiating the reliability of the results obtained, developing practical recommendations for using the method.
Applied methods: system analysis, project approach, heuristic methods of decision making, process models. The results obtained:
The analysis of the features of the ways for describing the software security testing process and evaluating its effectiveness showed
the possibility of taking into account many factors by using the method of dynamics of averages. A way for evaluating the
effectiveness of a method for improving software security has been developed, which differs from the known ones by taking into
account the scaling factor of the software development process by introducing security testing specialists. With the help of an
improved method, the hypothesis of increasing the efficiency of the security process using the developed method by reducing the
relative damage indicator at all stages of the software life cycle, depending on the possible duration of a cyber-intrusion, was proved.
The substantiation of the reliability of the results of mathematical modeling has been carried out. A number of practical
recommendations on the use of the method of improving software security are given and some shortcomings are highlighted, which
allow the conclusion that further research is possible.
Keywords: software safety; efficiency evaluation; reliability of mathematical modeling results; practical recommendations.

Formulation of the problem.

The conducted research of the security testing
process [1], as well as the synthesis of the method of
automated penetration testing [2], show the impossibility
of complete processing of data on SW vulnerabilities and
assessing them with 100% accuracy. Therefore, methods
for approximate evaluation of the effectiveness of existing
testing approaches based on modern approaches to
mathematical formalization have become widespread [3,
4]. However, their use also implies the adaptation of the
main provisions to changes in the SW testing process, and
the reduction of input data uncertainty factors.

Literature analysis.

One of the possible ways to describe the process of
SW security testing is the method of dynamics of
averages. The advantages of this method are simplicity,
the ability to take into account many factors (the
availability of active and passive testing tools, the
capabilities of penetration testing specialists and
DevSecOps, etc.), the availability of analytical solutions
[5-9]. Improving the method for evaluating the
effectiveness of the developed method for improving SW
security based on the method of dynamics of averages is
based on the following assumptions. According to the law
of large numbers, data on possible SW security threats, as
well as means of countering them, are close to average
(mathematical expectations), which makes it possible not
to consider the details associated with the random state of
a single element or SW function, and consider the SW
security process as deterministic [5]. With this
assumption, all test indicators will also not be random
variables - they will be replaced by the corresponding
mathematical expectations. The sequence of cyberattacks

is represented as a Poisson flow of events [6, 7]. A
technique is also used, which consists in the transition
from the stream of cyberattacks to the stream of
cyberattacks that have achieved results, which is also
considered to be Poisson. A cyber attack is called
successful if it implements an existing threat. Another
possible way to formalize the SW security process is to
use the theory of continuous Markov processes [8]. A
process occurring in a system is called Markovian if, for
each moment of time, the probability of any state of the
system in the future depends only on its state at the
present moment and does not depend on how the system
came to this state. The flow of cyberattacks and the flow
of cyberattacks that achieve results are also considered to
be Poisson.

Method for evaluating the effectiveness of the
developed method for improving SW security

The block diagram of the method for evaluating the
effectiveness of the developed method for improving SW
security and the labeled graph of system states is shown in
fig. 1.

The method for evaluating the effectiveness of the
developed method includes the following steps:

1. Analysis of possible SW threats. Meaningful
statement of the research problem.

2. Development and synthesis of the main
components of the assessed system "SW - Hacker" into a
block diagram.

3. Mathematical formalization of the process of
finding the numbers of states in differential form in
accordance with the method of average dynamics.

4. Formalization of the input data, as well as
additional conditions for solving the problem.

5. Solution of a formalized problem.

© W. Cao, V. Kosenko, S. Semenov, 2022

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 1 (19)

6. Fixation and approximation of simulation results.

7. Substitution of results and calculation of
performance indicators of the developed method for
improving SW security.

Passive
protection
system

SW

Active
protection
system

Functional
component of the
software

The control
component of the
cyber attack
system

a)

b)

Fig. 1. Structural diagram of the method for evaluating the effectiveness of the developed method for improving SW security and a

labeled system state graph

The conducted studies and analysis of a number of
scientific sources [10, 11] have shown that the
effectiveness of the developed method can be
quantitatively determined using the loss index AQ, for

each SW element or function g, This indicator

determines the amount of relative damage caused to the
tool SW q; element as a result of cyber attacks on the
SW. At the same time, in accordance with scientific works
[9, 10], the indicator of relative damage (losses) can be
calculated by the formula:

sa(e)- 2 80

where t* is the current moment of time (the moment of the
end of the formalization of the process);

100%, i=1...n, (1)

AQ (t") - relative damage (losses) for an SW
element or function g; ata pointin time t*;

q; (t,) — initial potential of the facility g, at a point
intime t,;

n — the number of phase coordinates (the dimension
of the vector q) of the simulated system "SW - Hacker".

8. Analysis and generalization of the simulation
results and preparation of practical recommendations on
the use of the SW security enhancement method and the
strategy for its use in firms.

The program developed in the Phyton environment
made it possible to conduct a series of experiments for
given conditions. At the same time, the implemented
simulation model of the interaction states of the "SW -
Hacker" system made it possible to evaluate the

Cyuacnuti cmamn HayKo8ux O0CIIONCeHb Ma MmexHoao02il 6 npomuciosocmi. 2022. Ne 1 (19)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

performance indicators of the developed method for
improving SW security.

In this model, in order to increase the reliability of
the results obtained, the factors and possibilities of active
(with the help of DevSecOps, SecDeyv, etc.) protection and
passive protection (using preventive methods of secure
programming and testing to detect and localize unsafe
elements and SW functions).

For a formalized representation of the dynamic
system “"SW - Hacker", we introduce variables g,

i=1...6 , by which we mean, respectively, the number of
states of the following elements; SW installation
components, SW database and active protection means,
active attack means of the first type, control system and
active attack means of the second type of cyber attacks.
The state of the dynamic system "SW - Hacker" as a
whole at each moment of time t e[t ,t, | is characterized

by a system of ordinary linear differential equations (2), in

which the numbers of states q,, i=1...6 are considered
as variables:
Olql—'() -2 — 2 PisRals + 547, (0, Q));
E—ch 4p14R1q4 6p16 3q6 q171 ql’ 1)
B g, ()= 4, PaRetl + 60,7, (0,,Q;)
at =0,(1) =4, Py R0, +00,7,10,,Q;)
dg, -
—= 0, (t) = _)“e p36R4q6;
. (2)
q, - .
d'[4 - q4() _/13 p43Y1q3'
dg, -
dt5 - q5() _ﬂs p53Y2q3;
dg, -
de —qe() _/13 pssqus'

Here 50,7, (0, Q") — mathematically formalized

representation of the input of additional resources
(cybersecurity specialists) to increase cyber
protection q, ;

50,7,(0,,Q;) — mathematically ~ formalized
representation of the input of additional resources

(cybersecurity specialists) to increase cyber protection
4,

Q; and Q, — boundary values of the numbers of
states g, and q,, accordingly, starting from which a

reserve is introduced from the passive protection system;
0g, and &g, — the intensity of the introduction of

reserve funds into the composition ¢, and g, ;

7(0.Q7) and y,(q,,Q;) - signal functions
determined by the formulas:

oL i () <qQ;
yl(ql’Ql)_{o, if g,(t)>Q;.

oL if g, () <Q;
yz(qz,Qz)—{O’ it g, (t)>Q;.

The rule for solving differential equations allows you
to introduce variables W,, k=1...8 to denote the

coefficients of differential equations:

W, =-4,puR
W, = -4 p,R;;
W,=0;

W, =-4,p,R,;

W, = -4, PR,

We = =43 Pags ;

W, = =4, P55, 5

Wy = —245 PgsYs
where 4,, i=1...6 — the intensity of the attacks carried
out by means of q;, i =1...6 respectively;

p,; — the probability of penetration (hacking) into
the SW or its separate component g, (for example, a
database) as a result of an attack by amean q ;

Y., Y, and Y, — coefficients characterizing the level

of quality work of SW security testers;
R,, R, and R, — coefficients characterizing the

degree of training of hackers who overcome SW
protection.

It should be noted that the general condition:
Y +Y,+Y, <1.

After transformations of the system of equations (2),
we obtain:

Q. (t) =Wig, +W,q, + 57, (0, Q));
Q, (1) =W, 0, +50,7, (0, Q5);

Q; (1) =W,q;;

Q (t) =Wea;

5(t) W, 0s;

6(t):W7q3,

®)

Ol O O

where y, (t) is a function that characterizes the possibility
of choosing the interval for introducing a reserve At
(cybersecurity specialists) to reinforce the security of SW
elements and functions @, (t) and q,(t).

The ratios Y,/Y,/Y,=X,/ X,/ X, determine the

strategy of software developers in counteracting
cyberattacks of the "Hacker". The ratios
R/R,/R,=X,I X/ X, determine the strategy of the
"Hacker" in the organization of breaking SW.

R, — share (%) of the “Hacker” funds g, involved
in a cyber attack on SW elements and functions. It is
necessary to note the obligatory fulfillment of the
condition: R, <1. R, — the share (%) of the “"Hacker"

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 1 (19)

funds g, involved in a cyber attack on the elements and
functions g, of the SW (the main functional component).
Also R,, R, are the shares (in %) of the means g, of the

“Hacker” side participating in the information suppression
of the means ¢, and q, from the side of the SW

developer, respectively. The sums R +R, and
R, + R, must be less than or equal to 1. p;, i,j=16 is

the probability of failure of the i-th type device by the j-th
type device.

Modeling and assessment of relative damage.

When modeling, it is necessary to introduce a
number of additional conditions:

1. Replenishment of elements in the state C, (adding

the active and passive phases of counteracting
cyberattacks) is carried out at q,(t)<80%q,(t,).

Replenishment of elements in the state C, is performed
when g, (t)<90%q, (t,) .

2. Each of the elements, functions or systems g;,
i=36,has only two states: safe and dangerous.

3. The input data of the simulation model are as
follows:

G (t) =0 (t) =100, g, (t) = g (t) =100%,
A (t) = g (t,) = 50.

4, =0,12hour ™, 4, =0,15cu™, 4, =0,2lcu?,
8q, =0,25cu™, 8g, =0,15¢c.u. ™.

4. Taking into account the conducted research and
expert assessments of specialists from SW development

firms, fixed strategies {Y} and{R} aspects of the "SW -
Hacker" system were adopted:
Y,=Y,=03 Y,=025 R =05 R,=0,25
R,=0,35 R,=0,4.
The values of the probabilities of occurrence of a

security error SW or successful countermeasures against
the "Hacker" will be presented in accordance with table 1.

Table 1. Values of the probability of occurrence of a security error SW or successful countermeasures against the "Hacker"

sSwW "Hacker™
p14 p16 p26 p36 p43 p53 p63
0,1 0,08 0,09 0,03 0,08 0,125 0,06
5. Numerical solution of differential equations (2) is when: ¢, <1; q,<1; g,<10%; q,<1; 0q;<10%;
performed in a cycle on the time interval from O to 180 g <1
s <1.

c.u., with a step of 0.1 c.u.
6. The limitations of the simulation, in which it is
impossible to continue the given program, are the cases

Table 2. Relative damage AQ, (t) forall g; for t" =120 c.u.

Calculate the relative damage AQ(t") for all g,

where i=1,...,6.
The calculation results are presented in table 2.

SW Hacker
AQ, (1) AQ, (1) AQ,(t) AQ, (1) AQ; (1) AQ, (")
29,57 18,31 11,99 64,57 50,45 40,36

In the considered example, the results of the relative
damage assessment indicate the feasibility and
effectiveness of the security testing system implemented
in the model and, at the same time, the possibility of
neutralizing the means of the attacking side (using active
and passive defense methods).

The effectiveness of the developed SW safety
improvement method can be assessed using the curves of
the graphs in fig. 2.

As can be seen from the graphs, the use of the
developed SW security enhancement method, taking into
account the capabilities of automated penetration testing
using deep machine learning technology, reduces the
relative damage at all stages of the SW life cycle
by up to 6 times, depending on the possible duration of the
attack.

Justification of the reliability of the results of
mathematical modeling.

To substantiate the reliability of the results obtained
in sections 2 and 3, a number of experiments were carried
out, in accordance with the conditions:

- the SW development team consists of 7 people,
including one DevSecOps and one security tester;

- the main SW development management
methodology is SCRUM;

- sprints are divided into weeks and rallies are held
daily;

- number of experiments N*=500.

Based on the results of the experiment, a histogram
of the frequency of correct detection of an attack with a
higher probability [12] was obtained, which is shown in
fig. 3.

Cyuacnuti cmamn HayKo8ux O0CIIONCeHb Ma MmexHoao02il 6 npomuciosocmi. 2022. Ne 1 (19)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

100
90

80 -

70

60
50

= = QI1(New)
— . Q2(New)

40

Q1

30 e

v Q2

20
10

0 T T T

0 20 40 60

80 100 120

Fig. 2. Graphs of the dynamics of changes AQ, (t) for systems with DevSecOps and a security tester, and also without them

230
£ 20
o |
£ i
5 10 |
-§ O::. I - I - || , I —— I ,
2
2 4 6 8 10 12 14 16 18

Software security testing time (hour/person)

Fig. 3. Histogram of SW security testing time

The hypothesis put forward about the normal
distribution of this random variable was tested by
Pearson's goodness-of-fit test y? [11]

k
2°=N" (R -P)*/R,
i=1
where k is the number of digits (intervals) of the statistical
series;

P are “statistical” and theoretical

probabilities of "hitting” a given indicator in the i-th
category.

The conducted verification proved the plausibility of
the hypothesis that the value of the frequency of correct
detection of an attack with a higher probability of
occurrence is distributed according to the normal law.

(i)
Ptest of the

*

and P

Estimates mathematical

. 0} A
expectation Pest and D

p o variance (&, , standard

deviation) are obtained, a random variable P, " that

characterizes the frequency of correct detection of an
attack with a higher probability of occurring:

k

@i.J) £ ® (.0 :
Zptest z Prest _Ptest '

(i) = - A j=1
j=1 _
Ptest e e— | D i —
N Pest

o =D .
Pes” P

Using the well-known expression for calculating the
confidence probability of the deviation of the relative
frequency from the constant probability in independent
tests [13], we determine the confidence probability that
the value of the characteristic of the frequency of correct
attack detection obtained as a result of the experiment
with a higher probability of occurrence "does not deviate"

* ’

N -1

. . @)
from the mathematical expectation Pes by more than

0.05:
50) _ pl) - 0.05
P(Ptest Ptest < 005) - ZF[/O"_Rgs[) j ’
where F is a Laplace function of the form

F(x):%je"zzdt L]

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 1 (19)

Also, the results of the experiments showed that for
all the studied types of data the confidence probability is
that the values of the statistical quantity P will not

test

deviate from the mathematical expectation P{) by more
than 0.05 and is equal to: P ~0.94.A comparative study
of the results of mathematical modeling and experiment
has been carried out. The results of the comparison are
shown in fig. 4. in the form of a graph of the probability
distribution density of the implementation time of
penetration testing algorithms, and the boundaries of the
confidence interval corresponding to them:

Iﬂ =[j—gﬂ, j+gﬂ]

in which the true value J
probability f#=0,94 and
mathematical expectation.

falls with a confidence
estimates of its f O

test

Distribution density
0.3

02 // { //
-l / /)

2 4 6 8
Test time

a)
Distribution density

o//////
e

0.1 /
0
2 4 6 8
Test time
b)

Fig. 4. Graph of the probability distribution density of the
implementation time of penetration testing algorithms, the
boundaries of the confidence interval corresponding to them, and

estimates of its f " of mathematical expectation

test

It can be seen from the graphs that in the key test
situation (time t,, ~4cu.) the "calculated" curve J

(solid curve), obtained in accordance with the
mathematical model developed in the work, in most
practical cases fall into the "averaged" confidence interval
(shaded area).

This confirms the reliability of the mathematical
model and the analytical expression obtained as a result of
mathematical modeling.

Substantiation of practical recommendations on the
use of the software security improvement method.

The conducted studies have shown that when
designing SW, it is necessary to take into account that the
fulfillment of any of the requirements of quality indicators
during design may affect other requirements. And
in this case, it is necessary to analyze the ratio
of benefits and losses for the totality of many quality
indicators.

As noted in [13], security is the ability of a system to
prevent malicious or accidental actions not provided for in
the design, or to prevent disclosure or loss of data. Here
we are talking about system security in a general
sense. At the same time, improving the security of SW

also leads to an increase in the reliability of
the system as a whole by reducing the likelihood of
successful attacks and their negative impact on
the system.

The analysis of the literature [9, 13, 14] and the
experience of coding and testing in the development of
SW made it possible to identify a number of features of
secure programming and implementation of security-
related control functions:

- coordination of the SW security policy regarding
the technical conditions of the object of implementation
(implementation), the formation of restrictions
on the use of the product in accordance with the security
policy;

- signature-heuristic analysis of source and
executable code for potentially dangerous operations and
coding errors;

- analysis of security subsystems
protection subsystem tracing), etc.;

- carrying out all types of manual and automatic
testing (functional, stress, load testing and performance
testing) taking into account increased security
requirements;

- structural analysis of distribution redundancy and
integrity control;

- analysis of the presence of covert channels;

- update and modification of SW in accordance with
the approved security policy.

A qualitative assessment of these factors and features
of secure SW programming allowed us to conclude
that an integrated approach to identifying vulnerabilities is
expedient and to present common security-related
errors of programmers, as well as methods for
testing and identifying these errors in the form of
a table 3.

(password

Cyuacnuti cmamn HayKo8ux O0CIIONCeHb Ma MmexHoao02il 6 npomuciosocmi. 2022. Ne 1 (19)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Table 3. Code vulnerabilities and SW testing methods

Programming mistakes

Test method

Note

Errors that occur when entering
rarely used input data.

Functional testing of rarely used inputs.

Validation of the functionality
declared in the document of rarely
used input data using boundary or
negative testing methods.

Undeclared input parameters and
modes associated with an
abnormal state of the system and
a possible decrease in its
performance.

Performance profiling.

Identification of code fragments in
which anomalies are observed
(unauthorized transfer, transition to
an infinite loop, processing of
undeclared input data, etc.)
performance decrease.

Errors related to functional safety. | Load and stress testing.

Creation of specific conditions for the
program to work with a large amount
of input data, increased load on the
processor, etc.

Vulnerabilities of the password
protection subsystem and other
subsystems.

Testing of the authentication subsystem, access
control and other information security subsystems.

Defining security management
modes, tracing the password system,
searching for built-in passwords, etc.

Unintentional (intentional)
software bookmarks, bombs.

Signature-heuristic analysis.

Identification of software bookmarks,
bombs by signatures of potentially
dangerous operations or by read event
data.

Incorrect coding.

Signature-heuristic analysis.

Identification of software bookmarks
by signatures.

Intentional tabs of a "hooligan™
nature, "programmer signatures"”,
"Easter eggs".

Signature-heuristic analysis.

Identification of program bookmarks

on the basis of illegitimate identifiers

of programmers (messages, constants,
hidden "hot keys", etc.).

Hidden channels.
environment.

Analysis of traffic and memory in an isolated

Monitoring and auditing logs.

Program bookmarks initiated by a
hidden transition.

Redundancy control, signature-heuristic analysis.

Identification of software bookmarks
on the basis of hidden data transfer.

Conducted studies have shown that the vast majority
of software is based on previously developed software
components used for work. For example, programs written
in C or C++ depend on the runtime libraries that come
with the compiler or operating system. Programs written
in Python also include a number of standard libraries,
components, or other off-the-shelf software solutions. At
the same time, the analysis of the literature [12, 13]
showed that there are a number of hidden (undeclared)
threats.

One of the undeclared threats to using off-the-shelf
software solutions is that even if you write flawless code,
your application may be vulnerable due to security flaws
in one of the components used. For example, the realpath
() function of the C programming language library returns
the canonicalized absolute path for the path given as an
argument. To get the canonicalized absolute path, the
function expands all symbolic links. However, some
implementations of realpath () contain a static buffer that
overflows when the canonicalized path is longer than
MAXPATHLEN. Other common C library functions for
which some implementations are known to be prone to
buffer overflows are syslog (), getpass (), and the getopt ()
family of calls.

Since many of these problems have been known for
some time, many C libraries now contain fixed versions of
these functions. For example, the implementations of libc4
and libcS for Linux contain a buffer overflow
vulnerability in realpath (), but the problem is fixed in
libc-5.4.13. On the one hand, this creates the prerequisites
for eliminating threats and correcting the defect, but, as
studies have shown, this problem has not been fully
resolved.

Modern operating systems are known to support
dynamic link libraries, or shared libraries. In this case, the
library code is not statically linked to the executable file,
but is searched for in the environment where the program
is installed. Therefore, if our development application
designed to work with libc-5.4.13 is installed in an
environment that has an older version of libc5 installed,
the program will be subject to a buffer overflow error in
the realpath () function.

One solution is to statically link the safe libraries
with your application. This approach allows you to
capture the implementation of the library you are using.
However, this approach has the disadvantage of creating a
large executable image on disk and in memory. It also
means that your application will not be able to take
advantage of new libraries that may fix previously

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 1 (19)

unknown flaws (both security flaws and others). Another
solution is to make sure that the input values
passed to an external function stay within limits that are
known to be safe for all existing implementations of that
function.

It should be noted that similar problems can arise
with distributed object systems such as DCOM, CORBA,
and other compositional models that are linked at run
time.

System integrators and administrators can protect
systems from vulnerabilities in off-the-shelf software
components (such as libraries) by providing wrappers that
intercept API calls that are known to misbehave. Such a
wrapper implements the original APl functions (usually
by calling the original component), but performs
additional checks to ensure that known vulnerabilities
cannot be exploited by an attacker. To be realistic, this
approach requires linking executables at runtime. An
example of an approach that implements this method for
Linux systems is the libsafe library from Avaya Labs [13].

Shells do not require changes to the operating system
and work with existing binaries. They fail to protect
against unknown security flaws: if there is a vulnerability
in the part of the code that is not caught by the shell, the
system will still be vulnerable to attacks.

Related to the approach described is the execution of
untrusted programs in a controlled environment that is
restricted to specific behavior using custom policies. An
example of this approach is Systrace. This approach
differs from a secure shell in that it does not prevent the
exploitation of vulnerabilities, but it can prevent
unexpected secondary actions that exploit authors usually
try to perform, such as writing files to a secure location or
opening network sockets [14].

Systrace is a policy enforcement tool that provides a
way to monitor, intercept, and restrict system calls.
Systrace acts as a wrapper for executables, directing them
to bypass the system call table. It intercepts system calls
and, using the Systrace device, passes them through the
kernel and processes system calls [14].

Like a secure shell, a controlled environment does
not require any source code or changes to the program
being controlled. The disadvantage of this approach is that
it is very easy to misformulate policies and break the
required functionality of the controlled program. Research
has shown that it can be a difficult (and often impossible)
task for an administrator to create accurate policy
descriptions for large and complex programs whose
behavior is not fully understood. Accordingly, the solution
of the above problems can become a plan for further
research.

References

Among the main security threats and bugs in Python
are the following:

- Command injection (command injection).

- SQL injection.

- XML parsing.

- assert statements.

- Time attacks.

- Polluted site-packages or import path.

- Temporary files.

- Using yaml. load.

- Deserialization of canned data.

- Using the Python runtime system.

- Not installing patches for your dependencies.

Detailed information about each of the
vulnerabilities is presented in the article [15].

listed

Conclusions

The section contains comparative studies and
evaluation of the effectiveness of the method for
improving software security. For this purpose, the method
for evaluating efficiency has been improved in the work.
Its distinguishing feature is taking into account the
possibility of scaling the software development process by
introducing security testing specialists (DevSecOps,
SecDev, as well as penetration testers).

The improved method for evaluating the
effectiveness of the software security improvement
method is based on the method of dynamics of averages.

With the help of an improved method, the
expediency of using the developed method for improving
software security is proved, taking into account the
capabilities of deep reinforcement learning technology.
This will reduce the relative damage at all stages of the
SW life cycle by up to 6 times, depending on the possible
duration of a cyber-intrusion.

The section substantiates the reliability of the results
of mathematical modeling. The results of the experiments
showed that for all types of data under study, the
confidence probability that the value of the statistical

value PY will not deviate from the mathematical

test
expectation PY
P=~094.

The section also provides a number of practical
recommendations on the use of the software security
enhancement method and highlights some shortcomings,
which led to the conclusion that further research is
possible.

by more than 0.05 and is equal to:

1. Semenov, S., Weilin, C. (2020), "Testing process for penetration into computer systems mathematical model
modification”, Advanced Information Systems, Vol. 4, Issue 3, P. 133-138. DOI: https://doi.org/10.20998/2522-

9052.2020.3.19

2. Semenov, S., Weilin, C., Zhang, L., & Bulba, S. (2021), "Automated penetration testing method using Deep machine
learning technology", Advanced Information Systems, Vol. 5, Issue 3, P. 119-127. DOI: https://doi.org/10.20998/2522-

9052.2021.3.16

3. Farchi, E., Hartman, A., Pinter, S. (2002), "Using a model-based test generator to test for standard conformance”, IBM
Systems Journal, Vol. 41, Issue 1, P. 89-110. DOI: https://doi.org/10.1147/sj.411.0089

https://doi.org/10.20998/2522-9052.2020.3.19
https://doi.org/10.20998/2522-9052.2020.3.19
https://doi.org/10.20998/2522-9052.2021.3.16
https://doi.org/10.20998/2522-9052.2021.3.16
https://doi.org/10.1147/sj.411.0089

ISSN 2522-9818 (print)
CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 1 (19) ISSN 2524-2296 (online)

4. Ali H. Dogru, Veli Biger (2010), "Modern Software Engineering Concepts and Practices: Advanced Approaches", 1GI
Global, P. 506.

5. Shanahan, L., Sen, S. (2011), "Dynamics of stochastic and nearly stochastic two-party competitions"”, Physica A: Statistical
Mechanics and its Applications, Vol. 390, Issue 10, P. 1800-1810. DOI: https://doi.org/10.1016/j.physa.2010.12.041

6. Tze Leung Lai, Haipeng Xing (2008), Statistical Models and Methods for Financial Markets, Springer New York
Softcover reprint of hardcover 1st ed., 356 p.

7. Stephen Boyd, Lieven Vandenberghe (2018), "Introduction to Applied Linear Algebra Vectors, Matrices, and Least
Squares", Cambridge University Press. DOI: https://doi.org/10.1017/9781108583664

8. Swart, J, Winter, A. (2010), "Markov processes: theory and examples”, available at: // https://www.uni-
due.de/~hm0110/Markovprocesses/sw20.pdf

9. Kosenko, Nataliia & Kadykova, Iryna & Artiukh, Roman. (2017), "Formalizing the problem of a project team bulding
based on the utility theory”, Innovative technologies and scientific solutions for industries, P. 53-57. DOI:
https://doi.org/10.30837/2522-9818.2017.1.053

10. Khalife, Kassem, Krikhovetskiy H.Ya., i H.A. Kuchuk. (2017), "Evaluation of the system software security"["Ocinka
vrazlivosti sistemnogo programnogo zabezpechennya"], Management systems, navigation and communication. Collection
of scientific, 6 (46), Poltava: PNTU, P. 141-44.

11. Semenov S. G., Khalife Kassem, Zakharchenko M. M. (2017), "An improved way to scale agile software development"”,
["Usovershenstvovannyj sposob masshtabirovaniya gibkoj metodologii razrabotki programmnogo obespecheniya™],
Bulletin of NTU "KhPI", Kharkiv, Vol. 1, No. 1, P. 79— 84. DOI: https://doi.org/10.20998/2522-9052.2017.1.15

12. Gmurman V.E. (2003), Theory of Probability and Mathematical Statistics, [Teoriya veroyatnostej i matematicheskaya
statistika], M., Higher school,479 p.

13.J.D. Meier, David Hill, Alex Homer, Jason Taylor, Prashant Bansode, Lonnie Wall, Rob Boucher Jr., Akshay Bogawat.
(2009),"Microsoft's Guide to Application Architecture Design", available at: // http://ce.sharif.edu/courses/91-92/1/ce474-
2/resources/root/App%20Arch%20Guide%202.0.pdf

14. Robert Seacord (2013), "Secure Coding in C and C++ Addison-Wesley Professional”, P. 600.

15. Anthony Shaw (2018), "10 common security gotchas in Python and how to avoid them", Hakernoon, available at: //
https://hackernoon.com/10-common-security-gotchas-in-python-and-how-to-avoid-them-e19fbe265e03

Received 14.01.2022

Bioomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

Ilao Beiininp — HaykoBuil cHiBpoOiTHUK, BuUKiIagad, nemaprameHT IT indopmarniiiHoro wnentpy, HeHuzsHckiit
memaroriaHuil yHiBepcuret; e-mail: caowl@nijtc.edu.cn; ORCID: http://orcid.org/0000-0001-8230-5235.

Ilao BoiiimHb — Hay4yHBIH COTPYAHMK, NpenojaBaTens, AenaprameHT UT uHpopmanuoHHOro nentpa, HelnzsHckuit
nejarornyeckuii yuusepcuret, Neijiang, Kuraii.

Cao Weiling — Intermediate grade of experimenter, teacher, Department of IT information Centre, Neijiang Normal
University, Neijiang, China.
Kocenko Biktop BacuiboBHY — JOKTOp TeXHiUHMX Hayk, npodecop, Hamionamsuuili yHniBepcuter "IlonraBcbka

nositexHika imMeni FOpis Kownpapartioka”, mpodecop kadenpu aBTOMAaTHKH, CIECKTPOHIKM Ta TeleKoMyHikaiiii, [lonragra,
Vxpaina; kosvict@gmail.com; ORCID ID - http://orcid.org/0000-0002-4905-8508.

Kocenko Bukrop BacuiabeBH4 — JOKTOp TEXHUYECKUX HayK, npodeccop, Hanmonanbuelii ynusepcuret "TlonTaBckast
noiuTexanka uMenn Opus Konpparioka", mpodeccop kadenpsl aBTOMaTHKH, JIEKTPOHUKH U TeJIeKOMMYHHKaui, [TonTasa,
VYkpauna.

Viktor Kosenko — Doctor of Sciences (Engineering), Professor of Automation, Electronic and Telecommunication
Department of National University «Yuri Kondratyuk Poltava Polytechnic, Poltava, Ukraine.

CemenoB Cepriii I'eHHaniiloBU4 — JOKTOp TEXHIYHUX Hayk, npodecop, mpodecop kabempu kiGepOesmekn Ta
iH(popMaiiiHUX TEXHOJIOTIH XHEY iM. C. Kysneny, Xapkis, VYkpaiHa; e-mail: s_semenov@ukr.net;
ORCID: https://orcid.org/0000-0003-4472-9234.

CemenoB Cepreii ['eHHaABLeBHY — JOKTOpP TEXHMUYECKUX HayK, podeccop, mpodeccop kadenpbl kKndOepOe30macHOCTH U
nHpopmanmoHHbix TexHodoruid XHDY um. C. Kysnena, Xapkis, Ykpaina.

Semenov Serhii — Doctor of Sciences (Engineering), Professor, Professor of the Department of cybersecurity and
information technology, Simon Kuznets Kharkiv National University of Economics Kharkiv, Ukraine.

JTOCJII)KEHHS EOEKTUBHOCTI METO/Y HIIBUIIIEHHSA BE3IIEKA
MMPOI'PAMHOTI'O 3ABE3INEYEHHS I OFTPYHTYBAHHSI IPAKTUYHUX
PEKOMEHJIAIIIHA 3 TOI'O BUKOPUCTAHHSI

IIpeameToM NOCTIKEHHS Y CTATTi € CIIOCIO OMIHKY e()eKTUBHOCTI METOY MiJBUIIECHHS OS3IIeKH IPOTPaMHOTO 3a0€3IICUCHHS.
Meta cTaTTi — ZOCTIHKEHHS €()EeKTHBHOCTI METOAY MiJABUINEHHS O€3MEeKH NMPOrpaMHOro 3abe3NedeHHs Ta OOIPYHTYBaHHSI
IPaKTUYHUX PEKOMEHAaUiil mono Horo BUKOPUCTAaHHSA. 3aBAAHHS, IO BUPIIUIYIOThCA: aHAJi3 CIOCOOIB OMHUCY IPOLECY
TECTYBaHHsS O€3MEeKH IMPOrpamMHOro 3a0e3NeueHHs Ta OLIHKKM HOro eeKTHBHOCTI, po3po0Ka CXEeMH Ta CHOCO0Y OILIHKU
e(EeKTUBHOCTI METOy HiJBUIIECHHS Oe3MEeKU IPOrpaMHOro 3ade3mneueHHs, po3poOKa iMiTaliiHOI MOAEN IPOLECY TECTYBAHHS

https://doi.org/10.1016/j.physa.2010.12.041
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Tze+Leung+Lai&text=Tze+Leung+Lai&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Haipeng+Xing&text=Haipeng+Xing&sort=relevancerank&search-alias=books
https://www.barnesandnoble.com/s/%22Springer+New+York%22;jsessionid=B00FBA8D7759FDC9056470633E069F36.prodny_store02-atgap11?Ntk=Publisher&Ns=P_Sales_Rank&Ntx=mode+matchall
https://doi.org/10.20998/2522-9052.2017.1.15
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Robert+Seacord&text=Robert+Seacord&sort=relevancerank&search-alias=books
mailto:caowl@njtc.edu.cn
http://orcid.org/0000-0001-8230-5235

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 1 (19)

0e3MeKH MPOrpaMHOTo 3a0€3MEeUCHHS, TOCIIIKCHHS e()eKTUBHOCTI METO/1Y ITiIBUILICHHS OE3IIeKH MPOTPaMHOT0 3a0e3IeyYeHHs,
JIOCHIZIXKEHHSI Ta OOIPYHTYBaHHS JOCTOBIPHOCTI OTPUMAaHUX pe3yJbTaTiB, po3poOKa IMPaKTHYHUX PEKOMEHIALill MI0/10
BUKOPHCTAaHHSA MeTOLy. MeTou, 1110 3aCTOCOBYIOTHCS: CUCTeMHHI aHai3, IPOSKTHUH MiAXil, €BPUCTUYHI METOAN IPHHHSITTS
piuieHs, nporecHi Moxeni. OnepxkaHi pe3yJIbTaTH: MIPOBEICHUN aHaNi3 0COOIMBOCTEH CIIOCOOIB OMHUCY TPOIIECY TECTYBaHHS
6e3neKy IpOrpaMHOro 3a0e3NeucHHs Ta OLIHKM HOro e(eKTHBHOCTI IOKa3aB MOXIIUBICTh ypaXyBaHHs OaraTthox (hakTopiB
LUISIXOM BHKOPHCTaHHS METOJY TUHAMIKU cepefHiX. Po3pobiieHo cnocid oriHku epeKTUBHOCTI METO/Y Mi/IBUIICHHS Oe3MeKn
IpOrpaMHOr0 3a0e3NeueHHs, 110 BIAPI3HAETbCA BiJ BigoMHX oOOJiKOM (akropa MacmiTaOyBaHHS IIPOLECY PO3POOKU
MPOrpaMHOTO 3a0e3MeUeHHs IIJSIXOM BIIPOBAPKEHHS CIICI[IANICTIB TECTyBaHHS OC3MEKH. 3a JOMOMOTOK BJIOCKOHAJICHOTO
croco0y JJOBEAEHO TiNoTe3y Npo MiJBHIIEHHS e(pEeKTHUBHOCTI Npolecy 3a0be3nedeHHs: 0e3MeKu 3a JOIOMOTrOI0 PO3poOJICHOTO
METOJy LUIIXOM 3HIDKEHHS ITOKa3HHKa BiTHOCHOI IIKOJM Ha BCIX €Tamax >KUTTEBOTO LUKIY IIPOTPAMHOTO 3a0e3nedeHHs
3aJIeKHO BiJl MOXKJIUBOI TPUBAJIOCTi KiGepBTOprHEHH. 1IpoBeieHo 00IpyHTYBaHHs JOCTOBIPHOCTI Pe3yJIbTaTiB MaTeMaTHYHOIO
MozemoBaHHs. HaBeneHo ps MpakTHYHUX PEeKOMEHJaliil MO0 BUKOPHCTAHHS METOLY MiJBHIIEHHS O€3MeKH MpOrpaMHOTo
3a0e3MeYeHHs Ta BUAICHO JIEsIKi HEJOMIKH, 1110 JJO3BOJIMIIO 3pOOUTH BUCHOBOK PO MOKJIMBICTh MOJANBIINX JOCIIHKEHb.

KawuoBi ciaoBa: Oesneka mporpaMHOro 3a0e3leueHHs; OIiHKa e(EeKTHBHOCTI; JIOCTOBIPHICTh pE3yJIbTaTiB
MaTeMaTHYHOI'0 MOJEIIIOBAHHS; IPAKTHYHI PCKOMCHIAIII].

NCCIEJOBAHUE DOPEKTUBHOCTU METO/JA ITOBBIIIIEHUA
BE3OINACHOCTH TPOT'PAMMHOI'O OBEINIEYEHUA ObOCHOBAHHUE
IMNPAKTUYECKUX PEKOMEHJALIMUA 11O EI'O UCITOJIB30BAHUIO

Ipeamerom wucciaenoBaHUS B CTaTbe SBISETCS CHOCOO OHEHKM S(PQGEKTHBHOCTH METOJA IOBBIINICHUS OE€30MaCHOCTH
nporpaMMHoro obeCneuenus. Lleab crathut — wuccnenoBanne 3(Q(EKTUBHOCTH METOJA TMOBBINICHUS 0€30MacHOCTH
MIPOrpaMMHOTr0 00eCreYeHnus: 1 00OCHOBaHHE MPAKTUYECKUX PEKOMEHJAIMH 10 €ro HCIOIb30BaHHIO. Periaemble 3aayu:
aHau3 Ccrnoco0OB OMHCAHUS MpoIllecca TECTHPOBAHUS OE30MACHOCTH MPOTPAMMHOTO OOCCIIEYCHHST W OLICHKUA €ro
3¢ GeKTUBHOCTH, pa3paboTKa CXeMbl M CIOCO0a OLUEHKH A(PPEKTUBHOCTH METO/A MOBBIIICHUS 0€30MacCHOCTH POTrPaMMHOTO
oOecrieyeHuns, pa3pabOTKa UMHUTAIIMOHHOW MOJIENIM TIPOIIECCa TECTHPOBAHHs OE30MAaCHOCTH MPOTPAMMHOIO 0OECTICUeHHUS,
uccnenoBanue S(QQGEKTUBHOCTH METOJAa TOBBIMIEHUS O€30MacHOCTH TPOTPaMMHOTO OOECIe4eHHusi, HCCIeOBaHuE U
000CHOBaHHE JIOCTOBEPHOCTH TOJyYCHHBIX PE3yJIbTAaTOB, pa3pabOTKa MPaKTHUCCKUX PEKOMEHIAIMH IO HCHOJIb30BAHUIO
Metona. IIpuMeHsieMble METOIbI: CUCTEMHBI aHAaNN3, MPOEKTHBIA MOJXOJ, IBPUCTUYECKHE METObl MPUHATHS PEUICHHH,
MpoIiecCHbIe MOJeNU. [loyueHHbIC Pe3yJbTaThl. NPOBEICHHBIA aHaIM3 OCOOCHHOCTEH CHOCOOOB ONMHUCAHHUS Tpolecca
TECTHPOBaHMs OE30MAaCHOCTH HPOrPaMMHOI0 O0ECHeueHHs W OLUEHKH ero 3((GEKTHMBHOCTH ITOKa3al BO3MOXHOCTb yuyeTa
MHOTHX ()aKTOPOB IyTEM HCIIOJH30BAHUS METOJla TUHAMUKN CpeAHuX. Pa3paboTaH crocob oreHKH 3QPEeKTUBHOCTH METoaa
HOBBINIEHNS 0€30II1aCHOCTH IIPOrPAMMHOTO 00eCIeueH s, OTINYAIONIMIACS OT U3BECTHBIX y4eTOM (haKTopa MacIITaOMPOBaHUS
mporiecca pa3pabOTKH TPOTPAMMHOTO O0ECHeUeHHs IMyTEeM BHEIPEHHS CICIMAIMCTOB TeCTHpoBaHus Oe3omacHocTH. C
MOMOIIBI0 YCOBEPIIEHCTBOBAHHOTO CcHoco0a Jl0Ka3aHa TUIOTe3a O MOBBIEHUH I(PQEKTUBHOCTH Mpolecca o0ecreueHus
6e30MaCHOCTH C MOMOIIBIO pa3paboTaHHOTO METOJa MYyTEeM CHHIKCHUSI IMOKa3aTessl OTHOCHTENILHOTO yiepOa Ha BCeX Tamax
JKM3HEHHOT'O IUKJIA MMPOrPaMMHOTO OOECHEYEeHHs, B 3aBUCUMOCTH OT BO3MOXXHOW IMPOAOJDKHTEIBHOCTH KHUOEPBTOPKECHUSI.
IIpoBeeHO 060CHOBaHKME JOCTOBEPHOCTH PE3yJbTaTOB MaTEMaTHYECKOTO MOJCIHPOBaHMs. [IpUBENECHO PsJ MPAKTHUYECKUX
PEKOMEHIAIMI 110 MCIIOIB30BAHUIO METO/1a MOBBIIIEHHS 0€30MIaCHOCTH MPOTPAMMHOTO 00ECTICUCHHS U BBIJICIICHBI HEKOTOPHIC
HEJIOCTATKH, YTO ITO3BOJIMIIO CAENAThL BEIBOJ O BO3MOKHOCTH JATLHEUIITNX UCCIIETOBAHNM.

KiioueBble ¢j10Ba: 0€30IaCHOCTh MIPOrPaMMHOI0O OOecIieueHHUs; olleHKa 3G PEKTUBHOCTH; JOCTOBEPHOCTh PE3yJIbTaToB
MaTEeMaTHYECKOTO MOJCITUPOBAHHUS, IPAKTHICCKUE PEKOMEH IAIIHH.

bBibnioepaghiuni onucu / Bibliographic descriptions

ao Beiininb, Kocenko B. B., CemenoB C. I. JlocmimkeHHS e(EKTUBHOCTI METOMY IIJBHUINEHHS O€3MEeKM IPOrPaMHOrO
3a0e3nedeHHs 1 OOIPYHTYBaHHS MPAKTUYHHUX PEKOMEHAAWiH 3 #Horo BHKOpHCTaHHA. CyyacHuii cman HAyKo8uUX 00cCniodceHb ma
mexnonoeiti 6 npomuciosocmi. 2022. Ne 1 (19). C. 55-64. DOI: https://doi.org/10.30837/ITSSI.2022.19.055

Cao, Weiling, Kosenko, V., Semenov, S. (2022), "Study of the efficiency of the software security improving method and
substantiation of practical recommendations for its use", Innovative Technologies and Scientific Solutions for Industries, No. 1 (19),
P. 55-64. DOI: https://doi.org/10.30837/1TSS1.2022.19.055 r

https://doi.org/10.30837/ITSSI.2022.19.0
https://doi.org/10.30837/ITSSI.2022.19.055

