ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

UDC 004.657; 004.051; 004.413.5 DOI: https://doi.org/10.30837/1TSS1.2022.20.052

0. MAZUROVA, I. SYVOLOVSKYI, O. SYVOLOVSKA

NOSQL DATABASE LOGIC DESIGN METHODS FOR MONGODB AND NEO4J

Modern developers of gaming mobile and Internet applications almost do not imagine themselves without the use of NoSQL
databases, if they pursue the goal of creating scalable databases with high-performance and wide functionality. When designing a
database for any NoSQL system, the developer needs a clear understanding of the logic of such databases and the capabilities of the
tools offered by the corresponding DBMS. However, unfortunately, they do not have unified methods of logical design of such
models, as in relational databases. Thus, there is a problem of developing effective methods for the logical design of such databases
that would provide the necessary performance when implementing the business logic of the corresponding applications. The subject
of the research is approaches to the logical design of NoSQL document and graph databases. The goal of the work is to propose
unified logical modeling methods for MongoDB and Neo4j NoSQL systems based on an experimental study of their performance.
The following tasks are solved in the work: analysis of current approaches to the logical design of document and graph databases\, the
development of logical design methods for them; planning and experimental study of the performance of the proposed methods on the
example of models developed with their help. The following methods are used: database design methods, database performance
evaluation methods, development methods are based on MongoDB 5.0.5, Neo4j 4.4.3 DBMS, Visual Studio 2022 development
environment. The following results are obtained: unified logical design methods for MongoDB and Neo4j NoSQL systems are
proposed; on their basis, the corresponding logical models have been developed; experimental measurements of the number of
resources required working with the developed models; recommendations on the proposed methods are formed. Conclusions: The
proposed modeling methods for MongoDB have their own aspects of their effective use for different types of applications. The
strengths and weaknesses of both methods were identified, but a mixed method based on a combination of modeling through
normalization and denormalization was recommended. Even though Neo4j lost out to MongoDB in terms of consumed resources in

most experiments, both DBMS's' demonstrate good productivity, taking into account the orientation to different tasks.
Keywords: database; logical design method; DB DESIGN; Neo4j; NoSQL; MongoDB.

Introduction

The amount of data on the Internet is growing at an
enormous rate as active users add hundreds of gigabytes
of data to social networks every second. Relational
databases cannot cope with such modern masses of
information, although data processing tasks have been
successfully implemented for several decades.

This problem has led to the need to introduce new
approaches to information processing in large systems. To
date, NoSQL databases have met this challenge [1 - 2],
which have made it possible to replace costly vertical
scaling with efficient horizontal scaling on clusters. In
addition, they have higher performance, more flexible data
model, and open source DBMS code.

Now, the most popular NoSQL databases are
document databases, in particular MongoDB, rapidly
catching up with popular relational databases of Microsoft
SQL Server, Oracle, MySQL and PostgreSQL [2]. In
addition, when creating large systems, particularly for
social networks, well proven graph DBMS, namely the
most common DBMS Neod4j [3], which has a very wide
functionality.

When designing a database for any NoSQL system, a
developer is required to have a clear understanding of the
logic of the database and the tools that DBMS offers [4].
Since this understanding may not happen in practice,
many commercial projects hesitate to switch to new
NoSQL databases, because the implementation of such a
switch requires a lot of time for performance modeling
and information migration.

Algorithms for transition from ER diagrams to
logical models in the context of relational DB [5] have
long been formalized. However, these algorithms are not
applicable to NoSQL databases, which are based on data

structures other than tables (relations).

Consequently, to solve the problem faced by
developers of NoSQL databases, the task of developing
more unified methods of logical modeling of such
databases and their experimental study in order to identify
more productive design methods and form certain
recommendations on their application for different tasks
and applications is relevant.

Analysis of recent research and publications

Fast and widespread distribution of NoSQL (DB)
databases is due to the ease of working with them. NoSQL
DB is convenient to use for many modern applications
that aim to use scalable databases with high performance,
wide functionality, ability to provide maximum usability
[4, 6]. For such as mobile, gaming, Internet applications,
etc.

Document-oriented DBs are quite common among
NoSQL systems. They allow developers to store and
query data in the DB using the same document model they
used in the program code. Each stored record looks like a
separate document with its own set of fields. Documents
are flexible and hierarchical, allowing them to evolve to
meet the increasing needs of applications. MongoDB,
CouchDB, and Couchbase are all examples of the most
common document DBMSs. They aim to provide
functional and intuitive APIs for agile development.
Among them, MongoDB is not only one of the most
popular (or widespread), but also very attractive for
developers due to the availability of drivers for different
programming languages [1 - 2].

Another rather popular type of NoSQL DB is graph
DB [3]. Graph DBs implement data representation in the
form of nodes and edges, which are relations between

© O. Mazurova, I. Syvolovskyi, O. Syvolovska, 2022

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

nodes. Such DBs implement easy processing of complex
related data and computation of specific properties of
graphs, such as the path from one node to another and its
length. Common examples of the use of graph DBs
include social networks and services; Neodj is currently
the most common on this class of DBMS, since it supports
a purely graph model and is already a proven development
for production solutions.

DB theory and practice have long established a
stage-by-stage approach to their design through
conceptual, infological (or ER-) modeling to logical and
then physical modeling [7 - 9]. For relational DBs, all
transitions from one model to another all transitions from
one model to another have been long formalized and
unified. However, unfortunately, for NoSQL systems such
unified methods of logical design, where it is necessary to
take into account the peculiarities of the logic of such
systems, do not exist today. For example, usually NoSQL
DBs do not involve relational links, so the implementation
of similar logic and data integrity mechanism is entirely
up to the developers of the corresponding DB.

The current recommendations and approaches do not
give developers for NoSQL systems any knowledge about
how to model entities and relationships effectively for a
particular data model, which data indexes work best, and
so on [2, 6, 8]. For example, MongoDB recommends
using the "Manual reference” method to create similar
logic to links [10 - 11]. [10 - 11], which involves saving
the " _id" field of one document to the field of another
object, similar to the foreign key in relational DBs, but
without supporting the link itself. This method forms a
0:M relation, which can be used by developers as 1:1, 1:M
relations and derivatives thereof. But this leads to the
"N+1" problem, as it requires an additional query or join
data through a JOIN-like operation. Accordingly,
document DBs need to use composition in the form of
nested objects or arrays of objects to solve such problems.
This approach is suitable if the relationship between
objects can be expressed by the word "includes™.

This approach can be used to model relationships:

- 1:1 type, but it should be considered that embedded
object would increase the weight of the document, which
slows down its unloading from DB to the client.

- 1:M type, but if M is not a particularly large
number and embedded objects should not be too large.

Keep in mind that MongoDB has a maximum
nesting size of 100 levels; the maximum document size is
16 MB. Consequently, if new records are constantly being
added to the document field (array), the document size
will keep growing. This can cause performance problems
by moving the document to a different memory location,
because there is no place for it to grow in the current
location, so defragmentation is performed.

No joins means no JOINs in the relational sense.
However, later, MongoDB added two ways of combining
data:

- $lookup — an operation that works analogous to
LEFT OUTER JOIN in relational DB (added in version
3.2);

- $graphLookup — creates a collection of records
showing a hierarchy of objects from some to the current
one, similar to lookup in graph DBs (added in version
3.4).

This approach can be used to model relationships:

- 1:1 type, but you have to consider that an
embedded object will increase the weight of the
document, which slows down its unloading from DB to
the client.

- 1:M type, but if M is not a particularly large
number and embedded objects should not be too large.

Things are more complicated with entities that have
an M:M relation. It is known that an M:M relation can be
defined as two 1:M relations and an intermediate object
containing identifiers of those two referenced entities [12].
This approach can be implemented in MongoDB without
much trouble, except for creating field indexes with
identifiers. With this approach, all the auxiliary attributes
of the M:M link will be located in a separate object.

But if a developer needs to connect such a link data,
he would have to use two JOIN-like operations ($lookup),
which in the context of document DB is very expensive.

To solve such a problem, MongoDB practically
always uses another approach: compositing this
intermediate object into one of the M:M link objects in the
form of an array. Figure 1 shows both approaches: via
auxiliary entity (top) and reduced composition approach
(bottom).

OrderedItem

Item

Orderld : Objectld PO--H 11
Itemld : Objectld

Count : Integer

Id : Objectld

Name : String

I1 |1Id : Objectld
Order)
I1 |Id : ObjectId M--o< 13
Timestamp : Date
Order

I1 |Id : Objectld

Orderedltems : Array[{}]
ItemlId : Objectld

Count : Integer

Timestamp : Date

po-----04 1

Item

Id : Objectld

Name : String

Fig. 1. Approaches to designing M:M communication in document DBs

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

The widespread use of the second approach is due to
the fact that in 2017 the $lookup operation gained support
for using arrays of identifiers as inputs to connect data.
This approach requires only one JOIN operation instead of
two to connect the data. But, when using it, you need to
clearly identify the "main"™ M:M connection object, which
will contain the identifier array.

Unlike document databases, graph databases support
links, although they are quite different from relational
links [13]. In Neod4j, each relationship is an entity of a
special type that preserves a reference to the outgoing and
incoming entities. Thus, links have names, can contain
attributes, and indexes can be created on them. Like all
NoSQL databases, this DBMS has no integrity restriction

mechanisms; this must be decided by the developer at the
application level only. But, each relationship in the graph
must have a source and an input entity.

It follows that every Neo4j relationship has a default
cardinality of 1:M, which can be "transformed" into a 1:1
relationship due to uniqueness constraints or at the
software level. Thus, an M:M relationship can potentially
be modeled in two ways: through an auxiliary entity (as in
relational DBs) and directly by storing additional data as
attributes of the relationship. Figure 2 illustrates these
modeling approaches graphically: as it looks in relational
DB (top), auxiliary entity (middle), and via link attributes
(bottom).

Id : Integer

Timestamp : DateTime

OrderedItem
PK | Id : Integer Item
Order FK|ltemld : Integer PO————H | Id: Integer

99 FK | Orderld - Integer

Count : Integer

Name : String

Order

ORDERED_ITEM Item

Id : Integer |— ORDERED_IN —»|

Id (internal)

|- ORDERED_OUT —»| Id : Integer

Timestamp : DateTime

Count : Integer

Name : String

Order

ORDERED

Item

Id : Integer

Timestamp : DateTime

Count : Integer

Id : Integer

Name : String

Fig. 2. Comparison of M:M communication design methods in graph DBMS

It should be noted that almost all graph DBMSs have
only unidirectional links. The standardized query language
Gremlin, supported by all graph DBMSs, also has no
support for bidirectional links. Thus, to model
bidirectional links, you need to make two bindings in both
directions. But considering that a link is also one of the
DBMS obijects, the option with the intermediate entity is
ineffective from the very beginning, as it strongly clogs
the DB with redundant entities and links, increases the
weight of the DB due to redundant objects and potentially
increases the execution time even for basic queries.

However, the existence of the considered
recommendations and approaches does not provide
NoSQL DB developers with unified methods of logical
design of such DB, which would unambiguously indicate
the effectiveness of the model obtained in the end. Thus,
the study of NoSQL database logical modeling methods
and approaches is relevant.

The aim of this article is the development of unified
logical design methods for NoSQL systems MongoDB
and Neo4j based on the analysis of existing design
approaches, as well as experimental study of their
performance.

This research requires:

- development of unified logical design methods for
selected NoSQL databases MongoDB and Neo4;j;

- analysis and infological modelling of a certain
applied subject area of creation of complex server systems
for further experimental research;

- developing of the logical models for the selected
DBMS on the basis of the developed unified logical
design methods;

- experimental study of the performance of the
obtained models and development of recommendations on
the feasibility of using the proposed methods in the design
of NoSQL databases.

Evaluation of the effectiveness of the methods
should be made taking into account such criteria as: disk
space occupied by DB (MB); query execution time (ms);
operating memory consumption (MB); CPU time
consumption (%).

Materials and methods

For further study, the applied subject domain of an
arbitrary game server system was chosen. A multiplayer
action-adventure game with RPG elements and a
dedicated server was chosen as the subject domain
object. In games of similar genre and implementation of
multiplayer, in any case, it is necessary to implement
DB for storing world state and player progress.
Consequently, the database must store the following
information:

- player account information (currency, player data);

- status and information about the characters in the
game world and their abilities;

- a list of the character's tasks and their status;

Cyuacnuti cmamn HayKo8ux O0CILONCEeHb Ma MmexnHoao2il 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

- a list of enemies (monsters) in the game and related
information (or information about their location, if the
server part generates them);

- a list of non-player characters (NPCs) and related

information

- history of events in the game (buying in-game
currency, defeating enemies, completing tasks, etc.).

A general diagram of the domain classes, describing

the essence of the game system and the relationship
between them, is given in figure 3.

Based on this diagram, as well as the identified
integrity constraints and attributes of the subject area, an

ER diagram [12] of DB (fig. 4) based on the "Crow's foot"
notation was developed. [9].

Login history
NPC
/]\I'u‘l
] Has login history
Gives 1
M M 0.M
oM User Attribute <=
Quest
¢
Duing Has Has
M
0.M \l/ 1
N Has Character
Ability Ko>—Has—>] |
M 1 P ? 7 P 1 1 nventory
FHas 1
1
Belongs to Bear Contains Has
Character State 0.1 Consist of Vrom
Equipment |1 0 Item -
[I — B
N Contains Contains
Loot (nems‘the reward g0 1 Has
character didn't
0. pick up) o.m Enemy
(Monster) |o.m
Fig. 3. General class diagram of the subject area
CharacterState User LoginHistory CharacterAttribute
PK |ID H—, PK|ID [—=—0< PK | ID —~| PK|ID
Coordinates (X, Y. Z) Email LoginDate Value P
IsAlive Password LogoutDate
HP Nickname IPAddress Antribute
MP RegistrationDate DeviceName PK|ID
Name =
Abilities Cosin e Inventoryltem Description
PE|ID bt PK | ID D ba
. I TtemAdttribute
Name Name Count -
Description Level rqPK|ID
Minimall evel xp Item Value F
AbilityType Money +—HH PK | ID <
EnemyAtiribute
DamageTvpe — —H Name
Value quipment T PK|ID
o< PK | ID bol-] e ;
RequiredLevel Value
QuestInProgress EquipmentSlot o
el D - Description
Droppedltem Enemy
StartDate o o, Lol L) DefeatReward W PK | ID
CurrentStage PK|ID Level
Count - - Ve
NPC Count MoneyForDefzat
K| ID QuestReward HP
Loot
- o4 PK| D bof = SpavnCoordinates (X, Y. Z)
Name ; THPK|ID SpawnRadius
SpawnCoordinates (X. Y. 7Z) Count od < P
SpawnLimit
O QuestStage Money
Pkl (—<PK D DropDate
Name i Name
Description Objective
MoneyReward Description

Fig. 4. ER-diagram of the subject area database

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

So, let us consider the methods by which the logical
DB design for DBMS MongoDB can be performed.
Recall that there is no standardized notation for the
visualization of this model. What also complicates the
process is that MongoDB objects can have up to 100
levels of nesting and is problematic to reflect visually,
although this does not happen very often in practice.
Therefore, a modification of the notation for relational
logical models with additional functionality inherent in
document DB is proposed to describe the document
logical model.

Consequently, the mentioned "Manual reference"
approach essentially makes the model more similar to
relational DBs, so it can be denoted as a "normalizing”
method. In contrast, the nested document approach
reduces the level of normalization through composition,
so it can be called "denormalizing".

Let us consider a unified method for turning an ER
diagram into a normalized document logical model, in
which the following steps have been proposed:

- modeling entities participating in a 1:1 relationship:
add a field with the identifier of one document (master) to
another document (dependent).

- modeling entities participating in a 1M
relationship: add a field with the identifier of the main
document (1) to the dependent ones (M);

- modeling entities participating in the M:M
relationship should use one of the previously mentioned
approaches: either through isolating an intermediate entity
with identifiers of objects referring to it (more often
inefficient), or through composing this intermediate entity.
Entity in the "main" object as an array (usually efficient).

The normalized logic model designed by this method
is shown in figure 5. All "conditional" external keys
constructed by "manual reference” are marked with RF in
the figure. The resulting links have purely conditional
character due to the fact that MongoDB has no integrity
restriction ~ mechanisms and document binding
functionality in general. The task of data integrity control
is entirely up to the developer.

CharacterState LogmHistory Loot
HI1 |1d : Objectld I1 |Id : Objectld 11 |Id : Objectld
RF | Characterld : Objectld "4 RF | Userld : Objectld 99 RF | Characterld : Objectld
Coordimates : Geo Object LoginDateTime : Date XP : Integer
IsAlive - Boolean LogoutDateTime : Date Money : Integer
HP : Integer IpAddress : String DropDate : Date
MP : Integer DeviceName : String ItemRewards : Array[{}]
RF ItemId : Objectld
User Count : Integer
I1 |Id: Objectld ==~ Character
Email : String ‘od11 |1d: Objectid o SiEiTE
Password : String -0 RF | Userld : Objectld 0‘ 1 |Id: Objectld - o
Nickname : String 1 Name - String : Name : String
RegistrationDate : Date Level : Integer Description : String
s ’ XP - Integer
£z Money : Integer ftem
I1 |1d: Objectld Pood | Abilities - Aray[Objectld] | |01 [1d:Objectld
Name : String Asttributes : Array[{}] Name : String
Description : String RF Attributeld - Objectld = . Type - String
Minimall evel : Integer Value : Integer RequiredLevel : Integer
AbilityType : Integer ActiveQuests - Array[{}] : Description - String
DamageTvpe - Integer 0< RF Questld : Objectld : Attributes : Array[{}] i
DamageValue : Integer StartedDate : DateTime , RF Attributeld - Objectld P&
CurrentStage : String Value - Integer
NPC H
Equipment : Arrav[{}] '
11 |1d:Objectld Slot - String | =
Name : String RF| Temld - Objeciid boi |11 |1d: Objectld
Coordinates : Geo Object Inventory : Array[{}] Level : Integer
Quests - Array [Objectld] [t RT Ttemld - Objectld >o, Reward : Integer
Count - Integer i HP : Integer
Quest Coordinates : Geo Object
O+ I1 |1d: Objectld po’ SpawnRadius : Double
Name : Siring oo SpawnLimit : Integer
Description : String QuestStage ItemRewards : Array[{}]
Reward : Integer ; 504 I1 |1d: Objectld RF ItemlId : Objectld
Stages - Array[Objectld] . | RF | Questld : Objectld Count - Integer
ItemRewards : Array[{}] Name : String Artributes - Array[{}] :
RF Itemld : Objectld bo’ Objective : String RF Attributeld - Objectld po---
Count : Integer Description : String Value : Integer

Fig. 5. Normalized DB document logical model of the subject area

ISSN 2522-9818 (print)
CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20) ISSN 2524-2296 (online)

Consider a unified method for transforming an ER may have no relations to all dependent entities (no "owns"
diagram into a denormalized document logical model (fig. relation), a separate collection without relations must be

6), in which the following steps have been proposed: created to contain all instances of dependent entities.
- modeling entities participating in 1:1 relationships: Otherwise, an additional entity is not required.
create a field in the main document and nest the dependent - modeling entities that participate in M:M

document in it, followed by deleting the dependent entity; relationships: to add a field-array to the main document
it is recommended to add an index to it if you plan to that contains all dependent documents. The cases in which

select these entities separately from the main entity; an additional collection needs to be created are similar to
- modeling entities participating in 1:M relationships: 1:M.
add a field-array to the main document (1) containing all Guided by this method, a denormalized document
dependent (M) entities. If semantically the main entity logical model of the domain was designed (fig. 6).
Quest User Ability
I1 |Id : Objectld I1 |1d : Objectld I1 |Id : Objectld
Name : String Email : String Name : String
Description : String Password : String Description : String
Reward : Integer Nickname : String MinimalLevel : Integer
Stages - Array[{}] RegistrationDate : Date AbilityType : Integer
12 Id - Objectld LoginHistory : Array[{}] DamageType - Integer
Name : String LoginDateTime : Date DamageValue : Integer
Objective : String LogoutDateTime : Date
Description : String IpAddress : String Amnribute
ItemRewards : Array[{}] DeviceName : String I1 |1d : Objectld
RF ItemlId : Objectld Characters - Arrav[{}] Name : String
Count : Integer ’ Description : String
gomEEEE==== fmmmmmm === A
1 1
NPC Character (1) Character (2) L
11 |1d: Objectld 1 |1d - Objectld ActiveQuests - Array[{}] 11 |1d: Objectld ot
Name - String Name : String Quest : Object Name : String
Coordinates : Geo Object Level : Integer Id - Objectld Type - String
Quests - Array [{}] XP : Integer Name : String RequiredLevel - Integer
I Id - Objectld Money : Integer Description : String Deseription - String
Name : String State - Object Reward : Integer Amtributes - Array[{}]
Description : String Coordinates : Geo Object Stages : Array[{}] Id - Objectld
Reward : Integer IsAlive : Boolean Name : String Name : String
Stages - Arrav[{}] HP : Integer Objective : String Description - String
Id - Objectld MP : Integer Description - String Value : Integer
Name : String Abilities - Arrav[{}] ItemRewards : Array[{}] Enemy
Objective : String _\a.me. S.trmg . RF Itemld : Objectld >O‘ Il |1d: Objectld
Description - String Description : String Count : Integer ——
TtemRewards : Array[{}] MinimalLevel : Integer CurrentStage : Name Level : Integer
RF TtemlId - Objectld o, AbilityType - Integer StartedDate : DateTime Reward : Integer
Count - Ime-ger DamageType : Integer Equipment : Arrav[{}] HP : Integer
- | Attributes : Array[{}] Slot : String Coordinates - Geo Object
Id - Objectld RE| Ttemld - Objectld SpawnRadius : Float
Name : String DroppedLoot : Array[{}] SpawnLimit - Integer
Description : String Id : Objectld ltemRewards - Array[{}]
Value : Integer XP : Integer RE Ttemld : Objectld e
! Inventory - Array[{}] Money : Integer Count - Integer
RF ItemlId : Objectld PO DropDate : Date Attributes : Array[3]
I Count : Integer ItemRewards : Array[{}] Id : Objectld
L IRF Ttemld - Objectld bo Name : String
; Count - Integer i Description : String
i Value : Integer

Fig. 6. Denormalized DB document logical model of the subject area

For a more convenient visual representation of the User, the connection with UML class diagrams
model, the nested Character object has been separated and "including" was used. The only entity that did not undergo
split into two parts. To denote the nesting of Character in denormalization was Item. This is due to the fact that in

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

game applications of this genre all items are accessed by
its identifier and the set of all items is unloaded at the start
of the game. Thus, JOIN-like operations with the Item
entity will not be performed in practice and there will be
no difference in performance either.

Next, let's propose a logical design method for the
graph model. There is no standardized notation for
constructing a logical model of this type now either, so a
relational modification will be used. It should be noted
that Neo4j supports attributes in relationships, which can
significantly reduce the number of entities and simplify
the model.

The algorithm for turning an ER diagram into a
graphical logic model is very different from the previous
ones because of the different structure of data storage. The
following steps are proposed for it:

- to combine entities that have 1:1 relationships with
each other into one entity;

- to turn 1:M links into graph links without attributes.

- to replace intermediate entities that create M:M
links with graph links (with attributes, if any).

Figure 7 shows the graphical logic model obtained as
a result of the proposed method.

In the developed model there are two types of links:
with and without attributes. A separate notation in the
form of a transparent block was proposed to display links
with attributes. The use of attribute relationships
eliminated all the entities that were used to model the

M:M relationship, which reduced the model considerably.
But since graph DB does not support nesting of entities,
the 1:1 link must be maintained at the program level [13],
such as the link between a character and its state.

Thus, as a result of the analysis and modeling of the
subject area, logical models were developed: normalized
and denormalized document and graph models. Based on
these models, the corresponding physical DB models for
the corresponding DBMS MongoDB and Neo4j were
developed for further study.

For the experimental study the clusters from DB
servers or source-replica type replication were used, as
this approach is suitable for game servers with large read
specificity. Consequently, all measurements were
performed on clusters of database servers regardless of
configuration. They were located in the Azure cloud
service on virtual machines of different sizes.

Thus, the following DB server configurations with
their characteristics were chosen for the experiments:
configuration type Small: machine name
Standard_B2s; vCPU - 2; RAM - 4 GB; number of nodes -
2; number of connections 20;

- configuration type Medium: machine name is
Standard_B4ms; vCPU - 4; RAM - 16 GB; number of
nodes - 4; number of connections 50;
configuration type Large: machine name
Standard_B8ms; vCPU - 8; RAM - 32 GB; number of
nodes - 6; number of connections 100.

CharacterState User
I |1 I 1d LoginHistory
Coordinates : Point [€7 Email - Suring LOGGED_IN » 11 |1d
IsAlive - Boolean Password : String LoginDateTime : DateTime
HP : Integer Nickname : String LogoutDateTime : DateTime
MP : Integer RegistrationDate : DateTime HAS_ATTRIBUTE IpAddress - String
HAS i HAS I Value : Integer DeviceName : String
Ability Character
- HAS IN INVENTORY
I1 (Id 11 |1d
— - Count - Integer
Name : String Name : String Attribute
Description : String Level - Integer HAS_EQUIPPED Il (Id
MinimalLevel : Integer ‘H AS XP: Integer Slot : String Name : String
AbilityType : Integer Money : Integer | 1) . Description : String
DamageType - Integer Ttem ¥ $
DamageValue - Integer CONTAINS _REWARD ——>1; (g HAS_ATTRIBUTE | | HAS _ATTRIBUTE
Count - Integer Name - String H Value : Integer Value : Integer
NPC . Type : String
ACCOMPLISHES . | CONTAINS_REWARD
1 |1d] . RequiredLevel : Integer € =
= StartedDate : DateTime o Count - Integer
Name - String CurrentStage - String Description : String
Coordinates : Point | |g5ES) OWNS t
CONTAINS_REWARD Enemy
Quest
- I1 (Id
QuestStaze 1 |1d Count : Integer id
I1 |1d < Name - String]_,I Level : Integer
- - HAS o . i Reward - Integer
e Eescrlz‘ﬂ‘; e pEmt HP : Integer
Oby e & eward : Integer
Jective - String - XP : Integer Coordinates : Point
Des ion : String
sscriphion - Stnng Money : Integer SpawnRadius : Float
DropDate : DateTime SpawnLimit : Integer

Fig. 7. Graphical logic model of the subject area database

Cyuacnuti cmamn HayKo8ux O0CILONCEeHb Ma MmexnHoao2il 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Ubuntu 20.04 LTS Minimal was used as the
operating system to minimize the consumption of
resources by the system. The type of machine

Table 1. Number of DB entities for experiments on configurations

configuration also affects the number of entities in the DB
to be used in the experiments (table 1).

Type of configuration Small Medium Large
Users / characters per user 3000/1 5000/ 2 8000/3
Number of entries in the game per user 25 50 75
Total items in inventory of the players 100/50 200/100 300/150
Skill / equipment slots 10/4 25/6 50/8
NPCs/tasks they issue 50 /100 150/ 200 300/500
Enemies 100 200 500
Loot / number of items within it 5000/3 15000/5 30000/8
Number of gg‘ngfmsni;att?gr;""om case” 776 967 4701983 16 362 659

Based on games of a similar genre, it was taken into
account that some entities cannot be in large numbers and
do not change depending on the configuration, for
example: Attribute (a constant number - 6 was chosen);
CharacterState (one entity per character).

When performing each step of the experimental
study, it was decided to collect metrics that are quite often
used to investigate DB performance [14 - 15]:

- S — space occupied by DB on disk (MB);

- M — RAM consumption (MB);

- C — processor time consumption (%);

- T — query execution time (ms) (the results of
experiments to measure this metric will be given in the
further publications);

Results of research and their discussion

Let wus consider the main most interesting
performance trends of the experiments to study the
designed models for NoSQL DBMS MongoDB and
Neo4j.

First of all, let's compare DB sizes with filled test
data, which is shown in figure 8.

Mongo Denormalized Mongo Normalized Neodj
1090
515
309
13,5 8,8 488 335 I
Small Medium Large

Fig. 8. DB size comparison (on disk)

The diagram shows that DBMS Neo4j consumes a
huge amount of disk space, and this growth is almost
linear to the number of entities. In the course of
experiments it was determined that this "DB weight" is
formed by entities, the connections themselves practically
do not take up disk space. The denormalized MongoDB

model weighs 30-35% more than the normalized one,
which is obviously caused by data redundancy.
Nevertheless, in terms of DB weight MongoDB clearly
wins over Neo4j.

The results of the comparison of RAM consumption
of the DBMS server are shown in figure 9.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

RAM Usage
Neod F
Mongo Normalized F
Mongo Denormalized F
1,5 3,5 5,5 7,5 9,5 11,5 13,5 15,5 17,5
Large m Medium mSmall

Fig. 9. RAM usage

The histogram shows that Neo4j uses even more
RAM than MongoDB. In this situation, the MongoDB
memory allocation logic still plays a role: DBMS cannot
use more than 50% of the system RAM, while Neo4j, if
necessary, can use almost all available to it. Also, Neo4j
has conditionally minimal amount of RAM for the correct
work - 2 gigabytes, when the recommended amount is
about 8 gigabytes.

Let's consider the results of measurements of CPU
usage by the DBMS server. Three configurations were
used in the research. So, the experiments have shown that
for small projects or projects at MVP stage Neo4j is not
especially effective. Let's take a closer look at the Medium
configuration (fig. 10), which more corresponds to the real
machines configurations for medium-sized projects.

B Mongo Denormalized

52% 50%

40%
34%
28%

GetCharacter

19%

UpdateCharacter

CPU Usage (Medium)

B Mongo Normalized

24% 26%

RemoveFromInventory

Neodj

69%

50%
42%

PickUpLoot

42%
’ 38%

15% 15%

CreatelLootlInstance

Fig. 10. CPU usage (Medium configuration)

With so many resources, the situation for Neo4j has
leveled off relative to MongoDB, now the DBMS data is
about equal. In general, it was on this configuration that
Neo4j started working "without limitations". We can even
conclude that the resources allocated to it are even a bit
much for the load that was allocated to it.

Figure 11 shows the results of the measurements for
the Large configuration. In general, the situation is very
similar to the preliminary results. The resources increased,
but the DB size and load increased proportionally to the
resources.

We see that the allocated DBMS resources are more
than they need for stable operation on these loads.

We also investigated the performance of the models
when executing queries. But this will be a topic for
another publication. Note only that during all comparisons
we could see certain pattern - Neodj consumes more

resources compared to MongoDB, denormalized model
works faster than normalized model in context of the
queries studied as well as requires less resources.

After all experiments, we can unequivocally say that
the denormalized MongoDB model is the most preferable
option for the studied domain (DB model and queries).
This scheme resulted in the lowest consumption of
machine resources with satisfactory performance.

After comparing all the results obtained, we can
draw some conclusions and develop some
recommendations for the use of one or another method in
a particular situation.

So DBMS Neo4j. It has been in development for 15
years, during which it has acquired a large set of
functionalities, significant performance improvements and
so on. But in practice, it is not so good: the limitation of
Community version, huge consumption of CPU and RAM

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

resources, large DBMS weight compared to other DBMS
and average performance in trivial tasks make this DBMS
not particularly attractive for small or medium sized
projects. It is also should be noted that the demanding

DBMS is also associated with its implementation of JVM,
which immediately impose restrictions on the smallest
RAM for the DBMS server.

CPU Usage (Large)

Mongo Denormalized Mongo Normalized Neod]
72%
58%
9 55%
46% " i o1
’ 41% 42%
32% 29% 28% 279
22%
17% 16%
GetCharacter UpdateCharacter RemoveFromlnventory Createlootlnstance PickUploot

Fig. 11. CPU usage (Large configuration)

One of the peculiarities of Neo4j is that it uses the
maximum of its allocated resources, so they have to be
strictly limited to certain values. But it should be noted
that this DBMS is able to easily perform operations that
are difficult or impossible to perform in other DBMS.

Thus, it is recommended to use graph model logic
design method and use Neo4j in cases when:

- ER graph DB contains a large number of M:M
links and the server-side logic involves frequent fetching
of several linked data simultaneously;

- an ER diagram DB has a small fraction of entities
on a large fraction of links, and the application logic is
mostly about deleting and adding links between DB
objects;

- the system is large, has a large number of users and
the company has a large amount of resources;

- the server side needs the specifications of graph
DB, such as finding the depth of relationships.

Now let's move on to DBMS MongoDB. Consider
first the model normalization method. Using this method
resulted in zero data redundancy in the DB, which had a
positive effect on weight. Also, since the DB objects are
much smaller than the denormalized model, they have
more "similarity" between them, DBMS more effectively
applied the compression mechanism of the stored data (on
average, by 5-15%).

But the analyzed operations in the server system
under study often required either joining data or
performing operations on several collections
simultaneously, which required the use of transactions or
JOIN-like operations. This resulted in reduced
performance compared to the denormalized model.

Thus, the normalization method should be used if:

-the links in the schema are predominantly
cardinality "0", which eliminates the need to artificially
maintain data integrity through transactions (the
traditional "eventually consistent" approach);

- in a 1:M relation, the number M is expected to be
large (and/or the weight of the object is large). This is due
to an object size limit of 16 MB;

- the system was previously using a relational
RDBMS and a quick migration to MongoDB is required.

The denormalization method used in the server
system under study proved to be the most efficient in
terms of performance. Also data redundancy increased the
weight of DB noticeably. Also some operations of the
system were quite difficult to implement using array
operations (and some potentially impossible), which is not
typical for normalized model. This method should be used
if the number of "M" objects in a 1:M relationship is not
particularly large (up to 1000) or dependent objects cannot
exist without the main one (simpler "artificial” data
integrity support);

Conclusions and prospects for further development

In this study, NoSQL DB logical design methods
were proposed and investigated in terms of performance
using DBMS MongoDB and Neo4j examples. A series of
experiments were conducted to measure the resources
consumed.

Based on the analysis of logical design approaches,
unified logical design methods for NoSQL systems
MongoDB and Neo4j were proposed. For the experiment,
based on the proposed methods, logical models were
designed, the performance of which was investigated. The
experiments used metrics on the resources required to
handle such models.

The study showed that none of the proposed
modeling methods for MongoDB could be called
unambiguously best. The best would be a mixed method -
a combination of modeling through normalization and
denormalization. In general, it can be unambiguously said
that both studied DBMS have good performance, although
they are oriented to different tasks.

If you don't know in advance how fast the system
will grow, how many users it will have, and so on, a
universal choice is to use MongoDB. This DBMS has a
very wide functionality and the ability to scale

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

horizontally and vertically, which makes it a good choice have been formed. These recommendations can be used to

for prototypes and newly created systems. design real systems, in particular in the area of game
Thus, based on the results of the experimental study, servers.

recommendations for the use of the proposed methods

References

1. Maran, M. M., Paniavin, N. A., Poliushkin, I. A., (2020), "Alternative Approaches to Data Storing and Processing”, V
International Conference on Information Technologies in Engineering Education (Inforino), P. 1-4, DOL:
https://doi.org/10.1109/inforino48376.2020.9111708

2. Meier, A., Kaufmann, M. (2019), SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big
Data Management, Springer Vieweg, , 248 p. DOI: https://doi.org/10.1007/978-3-658-24549-8

3. Wood, P. T. (2018), "Graph Database", In: Liu, L., Ozsu, M.T. (eds), Encyclopedia of Database Systems. Springer, New York,
NY, P. 1639-1643. DOI: https://doi.org/10.1007/978-1-4614-8265-9_183

4. Acharya, B., Jena, A. K., Chatterjee, J. M., Kumar, R., & Le, D. (2019), "NoSQL Database Classification: New Era of Databases
for Big Data", International Journal of Knowledge-Based Organizations (IJKBO), 9 (1), P. 50-65. DOL:
http://doi.org/10.4018/1JKB0.2019010105

5. Halpin, T., Morgan, T, (2008), "Information Modeling and Relational Databases (Second Edition) ", The Morgan Kaufmann
Series in Data Management Systems, P. 305-343. DOI: https://doi.org/10.1016/B978-0-12-373568-3.X5001-2

6. Kuzochkina, A., Shirokopetleva, M., Dudar, Z. (2018), "Analyzing and Comparison of NoSQL DBMS", International Scientific-
Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), P. 560-564. DOI:
https://doi.org/10.1109/INFOCOMMST.2018.8632133

7. Sanders, G. L., Shin, S. K. (2001), "Denormalization effects on performance of RDBMS", Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, P. 9-15.

8. Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, F., (2018), "Comparison between relational and NOSQL databases", 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), P. 216—
221. DOI: https://doi.org/10.23919/mipro.2018.8400041

9. Date, C. J. (2019), Database Design and Relational Theory: Normal Forms and All That Jazz, Apress, 470 p, ISBN 978-148-425-
539-1. DOI: https://doi.org/10.1007/978-1-4842-5540-7

10. Palanisamy, S., SuvithaVani, P. (2020), "A survey on RDBMS and NoSQL Databases MySQL vs MongoDB", International
Conference on Computer Communication and Informatics (ICCCI). DOI: https://doi.org/10.1109/iccci48352.2020.9104047

11. Chodorow, K., (2016), MongoDB: The Definitive Guide: Powerful and Scalable Data Storage, 3rd Edition, O'Reilly Media, 514p.

12. Bagui, S., Earp, R. (2011), Database Design Using Entity-Relationship Diagrams (Foundations of Database Design), Auerbach
Publications, 371 p. DOI: https://doi.org/10.1201/9781439861776

13. Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J. (2014), Neo4j in Action, Manning, 304 p.

14. Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation methods for distributed
databases using replication technology", Innovative technologies and scientific solutions for industries, Ne 2 (16), P. 19— 31. DOI:
https://doi.org/10.30837/ITSS1.2021.16.019

15. Gomes, C., Borba, E., Tavares, E., Junior, M. N. de O. Performability (2019), "Model for Assessing NoSQL DBMS Consistency",
IEEE International Systems Conference (SysCon). DOI: https://doi.org/10.1109/syscon.2019.8836757

Received 30.06.2022

Bioomocmi npo asmopis / Ceedenust 06 asmopax / About the Authors

MasypoBa Oxcana OuekciiBHa — KaHIUIAT TEXHIYHMX HAyK, JMOIEHT, XAapKiBCBKUI HAaI[lOHAIBHUN YHIBEPCHUTET
pamioeneKTpOHIKH, JIOLEHT Kadeapu mporpamHoi iHxeHepii, M. Xapki, Ykpaina; e-mail: oksana.mazurova@nure.ua; ORCID ID:
https://orcid.org/0000-0003-3715-3476.

Ma3sypoBa OxcaHa AJlekceeBHAa — KaHIUAAT TEXHUYECKUX HAyK, IOLEHT, XapKOBCKUN HAIlMOHAJIBLHBIA YHUBEPCUTET
PaIHO3IEeKTPOHUKH, TOIEHT Kadeapsl MporpaMMHON HHXKEHEpHH, T. XapbKoB, YKpanHa.

Mazurova Oksana — PhD (Engineering Sciences), Associate Professor, Kharkiv National University of Radio Electronics,
Associate Professor of the Department of Software Engineering, Kharkiv, Ukraine.

CuBosioBebkmii Lniiss MuxaiisioBud — XapkiBCbKMH HAI[lOHATBHUN YHIBEPCHTET DPaioeTIeKTPOHIKM, Marictp kadeapu
nporpaMHoi imxkeHepii, M. Xapkis, Ykpaina; e-mail: illia.syvolovskyi@nure.ua; ORCID ID: https://orcid.org/0000-0002-4592-0965.

Cusososckuii Unpst MuxaitioBuu — XapbKOBCKHH HAIMOHANBHBIH YHUBEPCHUTET PaJHOIEKTPOHUKH, MArUCTp Kadenpsl
IPOrpaMMHOM MH)KEHEPUH, I'. XapbKOB, Y KpauHa.

Syvolovskyi lllia — Kharkiv National University of Radio Electronics, Master of the Department Of Software Engineering,
Kharkiv, Ukraine.

CuBosioBcbka QOuieHa BikTopiBHA — KaHAWIAT SKOHOMIYHHUX HayK, IOLEHT, YKPaiHCHKUH Aep)KaBHUH YHIBEPCHTET
3aI3HUYHOTO TPAHCIOPTY, JOUCHT Kadeapu MapKeTHHry, M. XapkiB, Ykpaina, e-mail: alenasvi3@gmail.com; ORCID ID
https://orcid.org/0000-0002-9317-9307.

CupoJoBckasi Enena BukropoBHa — kaHIuIaT 5KOHOMUUYECKUX HAyK, JOLEHT, Y KPAaMHCKHI rocy1apCTBEHHbIH YHUBEPCUTET
JKEJIE3HOAOPOIKHOTO TPAHCIIOPTA, JOLEHT Kadeapbl MapKeTHHTa, I'. XapbKOB, YKpaunHa.

Syvolovska Olena — PhD (Economics Sciences), Associate Professor, Ukrainian State University of Railway Transport,
Associate Professor of the Department of Marketing, Kharkiv, Ukraine.

ISSN 2522-9818 (print)
CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20) ISSN 2524-2296 (online)

METOIM JIOT'TYHOI'O NTPOEKTYBAHHSA NOSQL BA3 JTAHUX UIs1 MONGODB
TA NEO4J

CydacHi po3pOoOHHKH IrpOBUX MOOLTBHUX Ta IHTEPHET-IOAATKIB Maibke HE YSBIIOTH cebe Oe3 BuxkopuctanHs NoSQL 06a3 maHmx,
SIKIIIO BOHM MalOTh Ha METi CTBOPECHHs MacIiTabOBaHUX 0a3 MaHUX, SKi MAlOTh BHCOKY MPOJAYKTUBHICTH Ta IMHUPOKI (YHKLIiIOHATbHI
MosxnuBocTi. [Ipu npoexTyBaHHi 6a3u gaHuX A1 Oyab-skoi NoSQL-cucremu Bix po3poOHHKA BUMArae€ThCs HiTKE PO3YMiHHS JIOTIKH
Takux 0a3 JaHWX Ta MOXKIIMBOCTEH 1HCTPYMEHTIB, siki npomnonye BianosinHa CKB/l. Ane, Ha xaib, yHipiKOBAaHHX METOIIB JIOTTYHOTO
MIPOEKTYBaHHS TaKUX MOJENEH, SK € B pelsiiiiHnxX 6a3ax JaHWX, BOHH He MaroTh. OTke iCHye mpobieMa po3poOKu eeKTHBHUX
MeTOoJiB JorigHoTo npoekTyBaHHI NoSQL 6a3 manumx, sxi 6 3a0e3medyBann HEOOXiqHY MPOIYKTHBHICTH HiJ Yac peamizarii Oi3Hec-
JIOTiKH BigIOBigHUX nofatkiB. [IpeqMeToM HoCITiPKEHHS € MiAX0IH A0 JoridHoro npoekryBanHs NoSQL nokymeHTHHX Ta rpadoBHX
6a3 marux. MeTta po0OOTH — 3aIpoNOHyBaTH yHi(iKOBaHI MeToau JorigHoro MonemoBanHs 11t NoSQL cucrem MongoDB Ta Neo4j
Ha OCHOBI €KCIIEPUMEHTAIBHOTO AOCIIIKEHHS X MPOAYKTHBHOCTI. B po0OOTi BUPIIIYyIOTHCS HACTYNHI 3aBAAHHS: aHANI3 aKTyaJbHUX
MiAXOIB A0 JOTIYHOTO MPOEKTYBAaHHS TOKYMEHTHHX Ta IpadoBux 06a3 1aHHUX, po3poOKa METOIB JOT1YHOTO MPOEKTYBAHHS IJIS HHX;
IUTaHYBaHHA Ta €KCIIEPUMEHTANbHE JOCIIKECHHS MPOIYKTUBHOCTI 3allpONOHOBAHUX METOJIB Ha MPHKIaAl MOJeJeH, o po3pooaeHo
3a iX momomoror. BHKOpUCTOBYIOThCA Taki MeTOJM: METOAM NPOEKTYBaHHS Ta OLIHKM HPOXYKTUBHOCTI 0a3 HaHUX, METOIH
po3pobku 6Gasyrothess Ha CKBJl MongoDB 5.0.5, Neodj 4.4.3, cepenosuii po3pobku Visual Studio 2022. OtpumaHo HacTymHI
pe3yabTaTH: 3aIPOIIOHOBAHO YHi()iKOBaHI METOH JOTiYHOTo mpoekTyBaHHs s NoSQL cuctem MongoDB Ta Neo4j; Ha X ocHOBI
PO3pO0IIEHO BIIIOBIIHI JIOTIYHI MOZEINI; MPOBEICHO EKCIEPUMEHTAIBHI 3aMipy KUIBKOCTI BHCHOBKH:pecypciB, 0 HEOOXiTHI IS
pobOTH 3 pPO3pOOJICHMMH MOJCISIMHU; CHOPMOBAHO PEKOMEHIAINT MO0 3alpPONOHOBAHUX METOJIB. 3alpPOIOHOBAaHI METOIU
MonemoBanHsa i MongoDB maroTe BiacHi acmekTH e(peKTHBHOrO BHKOPHCTAHHS U PI3HUX TUIIB JOJATKiB; OyIu BHSBICHI
CIbHI Ta cnabki CTOpOHH 000X METOMIB, ajié PEKOMEHIOBAaHO 3MIIIaHMH MeTox Ha 0a3l KoMmOiHaIl MOJENIOBAaHHSA dYepes
HOpMaJI3alliio Ta JeHOpMalIi3allito; He3BayKarouH Ha Te, o Neo4j B OLIbIIOCTI eKcliepuMeHTiB nporpana MongoDB 3a cioxxuBanuMu
pecypcamu, ane o6unsi CKB/l MaroTh XopoIry NpoayKTHBHICTh OPIEHTOBHO 0 PI3HUX 3aBJIAHb.
Kurouosi ciioBa: 6aza nanux; meron jorigaoro npoekrysanHs; CKB/I; Neo4j; NoSQL; MongoDB.

METOAbI IOTHYECKOI'O IPOEKTUPOBAHUA NOSQL BA3 JAHHbBIX J1JIA
MONGODB 1 NEO4J

CoBpeMeHHBIE Pa3pabOTYNKU UTPOBBIX MOOWIIBHBIX W MHTEPHET-TIPWIOKCHUH IOYTH HE NMPEACTABILIIOT ce0si 0e3 HMCIOJIb30BaHUS
NoSQL 6a3 naHHBIX, €CIM OHHM IPECNeqylOT IeJib CO3JaHus MacImTadbupyeMmblx 0a3 JaHHBIX, HMMEIONIUX BBICOKYIO
MIPOU3BOJUTENBHOCTh M MIMPOKHE (DYHKIMOHAIBHBIE BO3MOXKHOCTH. Ilpm mpoekTnpoBaHMH 0as3bl JaHHBIX Uil Jiro6od NoSQL-
CHCTEMBI OT paspaborumka TpeOyeTcs 4YeTKoe IIOHUMaHHWe JIOTHMKM TakuX 0a3 MaHHBIX M BO3MOXKHOCTEH HWHCTPYMEHTOB,
npemtaraeMbix cootBercTBytomeir CYB/l. Ho, x coxaneHuto, yHHQHUIMPOBAHHBIX METOJOB JIOTHYECKOTO IPOEKTHPOBAHUS TAKHX
MoOJIeNiel, KaKk B PESIIUOHHBIX 0a3ax JaHHBIX, OHH He UMeEIT. TakuM oOpa3omM, cymiecTByeT mpodieMa pa3paboTku 3PQeKTUBHBIX
METOJIOB JIOTHYECKOTO ITPOEKTUPOBAHMS TAKMX 0a3 JaHHBIX, KOTOpPBIE 00ecreunBatn Ob HEOOXOANMYIO TPOM3BOAUTENHHOCTD TIPH
peanm3anuy OM3HEC-JIOTHKM COOTBETCTBYIOIMX TNpwiokeHui. IIpeameTom uccrienoBaHMS SBISIOTCS TOAXOABI K JIOTHUECKOMY
npoektupoBanuio NoSQL nmokymeHTHBIX W rpadoBbix 6a3 maHHbIX. Lledb paboThl — MpPEIOKHUTh YHUPHUIMPOBAHHBIE METOJBI
norudeckoro moxenupoBanus s NoSQL cucrem MongoDB u Neod4j Ha OCHOBE SKCHEPHMEHTAIBHOTO HCCICIOBAHUS HX
MIPOU3BOUTENBHOCTH. B pabote peratorcs ciepyomye 3aJaun: aHaIN3 aKTyalbHBIX MMOJXOJOB K JIOTHYECKOMY MPOSKTHPOBAHHIO
JOKYMEHTHBIX M TpadoBBIX 0a3 IaHBIX, pa3paboTKa METOJOB JIOTHYECKOTO IPOCKTHPOBAHUS [UII HUX; IUIAHUPOBAaHUE U
9KCIIEPIMEHTAIbHOE HCCIIE0BaHNE MPOM3BOANUTEIFHOCTH IPENNIOKEHHBIX METOJIOB Ha NpUMepe Mofelel, pa3paOOTaHHBIX € MX
MOMOIIBI0. VICTIONB3yIOTCS CIEAYIONe MeTOABI: METOIb IPOSKTUPOBAHUS M OIEHKH MIPOM3BOJUTEIBHOCTH 0a3 JaHHBIX, METOMBI
paspabotku 6azupyrorcs Ha CYBJ] MongoDB 5.0.5, Neo4j 4.4.3, cpene paspaborku Visual Studio 2022. INoxydeHsl criemyromue
Pe3yJabTaThI: MPEUIOKEHBl YHUPHUINPOBAHHBIC METOIBI JIOTHYecKoro mpoektupoBanus 1 NoSQL cuctem MongoDB u Neo4j; Ha
HX OCHOBE pa3pabOoTaHbl COOTBETCTBYIOIIHME JIOTHYECKHE MOJENN; MPOBEACHBI SKCIEPUMEHTAIbHBIE 3aMephl KOJINYECTBA PECYPCOB,
HEOOXOIUMBIX JUIs1 paboThl ¢ pa3paboTaHHBIMU MOAEISAME; c(HOPMHPOBAHBI PEKOMEHIALUH T10 NMPEJIOKEHHBIM MeToiaM. BeIBoabI:
MIpe/UIOKeHHBIE MEeTOIbl MojenupoBanus st MongoDB mMeror coOcTBeHHbIE acrekThl 3()(EKTUBHOTO HMX HCIIOIb30BaHUS JUIS
Pa3HbBIX THUIIOB npunomel-mﬁ; 6bIJ'II/l BBIABJICHBI CHJIBHBIC U CJ'Ia6bIe CTOPOHBI 0boux METOZIOB, OJHAKO PEKOMCHIOBAHO CMeEIIaHHbII
MeTo]] Ha 6a3e KOMOWHAIMN MOJISITMPOBAHUS depe3 HOPMAIH3aIHIo U JEHOPMAIM3aliio; HECMOTPS Ha TO, 94T0 Neo4j B OONBIINHCTBE
9KCIIepIMeHTOB Ipourpana MongoDB mo motpebmsiembiM pecypcam, obe CYBJ] neMOHCTpHPYIOT XOpOLIYyIO NMPOXYKTHBHOCTH C
YYeTOM OpUEHTAINH Ha Pa3HbIE 3aaHMsI.
KuroueBbie ciioBa: 6a3a gaHHBIX; MeTO Jorndeckoro npoekrupoBanus; CYB/I; Neodj; NoSQL; MongoDB.

Fibnioepaghiuni onucu / Bibliographic descriptions

Masyposa O. O., Cuonoecekuii I. M., CuonoBceka O. B. Meroau noriunoro mpoekrtyBanHs NOSQL 6a3 manux mis
MongoDB Ta Neodj. Cyuacnuii cman Haykosux 00caioxcens ma mexmono2ii 6 npomuciogocmi. 2022. Ne 2 (20). C.52-63.
DOI: https://doi.org/10.30837/ITSSI.2022.20.052

Mazurova, O., Syvolovskyi, I., Syvolovska, O. (2022), "NoSQL database logic design methods for MongoDB and Neo4j",
Innovative Technologies and Scientific Solutions for Industries, No. 2 (20), P.52-63.
DOI: https://doi.org/10.30837/ITSSI.2022.20.052

