
 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

52

UDC 004.657; 004.051; 004.413.5 DOI: https://doi.org/10.30837/ITSSI.2022.20.052

O. MAZUROVA, I. SYVOLOVSKYI, O. SYVOLOVSKA

NOSQL DATABASE LOGIC DESIGN METHODS FOR MONGODB AND NEO4J

Modern developers of gaming mobile and Internet applications almost do not imagine themselves without the use of NoSQL

databases, if they pursue the goal of creating scalable databases with high-performance and wide functionality. When designing a

database for any NoSQL system, the developer needs a clear understanding of the logic of such databases and the capabilities of the

tools offered by the corresponding DBMS. However, unfortunately, they do not have unified methods of logical design of such

models, as in relational databases. Thus, there is a problem of developing effective methods for the logical design of such databases

that would provide the necessary performance when implementing the business logic of the corresponding applications. The subject

of the research is approaches to the logical design of NoSQL document and graph databases. The goal of the work is to propose

unified logical modeling methods for MongoDB and Neo4j NoSQL systems based on an experimental study of their performance.

The following tasks are solved in the work: analysis of current approaches to the logical design of document and graph databases\, the

development of logical design methods for them; planning and experimental study of the performance of the proposed methods on the

example of models developed with their help. The following methods are used: database design methods, database performance

evaluation methods, development methods are based on MongoDB 5.0.5, Neo4j 4.4.3 DBMS, Visual Studio 2022 development

environment. The following results are obtained: unified logical design methods for MongoDB and Neo4j NoSQL systems are

proposed; on their basis, the corresponding logical models have been developed; experimental measurements of the number of

resources required working with the developed models; recommendations on the proposed methods are formed. Conclusions: The

proposed modeling methods for MongoDB have their own aspects of their effective use for different types of applications. The

strengths and weaknesses of both methods were identified, but a mixed method based on a combination of modeling through

normalization and denormalization was recommended. Even though Neo4j lost out to MongoDB in terms of consumed resources in

most experiments, both DBMS's' demonstrate good productivity, taking into account the orientation to different tasks.

Keywords: database; logical design method; DB DESIGN; Neo4j; NoSQL; MongoDB.

Introduction

The amount of data on the Internet is growing at an

enormous rate as active users add hundreds of gigabytes

of data to social networks every second. Relational

databases cannot cope with such modern masses of

information, although data processing tasks have been

successfully implemented for several decades.

This problem has led to the need to introduce new

approaches to information processing in large systems. To

date, NoSQL databases have met this challenge [1 - 2],

which have made it possible to replace costly vertical

scaling with efficient horizontal scaling on clusters. In

addition, they have higher performance, more flexible data

model, and open source DBMS code.

Now, the most popular NoSQL databases are

document databases, in particular MongoDB, rapidly

catching up with popular relational databases of Microsoft

SQL Server, Oracle, MySQL and PostgreSQL [2]. In

addition, when creating large systems, particularly for

social networks, well proven graph DBMS, namely the

most common DBMS Neo4j [3], which has a very wide

functionality.

When designing a database for any NoSQL system, a

developer is required to have a clear understanding of the

logic of the database and the tools that DBMS offers [4].

Since this understanding may not happen in practice,

many commercial projects hesitate to switch to new

NoSQL databases, because the implementation of such a

switch requires a lot of time for performance modeling

and information migration.

Algorithms for transition from ER diagrams to

logical models in the context of relational DB [5] have

long been formalized. However, these algorithms are not

applicable to NoSQL databases, which are based on data

structures other than tables (relations).

Consequently, to solve the problem faced by

developers of NoSQL databases, the task of developing

more unified methods of logical modeling of such

databases and their experimental study in order to identify

more productive design methods and form certain

recommendations on their application for different tasks

and applications is relevant.

Analysis of recent research and publications

Fast and widespread distribution of NoSQL (DB)

databases is due to the ease of working with them. NoSQL

DB is convenient to use for many modern applications

that aim to use scalable databases with high performance,

wide functionality, ability to provide maximum usability

[4, 6]. For such as mobile, gaming, Internet applications,

etc.

Document-oriented DBs are quite common among

NoSQL systems. They allow developers to store and

query data in the DB using the same document model they

used in the program code. Each stored record looks like a

separate document with its own set of fields. Documents

are flexible and hierarchical, allowing them to evolve to

meet the increasing needs of applications. MongoDB,

CouchDB, and Couchbase are all examples of the most

common document DBMSs. They aim to provide

functional and intuitive APIs for agile development.

Among them, MongoDB is not only one of the most

popular (or widespread), but also very attractive for

developers due to the availability of drivers for different

programming languages [1 - 2].

Another rather popular type of NoSQL DB is graph

DB [3]. Graph DBs implement data representation in the

form of nodes and edges, which are relations between

© O. Mazurova, I. Syvolovskyi, O. Syvolovska, 2022

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

53

nodes. Such DBs implement easy processing of complex

related data and computation of specific properties of

graphs, such as the path from one node to another and its

length. Common examples of the use of graph DBs

include social networks and services; Neo4j is currently

the most common on this class of DBMS, since it supports

a purely graph model and is already a proven development

for production solutions.

DB theory and practice have long established a

stage-by-stage approach to their design through

conceptual, infological (or ER-) modeling to logical and

then physical modeling [7 - 9]. For relational DBs, all

transitions from one model to another all transitions from

one model to another have been long formalized and

unified. However, unfortunately, for NoSQL systems such

unified methods of logical design, where it is necessary to

take into account the peculiarities of the logic of such

systems, do not exist today. For example, usually NoSQL

DBs do not involve relational links, so the implementation

of similar logic and data integrity mechanism is entirely

up to the developers of the corresponding DB.

The current recommendations and approaches do not

give developers for NoSQL systems any knowledge about

how to model entities and relationships effectively for a

particular data model, which data indexes work best, and

so on [2, 6, 8]. For example, MongoDB recommends

using the "Manual reference" method to create similar

logic to links [10 - 11]. [10 - 11], which involves saving

the "_id" field of one document to the field of another

object, similar to the foreign key in relational DBs, but

without supporting the link itself. This method forms a

0:M relation, which can be used by developers as 1:1, 1:M

relations and derivatives thereof. But this leads to the

"N+1" problem, as it requires an additional query or join

data through a JOIN-like operation. Accordingly,

document DBs need to use composition in the form of

nested objects or arrays of objects to solve such problems.

This approach is suitable if the relationship between

objects can be expressed by the word "includes".

This approach can be used to model relationships:

- 1:1 type, but it should be considered that embedded

object would increase the weight of the document, which

slows down its unloading from DB to the client.

- 1:M type, but if M is not a particularly large

number and embedded objects should not be too large.

Keep in mind that MongoDB has a maximum

nesting size of 100 levels; the maximum document size is

16 MB. Consequently, if new records are constantly being

added to the document field (array), the document size

will keep growing. This can cause performance problems

by moving the document to a different memory location,

because there is no place for it to grow in the current

location, so defragmentation is performed.

No joins means no JOINs in the relational sense.

However, later, MongoDB added two ways of combining

data:

- $lookup – an operation that works analogous to

LEFT OUTER JOIN in relational DB (added in version

3.2);

- $graphLookup – creates a collection of records

showing a hierarchy of objects from some to the current

one, similar to lookup in graph DBs (added in version

3.4).

This approach can be used to model relationships:

- 1:1 type, but you have to consider that an

embedded object will increase the weight of the

document, which slows down its unloading from DB to

the client.

- 1:M type, but if M is not a particularly large

number and embedded objects should not be too large.

Things are more complicated with entities that have

an M:M relation. It is known that an M:M relation can be

defined as two 1:M relations and an intermediate object

containing identifiers of those two referenced entities [12].

This approach can be implemented in MongoDB without

much trouble, except for creating field indexes with

identifiers. With this approach, all the auxiliary attributes

of the M:M link will be located in a separate object.

But if a developer needs to connect such a link data,

he would have to use two JOIN-like operations ($lookup),

which in the context of document DB is very expensive.

To solve such a problem, MongoDB practically

always uses another approach: compositing this

intermediate object into one of the M:M link objects in the

form of an array. Figure 1 shows both approaches: via

auxiliary entity (top) and reduced composition approach

(bottom).

Fig. 1. Approaches to designing M:M communication in document DBs

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

54

The widespread use of the second approach is due to

the fact that in 2017 the $lookup operation gained support

for using arrays of identifiers as inputs to connect data.

This approach requires only one JOIN operation instead of

two to connect the data. But, when using it, you need to

clearly identify the "main" M:M connection object, which

will contain the identifier array.

Unlike document databases, graph databases support

links, although they are quite different from relational

links [13]. In Neo4j, each relationship is an entity of a

special type that preserves a reference to the outgoing and

incoming entities. Thus, links have names, can contain

attributes, and indexes can be created on them. Like all

NoSQL databases, this DBMS has no integrity restriction

mechanisms; this must be decided by the developer at the

application level only. But, each relationship in the graph

must have a source and an input entity.

It follows that every Neo4j relationship has a default

cardinality of 1:M, which can be "transformed" into a 1:1

relationship due to uniqueness constraints or at the

software level. Thus, an M:M relationship can potentially

be modeled in two ways: through an auxiliary entity (as in

relational DBs) and directly by storing additional data as

attributes of the relationship. Figure 2 illustrates these

modeling approaches graphically: as it looks in relational

DB (top), auxiliary entity (middle), and via link attributes

(bottom).

Fig. 2. Comparison of M:M communication design methods in graph DBMS

It should be noted that almost all graph DBMSs have

only unidirectional links. The standardized query language

Gremlin, supported by all graph DBMSs, also has no

support for bidirectional links. Thus, to model

bidirectional links, you need to make two bindings in both

directions. But considering that a link is also one of the

DBMS objects, the option with the intermediate entity is

ineffective from the very beginning, as it strongly clogs

the DB with redundant entities and links, increases the

weight of the DB due to redundant objects and potentially

increases the execution time even for basic queries.

However, the existence of the considered

recommendations and approaches does not provide

NoSQL DB developers with unified methods of logical

design of such DB, which would unambiguously indicate

the effectiveness of the model obtained in the end. Thus,

the study of NoSQL database logical modeling methods

and approaches is relevant.

The aim of this article is the development of unified

logical design methods for NoSQL systems MongoDB

and Neo4j based on the analysis of existing design

approaches, as well as experimental study of their

performance.

This research requires:

- development of unified logical design methods for

selected NoSQL databases MongoDB and Neo4j;

- analysis and infological modelling of a certain

applied subject area of creation of complex server systems

for further experimental research;

- developing of the logical models for the selected

DBMS on the basis of the developed unified logical

design methods;

- experimental study of the performance of the

obtained models and development of recommendations on

the feasibility of using the proposed methods in the design

of NoSQL databases.

Evaluation of the effectiveness of the methods

should be made taking into account such criteria as: disk

space occupied by DB (MB); query execution time (ms);

operating memory consumption (MB); CPU time

consumption (%).

Materials and methods

For further study, the applied subject domain of an

arbitrary game server system was chosen. A multiplayer

action-adventure game with RPG elements and a

dedicated server was chosen as the subject domain

object. In games of similar genre and implementation of

multiplayer, in any case, it is necessary to implement

DB for storing world state and player progress.

Consequently, the database must store the following

information:

- player account information (currency, player data);

- status and information about the characters in the

game world and their abilities;

- a list of the character's tasks and their status;

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

55

- a list of enemies (monsters) in the game and related

information (or information about their location, if the

server part generates them);

- a list of non-player characters (NPCs) and related

information;

- history of events in the game (buying in-game

currency, defeating enemies, completing tasks, etc.).

A general diagram of the domain classes, describing

the essence of the game system and the relationship

between them, is given in figure 3.

Based on this diagram, as well as the identified

integrity constraints and attributes of the subject area, an

ER diagram [12] of DB (fig. 4) based on the "Crow's foot"

notation was developed. [9].

Fig. 3. General class diagram of the subject area

Fig. 4. ER-diagram of the subject area database

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

56

So, let us consider the methods by which the logical

DB design for DBMS MongoDB can be performed.

Recall that there is no standardized notation for the

visualization of this model. What also complicates the

process is that MongoDB objects can have up to 100

levels of nesting and is problematic to reflect visually,

although this does not happen very often in practice.

Therefore, a modification of the notation for relational

logical models with additional functionality inherent in

document DB is proposed to describe the document

logical model.

Consequently, the mentioned "Manual reference"

approach essentially makes the model more similar to

relational DBs, so it can be denoted as a "normalizing"

method. In contrast, the nested document approach

reduces the level of normalization through composition,

so it can be called "denormalizing".

Let us consider a unified method for turning an ER

diagram into a normalized document logical model, in

which the following steps have been proposed:

- modeling entities participating in a 1:1 relationship:

add a field with the identifier of one document (master) to

another document (dependent).

- modeling entities participating in a 1:M

relationship: add a field with the identifier of the main

document (1) to the dependent ones (M);

- modeling entities participating in the M:M

relationship should use one of the previously mentioned

approaches: either through isolating an intermediate entity

with identifiers of objects referring to it (more often

inefficient), or through composing this intermediate entity.

Entity in the "main" object as an array (usually efficient).

The normalized logic model designed by this method

is shown in figure 5. All "conditional" external keys

constructed by "manual reference" are marked with RF in

the figure. The resulting links have purely conditional

character due to the fact that MongoDB has no integrity

restriction mechanisms and document binding

functionality in general. The task of data integrity control

is entirely up to the developer.

Fig. 5. Normalized DB document logical model of the subject area

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

57

Consider a unified method for transforming an ER

diagram into a denormalized document logical model (fig.

6), in which the following steps have been proposed:

- modeling entities participating in 1:1 relationships:

create a field in the main document and nest the dependent

document in it, followed by deleting the dependent entity;

it is recommended to add an index to it if you plan to

select these entities separately from the main entity;

- modeling entities participating in 1:M relationships:

add a field-array to the main document (1) containing all

dependent (M) entities. If semantically the main entity

may have no relations to all dependent entities (no "owns"

relation), a separate collection without relations must be

created to contain all instances of dependent entities.

Otherwise, an additional entity is not required.

- modeling entities that participate in M:M

relationships: to add a field-array to the main document

that contains all dependent documents. The cases in which

an additional collection needs to be created are similar to

1:M.

Guided by this method, a denormalized document

logical model of the domain was designed (fig. 6).

Fig. 6. Denormalized DB document logical model of the subject area

For a more convenient visual representation of the

model, the nested Character object has been separated and

split into two parts. To denote the nesting of Character in

User, the connection with UML class diagrams

"including" was used. The only entity that did not undergo

denormalization was Item. This is due to the fact that in

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

58

game applications of this genre all items are accessed by

its identifier and the set of all items is unloaded at the start

of the game. Thus, JOIN-like operations with the Item

entity will not be performed in practice and there will be

no difference in performance either.

Next, let's propose a logical design method for the

graph model. There is no standardized notation for

constructing a logical model of this type now either, so a

relational modification will be used. It should be noted

that Neo4j supports attributes in relationships, which can

significantly reduce the number of entities and simplify

the model.

The algorithm for turning an ER diagram into a

graphical logic model is very different from the previous

ones because of the different structure of data storage. The

following steps are proposed for it:

- to combine entities that have 1:1 relationships with

each other into one entity;

- to turn 1:M links into graph links without attributes.

- to replace intermediate entities that create M:M

links with graph links (with attributes, if any).

Figure 7 shows the graphical logic model obtained as

a result of the proposed method.

In the developed model there are two types of links:

with and without attributes. A separate notation in the

form of a transparent block was proposed to display links

with attributes. The use of attribute relationships

eliminated all the entities that were used to model the

M:M relationship, which reduced the model considerably.

But since graph DB does not support nesting of entities,

the 1:1 link must be maintained at the program level [13],

such as the link between a character and its state.

Thus, as a result of the analysis and modeling of the

subject area, logical models were developed: normalized

and denormalized document and graph models. Based on

these models, the corresponding physical DB models for

the corresponding DBMS MongoDB and Neo4j were

developed for further study.

For the experimental study the clusters from DB

servers or source-replica type replication were used, as

this approach is suitable for game servers with large read

specificity. Consequently, all measurements were

performed on clusters of database servers regardless of

configuration. They were located in the Azure cloud

service on virtual machines of different sizes.

Thus, the following DB server configurations with

their characteristics were chosen for the experiments:

- configuration type Small: machine name –

Standard_B2s; vCPU - 2; RAM - 4 GB; number of nodes -

2; number of connections 20;

- сonfiguration type Medium: machine name is

Standard_B4ms; vCPU - 4; RAM - 16 GB; number of

nodes - 4; number of connections 50;

- configuration type Large: machine name –

Standard_B8ms; vCPU - 8; RAM - 32 GB; number of

nodes - 6; number of connections 100.

Fig. 7. Graphical logic model of the subject area database

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

59

Ubuntu 20.04 LTS Minimal was used as the

operating system to minimize the consumption of

resources by the system. The type of machine

configuration also affects the number of entities in the DB

to be used in the experiments (table 1).

Table 1. Number of DB entities for experiments on configurations

Type of configuration Small Medium Large

Users / characters per user 3000 / 1 5000 / 2 8000 / 3

Number of entries in the game per user 25 50 75

Total items in inventory of the players 100 / 50 200 / 100 300 / 150

Skill / equipment slots 10 / 4 25 / 6 50 / 8

NPCs/tasks they issue 50 / 100 150 / 200 300 / 500

Enemies 100 200 500

Loot / number of items within it 5000 / 3 15000 / 5 30000 / 8

Number of DB items in the "worst case"

(denormalization)
776 967 4 701 983 16 362 659

Based on games of a similar genre, it was taken into

account that some entities cannot be in large numbers and

do not change depending on the configuration, for

example: Attribute (a constant number - 6 was chosen);

CharacterState (one entity per character).

When performing each step of the experimental

study, it was decided to collect metrics that are quite often

used to investigate DB performance [14 - 15]:

- S – space occupied by DB on disk (MB);

- M – RAM consumption (MB);

- C – processor time consumption (%);

- T – query execution time (ms) (the results of

experiments to measure this metric will be given in the

further publications);

Results of research and their discussion

Let us consider the main most interesting

performance trends of the experiments to study the

designed models for NoSQL DBMS MongoDB and

Neo4j.

First of all, let's compare DB sizes with filled test

data, which is shown in figure 8.

Fig. 8. DB size comparison (on disk)

The diagram shows that DBMS Neo4j consumes a

huge amount of disk space, and this growth is almost

linear to the number of entities. In the course of

experiments it was determined that this "DB weight" is

formed by entities, the connections themselves practically

do not take up disk space. The denormalized MongoDB

model weighs 30-35% more than the normalized one,

which is obviously caused by data redundancy.

Nevertheless, in terms of DB weight MongoDB clearly

wins over Neo4j.

The results of the comparison of RAM consumption

of the DBMS server are shown in figure 9.

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

60

Fig. 9. RAM usage

The histogram shows that Neo4j uses even more

RAM than MongoDB. In this situation, the MongoDB

memory allocation logic still plays a role: DBMS cannot

use more than 50% of the system RAM, while Neo4j, if

necessary, can use almost all available to it. Also, Neo4j

has conditionally minimal amount of RAM for the correct

work - 2 gigabytes, when the recommended amount is

about 8 gigabytes.

Let's consider the results of measurements of CPU

usage by the DBMS server. Three configurations were

used in the research. So, the experiments have shown that

for small projects or projects at MVP stage Neo4j is not

especially effective. Let's take a closer look at the Medium

configuration (fig. 10), which more corresponds to the real

machines configurations for medium-sized projects.

Fig. 10. CPU usage (Medium configuration)

With so many resources, the situation for Neo4j has

leveled off relative to MongoDB, now the DBMS data is

about equal. In general, it was on this configuration that

Neo4j started working "without limitations". We can even

conclude that the resources allocated to it are even a bit

much for the load that was allocated to it.

Figure 11 shows the results of the measurements for

the Large configuration. In general, the situation is very

similar to the preliminary results. The resources increased,

but the DB size and load increased proportionally to the

resources.

We see that the allocated DBMS resources are more

than they need for stable operation on these loads.

We also investigated the performance of the models

when executing queries. But this will be a topic for

another publication. Note only that during all comparisons

we could see certain pattern - Neo4j consumes more

resources compared to MongoDB, denormalized model

works faster than normalized model in context of the

queries studied as well as requires less resources.

After all experiments, we can unequivocally say that

the denormalized MongoDB model is the most preferable

option for the studied domain (DB model and queries).

This scheme resulted in the lowest consumption of

machine resources with satisfactory performance.

After comparing all the results obtained, we can

draw some conclusions and develop some

recommendations for the use of one or another method in

a particular situation.

So DBMS Neo4j. It has been in development for 15

years, during which it has acquired a large set of

functionalities, significant performance improvements and

so on. But in practice, it is not so good: the limitation of

Community version, huge consumption of CPU and RAM

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

61

resources, large DBMS weight compared to other DBMS

and average performance in trivial tasks make this DBMS

not particularly attractive for small or medium sized

projects. It is also should be noted that the demanding

DBMS is also associated with its implementation of JVM,

which immediately impose restrictions on the smallest

RAM for the DBMS server.

Fig. 11. CPU usage (Large configuration)

One of the peculiarities of Neo4j is that it uses the

maximum of its allocated resources, so they have to be

strictly limited to certain values. But it should be noted

that this DBMS is able to easily perform operations that

are difficult or impossible to perform in other DBMS.

Thus, it is recommended to use graph model logic

design method and use Neo4j in cases when:

- ER graph DB contains a large number of M:M

links and the server-side logic involves frequent fetching

of several linked data simultaneously;

- an ER diagram DB has a small fraction of entities

on a large fraction of links, and the application logic is

mostly about deleting and adding links between DB

objects;

- the system is large, has a large number of users and

the company has a large amount of resources;

- the server side needs the specifications of graph

DB, such as finding the depth of relationships.

Now let's move on to DBMS MongoDB. Consider

first the model normalization method. Using this method

resulted in zero data redundancy in the DB, which had a

positive effect on weight. Also, since the DB objects are

much smaller than the denormalized model, they have

more "similarity" between them, DBMS more effectively

applied the compression mechanism of the stored data (on

average, by 5-15%).

But the analyzed operations in the server system

under study often required either joining data or

performing operations on several collections

simultaneously, which required the use of transactions or

JOIN-like operations. This resulted in reduced

performance compared to the denormalized model.

Thus, the normalization method should be used if:

- the links in the schema are predominantly

cardinality "0", which eliminates the need to artificially

maintain data integrity through transactions (the

traditional "eventually consistent" approach);

- in a 1:M relation, the number M is expected to be

large (and/or the weight of the object is large). This is due

to an object size limit of 16 MB;

- the system was previously using a relational

RDBMS and a quick migration to MongoDB is required.

The denormalization method used in the server

system under study proved to be the most efficient in

terms of performance. Also data redundancy increased the

weight of DB noticeably. Also some operations of the

system were quite difficult to implement using array

operations (and some potentially impossible), which is not

typical for normalized model. This method should be used

if the number of "M" objects in a 1:M relationship is not

particularly large (up to 1000) or dependent objects cannot

exist without the main one (simpler "artificial" data

integrity support);

Conclusions and prospects for further development

In this study, NoSQL DB logical design methods

were proposed and investigated in terms of performance

using DBMS MongoDB and Neo4j examples. A series of

experiments were conducted to measure the resources

consumed.

Based on the analysis of logical design approaches,

unified logical design methods for NoSQL systems

MongoDB and Neo4j were proposed. For the experiment,

based on the proposed methods, logical models were

designed, the performance of which was investigated. The

experiments used metrics on the resources required to

handle such models.

The study showed that none of the proposed

modeling methods for MongoDB could be called

unambiguously best. The best would be a mixed method -

a combination of modeling through normalization and

denormalization. In general, it can be unambiguously said

that both studied DBMS have good performance, although

they are oriented to different tasks.

If you don't know in advance how fast the system

will grow, how many users it will have, and so on, a

universal choice is to use MongoDB. This DBMS has a

very wide functionality and the ability to scale

 ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

62

horizontally and vertically, which makes it a good choice

for prototypes and newly created systems.

Thus, based on the results of the experimental study,

recommendations for the use of the proposed methods

have been formed. These recommendations can be used to

design real systems, in particular in the area of game

servers.

References

1. Maran, M. M., Paniavin, N. A., Poliushkin, I. A., (2020), "Alternative Approaches to Data Storing and Processing", V

International Conference on Information Technologies in Engineering Education (Inforino), Р. 1–4, DOI:

https://doi.org/10.1109/inforino48376.2020.9111708

2. Meier, A., Kaufmann, M. (2019), SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big

Data Management, Springer Vieweg, , 248 р. DOI: https://doi.org/10.1007/978-3-658-24549-8

3. Wood, P. T. (2018), "Graph Database", In: Liu, L., Özsu, M.T. (eds), Encyclopedia of Database Systems. Springer, New York,

NY, Р. 1639–1643. DOI: https://doi.org/10.1007/978-1-4614-8265-9_183

4. Acharya, B., Jena, A. K., Chatterjee, J. M., Kumar, R., & Le, D. (2019), "NoSQL Database Classification: New Era of Databases

for Big Data", International Journal of Knowledge-Based Organizations (IJKBO), 9 (1), Р. 50–65. DOI:

http://doi.org/10.4018/IJKBO.2019010105

5. Halpin, T., Morgan, Т, (2008), "Information Modeling and Relational Databases (Second Edition) ", The Morgan Kaufmann

Series in Data Management Systems, P. 305–343. DOI: https://doi.org/10.1016/B978-0-12-373568-3.X5001-2

6. Kuzochkina, A., Shirokopetleva, M., Dudar, Z. (2018), "Analyzing and Comparison of NoSQL DBMS", International Scientific-

Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Р. 560–564. DOI:

https://doi.org/10.1109/INFOCOMMST.2018.8632133

7. Sanders, G. L., Shin, S. K. (2001), "Denormalization effects on performance of RDBMS", Proceedings of the 34th Annual Hawaii

International Conference on System Sciences, P. 9–15.

8. Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, F., (2018), "Comparison between relational and NOSQL databases", 41st

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), P. 216–

221. DOI: https://doi.org/10.23919/mipro.2018.8400041

9. Date, C. J. (2019), Database Design and Relational Theory: Normal Forms and All That Jazz, Apress, 470 p, ISBN 978-148-425-

539-1. DOI: https://doi.org/10.1007/978-1-4842-5540-7

10. Palanisamy, S., SuvithaVani, P. (2020), "A survey on RDBMS and NoSQL Databases MySQL vs MongoDB", International

Conference on Computer Communication and Informatics (ICCCI). DOI: https://doi.org/10.1109/iccci48352.2020.9104047

11. Chodorow, K., (2016), MongoDB: The Definitive Guide: Powerful and Scalable Data Storage, 3rd Edition, O'Reilly Media, 514p.

12. Bagui, S., Earp, R. (2011), Database Design Using Entity-Relationship Diagrams (Foundations of Database Design), Auerbach

Publications, 371 р. DOI: https://doi.org/10.1201/9781439861776

13. Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J. (2014), Neo4j in Action, Manning, 304 р.

14. Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation methods for distributed

databases using replication technology", Innovative technologies and scientific solutions for industries, № 2 (16), Р. 19– 31. DOI:

https://doi.org/10.30837/ITSSI.2021.16.019

15. Gomes, C., Borba, E., Tavares, E., Junior, M. N. de O. Performability (2019), "Model for Assessing NoSQL DBMS Consistency",

IEEE International Systems Conference (SysCon). DOI: https://doi.org/10.1109/syscon.2019.8836757

Received 30.06.2022

Відомості про авторів / Сведения об авторах / About the Authors

Мазурова Оксана Олексіївна – кандидат технічних наук, доцент, Харківський національний університет

радіоелектроніки, доцент кафедри програмної інженерії, м. Харків, Україна; e-mail: oksana.mazurova@nure.ua; ORСID ID:

https://orcid.org/0000-0003-3715-3476.

Мазурова Оксана Алексеевна – кандидат технических наук, доцент, Харковский национальный университет

радиоэлектроники, доцент кафедры программной инженерии, г. Харьков, Украина.

Mazurova Oksana – PhD (Engineering Sciences), Associate Professor, Kharkiv National University of Radio Electronics,

Associate Professor of the Department of Software Engineering, Kharkiv, Ukraine.

Сиволовський Ілля Михайлович – Харківський національний університет радіоелектроніки, магістр кафедри

програмної інженерії, м. Харків, Україна; e-mail: illia.syvolovskyi@nure.ua; ORСID ID: https://orcid.org/0000-0002-4592-0965.

Сиволовский Илья Михайлович – Харьковский национальный университет радиоэлектроники, магистр кафедры

программной инженерии, г. Харьков, Украина.

Syvolovskyi Illia – Kharkiv National University of Radio Electronics, Master of the Department Of Software Engineering,

Kharkiv, Ukraine.

Сиволовська Олена Вікторівна – кандидат економічних наук, доцент, Український державний університет

залізничного транспорту, доцент кафедри маркетингу, м. Харків, Україна, e-mail: alenasvl3@gmail.com; ORCID ID

https://orcid.org/0000-0002-9317-9307.

Сиволовская Елена Викторовна – кандидат экономических наук, доцент, Украинский государственный университет

железнодорожного транспорта, доцент кафедры маркетинга, г. Харьков, Украина.

Syvolovska Olena – PhD (Economics Sciences), Associate Professor, Ukrainian State University of Railway Transport,

Associate Professor of the Department of Marketing, Kharkiv, Ukraine.

 ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20) ISSN 2524-2296 (online)

63

МЕТОДИ ЛОГІЧНОГО ПРОЕКТУВАННЯ NOSQL БАЗ ДАНИХ ДЛЯ MONGODB

ТА NEO4J

Сучасні розробники ігрових мобільних та інтернет-додатків майже не уявляють себе без використання NoSQL баз даних,

якщо вони мають на меті створення масштабованих баз даних, які мають високу продуктивність та широкі функціональні

можливості. При проєктуванні бази даних для будь-якої NoSQL-системи від розробника вимагається чітке розуміння логіки

таких баз даних та можливостей інструментів, які пропонує відповідна СКБД. Але, на жаль, уніфікованих методів логічного

проектування таких моделей, як є в реляційних базах даних, вони не мають. Отже існує проблема розробки ефективних

методів логічного проектування NoSQL баз даних, які б забезпечували необхідну продуктивність під час реалізації бізнес-

логіки відповідних додатків. Предметом дослідження є підходи до логічного проектування NoSQL документних та графових

баз даних. Мета роботи – запропонувати уніфіковані методи логічного моделювання для NoSQL систем MongoDB та Neo4j

на основі експериментального дослідження їх продуктивності. В роботі вирішуються наступні завдання: аналіз актуальних

підходів до логічного проектування документних та графових баз даних, розробка методів логічного проектування для них;

планування та експериментальне дослідження продуктивності запропонованих методів на прикладі моделей, що розроблено

за їх допомогою. Використовуються такі методи: методи проектування та оцінки продуктивності баз даних, методи

розробки базуються на СКБД MongoDB 5.0.5, Neo4j 4.4.3, середовищі розробки Visual Studio 2022. Отримано наступні

результати: запропоновано уніфіковані методи логічного проектування для NoSQL систем MongoDB та Neo4j; на їх основі

розроблено відповідні логічні моделі; проведено експериментальні заміри кількості Висновки:ресурсів, що необхідні для

роботи з розробленими моделями; сформовано рекомендації щодо запропонованих методів. запропоновані методи

моделювання для MongoDB мають власні аспекти ефективного використання для різних типів додатків; були виявлені

сильні та слабкі сторони обох методів, але рекомендовано змішаний метод на базі комбінації моделювання через

нормалізацію та денормалізацію; незважаючи на те, що Neo4j в більшості експериментів програла MongoDB за споживаними

ресурсами, але обидві СКБД мають хорошу продуктивність орієнтовно до різних завдань.

Ключові слова: база даних; метод логічного проектування; СКБД; Neo4j; NoSQL; MongoDB.

МЕТОДЫ ЛОГИЧЕСКОГО ПРОЕКТИРОВАНИЯ NOSQL БАЗ ДАННЫХ ДЛЯ

MONGODB И NEO4J

Современные разработчики игровых мобильных и интернет-приложений почти не представляют себя без использования

NoSQL баз данных, если они преследуют цель создания масштабируемых баз данных, имеющих высокую

производительность и широкие функциональные возможности. При проектировании базы данных для любой NoSQL-

системы от разработчика требуется четкое понимание логики таких баз данных и возможностей инструментов,

предлагаемых соответствующей СУБД. Но, к сожалению, унифицированных методов логического проектирования таких

моделей, как в реляционных базах данных, они не имеют. Таким образом, существует проблема разработки эффективных

методов логического проектирования таких баз данных, которые обеспечивали бы необходимую производительность при

реализации бизнес-логики соответствующих приложений. Предметом исследования являются подходы к логическому

проектированию NoSQL документных и графовых баз данных. Цель работы – предложить унифицированные методы

логического моделирования для NoSQL систем MongoDB и Neo4j на основе экспериментального исследования их

производительности. В работе решаются следующие задачи: анализ актуальных подходов к логическому проектированию

документных и графовых баз даных, разработка методов логического проектирования для них; планирование и

экспериментальное исследование производительности предложенных методов на примере моделей, разработанных с их

помощью. Используются следующие методы: методы проектирования и оценки производительности баз данных, методы

разработки базируются на СУБД MongoDB 5.0.5, Neo4j 4.4.3, среде разработки Visual Studio 2022. Получены следующие

результаты: предложены унифицированные методы логического проектирования для NoSQL систем MongoDB и Neo4j; на

их основе разработаны соответствующие логические модели; проведены экспериментальные замеры количества ресурсов,

необходимых для работы с разработанными моделями; сформированы рекомендации по предложенным методам. Выводы:

предложенные методы моделирования для MongoDB имеют собственные аспекты эффективного их использования для

разных типов приложений; были выявлены сильные и слабые стороны обоих методов, однако рекомендовано смешанный

метод на базе комбинации моделирования через нормализацию и денормализацию; несмотря на то, что Neo4j в большинстве

экспериментов проиграла MongoDB по потребляемым ресурсам, обе СУБД демонстрируют хорошую продуктивность с

учетом ориентации на разные задания.

Ключевые слова: база данных; метод логического проектирования; СУБД; Neo4j; NoSQL; MongoDB.

Бібліографічні описи / Bibliographic descriptions

Мазурова О. О., Сиволовський І. М., Сиволовська О. В. Методи логічного проектування NoSQL баз даних для

MongoDB та Neo4j. Сучасний стан наукових досліджень та технологій в промисловості. 2022. № 2 (20). С. 52–63.

DOI: https://doi.org/10.30837/ITSSI.2022.20.052

Mazurova, O., Syvolovskyi, I., Syvolovska, O. (2022), "NoSQL database logic design methods for MongoDB and Neo4j",

Innovative Technologies and Scientific Solutions for Industries, No. 2 (20), P. 52–63.

DOI: https://doi.org/10.30837/ITSSI.2022.20.052

