ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

UDC 004.42 DOI: https://doi.org/10.30837/1TSS1.2022.19.064

M. PERETIATKO, M. SHIROKOPETLEVA, N. LESNA

RESEARCH OF METHODS TO SUPPORT DATA MIGRATION BETWEEN
RELATIONAL AND DOCUMENT DATA STORAGE MODELS

The subject matter of the article is heterogeneous model-inhomogeneous data migration between relational and document-oriented
data storage models, existing strategies and methods to support such migrations, the use of relational algebra and set theory in the
context of databases in building a new data migration algorithm. The goal of the work is to consider the features and procedure of
data migration, explore methods to support data migration between relational and documentary data models, build a mathematical
model and algorithm for data migration. The following methods were used: analysis and comparison of existing approaches to data
migration, choice of strategy for further use in compiling the migration algorithm, mathematical modeling of the algorithm of
heterogeneous model-inhomogeneous data migration, formalization of the data migration algorithm. The following tasks were solved
in the article: consideration of the concept and types of data migration, justification for choosing a document-oriented data model as a
target for data migration, analysis of existing literature sources on methods and strategies of heterogeneous model data migration from
relational to document-oriented data model, highlighting advantages and disadvantages existing methods, choosing an approach to the
formation of the data migration algorithm, compiling and describing a mathematical model of data migration using relational algebra
and set theory, presentation of the data migration algorithm, which is based on the focus on data queries. The following results were
obtained: the possibilities of relational algebra and set theory in the context of data models and queries are used, as well as in model
redesign, the strategy of migration of data models is chosen, which provides relational and document-oriented data models, the
algorithm of application of this method is described. Conclusions: because of the work, the main methods of migration support for
different data storage models are analyzed, with the help of relational algebra, set theory a mathematical model is built, and an
algorithm for transforming a relational data model into a document-oriented data model is taken into account. The obtained algorithm
is suitable for use in real examples, and is the subject of further research and possible improvements, analysis of efficiency in

comparison with other methods.

Keywords: database; heterogeneous migration; data model; set theory.

Introduction

Today, the role of information technology is
increasing in the world; there is a growing number of
software applications covering a variety of areas of
people's lives. Most software applications involve the
storage of data in one form or another. As the role of
software systems grows, the scope of their use expands,
the amount of data storage required increases, and the
structure of data becomes more complex. Data storage
methods are also evolving: new approaches to data storage
are developed, new types of databases are created,
existing database management systems are improved,
hybrid databases that contain properties and functions of
several other databases appear, etc.

Eventually the software system may face the
problem of failure to function fully due to the limitation of
the database used:

- with an excessive load on the database reaching its
limits with a large number of system users;

- with increasing complexity of business logic and,
as a consequence, difficulty of using the data model of the
current database for the needs of this business logic;

- with the transition of a software application to a
new technology stack and the technical or logical
complexity of using the current database with the new
technology stack;

- the impossibility of development and
competitiveness of a software system in today's market
while using an outdated database in that system
(according to Moore's law [1], approximately every two
years there is a significant increase in the speed and
capabilities of technology, which means that to maintain
competitiveness it is always important to be one step

ahead of progress);

- when there are risks of full-fledged security and
data integrity for outdated DBMSs, etc.

One way to solve the above problem is to migrate to
another DBMS (newer, with advantages in features
required for a particular software system), with the
existing data being migrated to the new database without
loss or damage and ready to fully function in the new
database this process is called migration.

Database migration is a rather complicated and time-
consuming process as the source database and the
database to be migrated to may be of different types and
have completely different data storage models, data types,
ways of working with data, specifics of functioning (for
example, migration from relational databases to
document-based, event-based, graph-based, etc.).

In order for the migration process to be successful, it
is necessary to have a clear migration plan, which
includes:

- all preparatory actions for migration;

- conditions and activities in the framework of the
migration itself;

- actions after data migration is completed (how the
software application will migrate to the new database and
how the old database will be liquidated).

Statement of the problem

Within the framework of this work it is necessary to
investigate questions of support of migration from
relational data model to document-oriented data model,
this research should include consideration and analysis of
existing methods for this kind of migration and
development of own method, as a result of which

© M. Peretiatko, M. Shirokopetleva, N. Lesna, 2021

Cyuacnuti cmamn HayKo8ux O0CALONCeHb Mma mexnono2it 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

introduction the newly created data scheme will as much
as possible respond to requests to database. Thus, it is
necessary to formalize the developed method, i.e. to
execute its mathematical modeling and to
present in the form of the full-fledged algorithm that in the
further researches can be applied on real databases, to

carry out the analysis of efficiency at various
conditions of use in comparison with other
methods.

Literature review

A large number of authors devote their research
papers to data migration methods between different data
models [7-15]; most of these sources assume not only the
physical migration of data between different data stores,
but also the data schema re-designing procedure. These
methods will be discussed and analyzed in more detail in
the following parts.

Analytical review

A large number of literary sources are devoted to the
issue of database migration. When writing this paper, we
used scientific literature, articles from periodicals,
publications, as well as web resources that discuss
information related to the concepts, principles and
methods of data migration.

The concept and fundamental aspects of the theory
of database migration are presented in the work of John
Morris [2]. A description and comparison of two types of
migration - homogeneous and heterogeneous - is
presented in a technical web resource [3]. Preston Zhang
in his book [4] and Andreas Meyer in his publication [5]
describe the principles and process of database migration
from a practical viewpoint. Lim Fung Gi et al. in their
paper [6] address the issue of the need to redesign the data
schema when migrating NOSQL databases with different
data models.

Database migration is the process of transferring data
from one or more source databases to one or more target
databases using a specific method [2]. After the migration
is completed, the complete, possibly restructured set of
source data is contained in the target databases. Customers
who used the source databases are migrated to the target
databases, and the source databases are not used and can
be deleted within a specified period. Figure 1
schematically depicts the database migration process.

In the context of technologies, there are two types of
database migration: homogeneous and heterogeneous.

Homogeneous (uniform) migration is a migration
between databases in which the source and target
databases belong to the same database technology [3],
such as migrations from a MySQL database to a MySQL
database, or from an Oracle database to an Oracle
database. Homogeneous migrations also include
migrations between databases systems hosted on its own
server, such as PostgreSQL, to its managed version, such
as Cloud SQL (a variant of PostgreSQL).

Data base
(input) Data base
(target)
Data base .
(output) Migration
Data base
E?EJE:}S € (target)
n

Fig. 1. Scheme of the database migration process

For homogeneous migration, the source and target
database schemas are identical in most cases. If the
schemas are different, the source database data must be
converted during migration.

Heterogeneous (uneven) database migration is a
migration in which the source and target databases belong
to different database technologies [3], for example,
migration from MS SQL database to MongoDB.
Heterogeneous database migration can be between
identical data models (e.g., relational to relational) or
between different data models (e.g., relational to key-
value). Migration between different database technologies
does not necessarily involve different data models. In
particular, Oracle, MySQL, PostgreSQL, and Spanner
support a relational data model. However, multi-model

databases such as Oracle, MySQL, or PostgreSQL support
multiple data models. For example, if a multi-model
database supports storing data as JSON documents, the
data can be ported to MongoDB without the need for a
practical conversion because the data model is the same in
the source and target databases.

Though the difference between homogeneous and
heterogeneous migration is based on database
technologies, alternative categorization is based on the
database models involved.

For example, migration from an Oracle database to
Spanner is model-homogeneous because both databases
use a relational data model, that is, only the technology
used for the database changes. Figure 2 shows a diagram
of heterogeneous model-homogeneous migration.

Cutput Tarzet
Data base > Migration > Data base
Model A Model A

Fig. 2. Heterogeneous model-homogeneous data base migration

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

Migration is model-heterogeneous when different
data storage models are used in source and target
databases, if, for example, data stored as JSON objects in

Oracle are migrated to a relational model in Spanner. Fig.
3 shows a diagram of heterogeneous model-heterogeneous
migration.

Cutput — Target
Data base > Migration > Data base
Model A Model B

Fig. 3. Heterogeneous model-heterogeneous data base migration

The classification by data model categories more
accurately reflects the level of complexity of data
migration in comparison with the distribution of database
systems.

The most difficult case of migration is the one in
which the source and target databases are based on
different technologies and at the same time have different
data models, it is this case will be further considered and
analyzed in the framework of this work.

Upon completion of data movement from the source
base to the target base, switch client access to the target
base and dispose of the source base.

The process of client switching from source to target
databases has several parts [4]:

- to continue the migration clients must temporarily
close their connections to the source databases and
connect to the new databases;

- having closed client connections to the source
databases, the process of transferring the data remaining in
the source databases to the target databases. This process
is called "draining" and is performed to ensure that all
data is migrated to the new databases;

- after the data is migrated, the target databases and
client connections should be checked for functionality.

The complete absence of downtime for clients during
data migration is not possible, with downtime, there may
be cases of inability to process requests, and this
jeopardizes the operation of the application, so one of the
goals in data migration is to minimize downtime. There
are strategies by which downtime can be reduced [5]:

- running test clients in read mode with target
databases ahead of time before the migration begins;

- analyzing and adjusting the amount of data to be
migrated as migration approaches, partially migrating data
in certain portions, the total migration time will increase,
but the downtime will decrease;

- connecting new clients to the target databases while
the old clients are working with the original databases, as
a consequence, reducing the complete migration time to
the new databases.

There are several options for the cardinality of
database migrations:

- direct mapping (1:1): data from one source
database is moved to one target database;

- consolidation (n:1): data from several source
databases are moved to a smaller number of target
databases, this approach can lead to a simplified database
management procedure

- distribution (1:n): data from one source database
are moved to a certain (>1) number of target databases.
This cardinality can be used, for example, when moving

an initial centralized database with regional data to several
target regional databases;

- redistribution (n:m): data from a certain number of
source databases is moved to a certain number of target
databases. Such cardinality is useful in the situation of
uneven number of data in the source databases (and,
accordingly, uneven load), due to redistribution data are
distributed evenly between the target databases.

During data migration, it is possible not only to carry
out the actual migration of data, but also to redesign the
database [6], more often architectural changes are
introduced if the source and target databases have
different models, because each type of model includes its
own characteristics and principles in which the model will
work more effectively, for example, when migrating data
from the relational model to non-relational, instead of
creating dependent tables, you can move them into nested
tables (collections). This will reduce the number of
queries to the database and reduce the processing time of
related entities.

For this work, it was necessary to choose an example
of what kind of NoSQL data model will be further
consideration of the material. Considering the information
about today's most popular and widely used NoSQL
databases [19], it was found that the document-oriented
database model MongoDB falls under such criteria. In the
overall ranking of databases according to the resource
[20], it is in the top 10, being in the fifth position, and
ranks first in the NoSQL ranking, since all the previous
ones are relational databases. In terms of database
popularity, document databases are in second place after
relational databases, the percentage of relational databases
is 71.9% and document databases is 9.9% [20]. The
structure and capabilities of this database have also been
analyzed: in particular, there are effective database
sharing technologies, formalized models of big data
management [21].

A large amount of literature is devoted to comparing
MongoDB with relational databases and detailing the
advantages of the former [22]. Now MongoDB is used in
many subject areas (3D visualization, predicting building
thermal capacity usage, groundwater flow control and
pollution transport, in health monitoring systems, loT
applications, etc.).

Hence, after the above analysis, it was decided to
choose a document-oriented model (using MongoDB as
an example) as a NoSQL database for use in the study.

Analysis of existing methods and algorithms

The issue of migration between databases
represented by different models is a hot topic at the

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

moment; it has not been studied sufficiently for full
formalization, so research related to this issue deserves
special attention. There is no unambiguous
recommendation for migration in one way or another and
the developer himself must make decisions
on the method of migration, depending on the
characteristics of data and purposes for which migration is
carried out.

Let's consider existing approaches and strategies for
migrating from a relational database to MongoDB.

One of the more common ways to migrate data from
a relational model to MongoDB is based on the fact that
most relational databases support exporting tables to CSV
format files. Even if there is no such built-in support, it is
possible to export using auxiliary software and get the
files in the right format. You can then import the files into
MongoDB using the built-in command [7]. The
disadvantage of this method is that, first, the existing
relationships between tables are not taken into account,
because essentially only data lists are obtained, and
second, each table in the relational database will
correspond to a collection in MongoDB, no logical.
Architectural rebuilding of tables in document-oriented
style, it will affect query execution time, because, as we
know, MongoDB works harder with queries that access
many document collections. Therefore, this method is
reasonable to use only for databases of simple structure
with few tables and links.

Another approach to migrating data from relational
to MongoDB is migration, which consists of the following
sequence of actions [8, 9, 10]:

- extracting data from the original database;

- working with the data, bringing them into the right
form (working on data types, etc.)

- transfer of the processed data to the target database.

The disadvantage of this approach is that when
working with data, insufficient attention is paid to
database schemas and links between objects, because the
emphasis is put on the data as such, rather than on their
structuring, that is, as in the previous method, when
using this strategy there is no restructuring of the data
schema.

Another well-known way to migrate data from a
relational model to MongoDB is to migrate data based on
data structure and data queries [11]. Such migration is
performed in three steps:

- describing the relational database structure,
describing the data query requirements (according to the
business logic);

- modeling the data in the query-oriented context of
the NoSql database;

- modeling the database schema in the query-
oriented context of the NoSql database.

The disadvantage of this method, as in previous
cases, is that it does not take into account the
dependencies between database objects, since the new
database structure takes into account only metadata about
objects and queries.

The next existing approach to this kind of migration
is data migration by rules (six rules) describing three types
of migration: Column-Based, Document-Based and

Graph-Based [12]. The rules describe the cardinality of
links between tables and special operations performed on
one of the tables (aggregation operations, etc.). The
disadvantage of this approach is that the structure of data
queries is not taken into account during migration. To
solve the problem of query duration that accesses multiple
documents, this approach suggests combining all tables
into a single NoSQL collection, but this action will
inevitably lead to memory problems, because the size of
such a collection will be too large. Applying such a
method can be justified only if the database was
voluminous.

Another method assumes that relationships in a
document-oriented model can be represented in the form
of embedded documents and relationships between these
documents [13, 14]. For example, if there is a functional
relationship between two attributes, both attributes will be
transformed into a single data element in MongoDB. The
same principle is applied for partial and transitive
dependencies. The disadvantage is that embedded
documents can only be used for a limited amount of data,
and there is no clear identification of the form of this
embedding.

There is another method, it involves using the theory
of database schema normalization and using it in schema
design for MongoDB [15], but this approach does not take
into account the relationships of "many", primary and
foreign keys.

Consequently, after considering the main methods of
data migration between relational and json-like data
models, we can say that the methods under consideration
have their advantages and disadvantages and should be
used depending on the specific situation, possibly in
combination with each other.

Choice of methods

While studying and analyzing the methods of
converting relational data model to MongoDB data model,
three main general migration strategies were identified for
further consideration and research:

- migration creates a corresponding collection in
MongoDB for each relational database table [16];

- during migration, all the relational database tables
are merged into a single MongoDB data collection;

- during migration, the database schema is
redesigned so that it best meets the database queries (as a
consequence, it would simplify the execution of those
queries).

The first two strategies are clear and unambiguous
and do not require the use of auxiliary methods for
implementation.

The third strategy is more complicated and involves
the use of auxiliary methods by which the collection
schemas in MongoDB would be formed in response to
queries.

One of the approaches in transforming data models is
the use of relational algebra and set theory [17]. This
adapts methods of relational algebra and set theory for
convenient use in the context of database models and
schemas. Using this approach, it is possible, using a

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

formal language, to develop specific model transformation
steps and compose a general algorithm to support
heterogeneous model-inhomogeneous migration for
selected data models.

The use of relational algebra and set theory is
appropriate to implement the strategy of re-designing
database schema according to queries, because the
hierarchy of model structure and queries is quite
convenient to represent by sets (compositions), analyze
them, perform actions with these sets and present the
results of these actions [18]. Therefore, this approach will
be used as a tool for further development of migration
maintenance methods.

Mathematical modeling of migration

Let us represent the incoming relational database
schema using set theory. Let T be the set of all tables in
the relational schema, the set T consists of elements T,
where r is the number of table in the schema, in the form

of a formula for representing the set of tables looks as
follows:

T={T.,i=1..n}, 1)

where T, —i-th table in the table set T;

i —table number in a set of tables;

n — the total number of tables in the scheme. can be
combined with one another.

Schematically, a set of tables is shown in fig. 4.

T

2,0

Fig. 4. Representing a relational database schema as a set.

Each table consists of the fields, that is, the table is a
set of fields:

T ={F, i=1.nj=1.i}, @)

ij?
where F; —j-th field at the i-th table;

i —table number in a set of tables;

n — total number of tables in the scheme;

j — field number at the i-th table;

i, — total number of fields in the i-th table. can be
combined with one another.

The representation of the relational database schema
in the form of sets is shown in fig. 5.

Fig. 5. Presentation of the relational data base scheme in the form of sets

Let Q be the set of all database queries provided by
the business logic application:

Q={Q,l=1..m}, ®3)

where Q, is a I-th query in a set of queries Q;
| is a number of the query in a set of queries;
m is a total number of queries in a set of queries.

In its turn, each of the queries refers to a certain set
of all database fields, i.e. each query can be represented as
the following set of fields:

Q ={F,.i<nj<i;l=1.x} “)

where F; is aj-th field at the i-th table;
i is a table number in a set of tables;

CyuacHuii cman HayKko8ux 00CaioANceHb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

n is a total number of tables in the scheme;
j is a field number at the i-th table;
i, is atotal field number at the i-th table;

X is a total number of queries.
The presentation of queries to the database in the
form of sets is shown in fig. 6.

Fig. 6. Presentation of queries to the database
For each field, it is necessary to find a set of queries
in which the field is used:
F'={Q.1=1..z;2<x|F; eQ}, (5)

where F' is the set of queries in which the field F; is
used;

Q, isal-th query in which the field F; is used;

z is a number of queries in which the field F; is
used;

X is a total number of queries.

At the beginning of model conversion, it is necessary
to remove the fields that are not used in any query, and put

these fields in a separate collection. These fields
correspond to the following conditions:
[Fil=o0. ©)

All such fields can be included into one (or several)
collection C, (C,...C,). In the set representation this

collection looks like this:

Cl :{F'

ij?

i<nj<i||F=0} ©)

where F; is aj-th field at the i-th table;
i is a table number in a set of tables;
n — total number of tables in the scheme;
j — number of the field at the i-th table;

i, —total number of the fields at the i-th table.

At this stage, several collections are created if the
fields falling into the above category are not connected in
any way and cannot be combined into one collection from
the point of view of the logical representation of the data
schema.

Next, it is necessary to select those fields that take
part in only one query:

|Fijq| =1 (8)

Fields satisfying the above condition are part of the
new collection Cz:

C,={F.i<nj<i|FeQ&[F|=1z>1 (9

where F; —j-th field at the i-th table;

n is a total number of tables in the scheme;
i, — total number of fields at the i-th table;

Q, — I-th query;
F,' —the set of queries in which the field F; is used;

z — collection number.

The same as for the previous set, more
than one collection can be created if the fields are not
linked and logically cannot be combined into one
collection.

At this stage, remove by consideration those
fields that have already been wused in previous
collections.

Let's make a set of queries H, which we will work
with next, by extracting from the general set of all queries
those queries, all fields of which already belong to the
found collections.

Let us make even sections of the sets Q, € H, these

sections have the following form:

Q=Q NQ;ij#iii, j=1..[H|, (10)

where Q, is the k-th pairwise section;
H is a set of queries that are considered,

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

Qi, Q; —i-thand j-th query sets.

The resulting non-empty sets form a new set M.

Provided that H — M # @, the new collection will consist
of the fields included in this difference:

C,={F,i<nj<i|Fe(H-M)}

ij

(11)

where C, is a new collection;

H — set of queries under consideration;
M — set of non-empty intersections;
F; — field from difference H — M.

From the set of fields taken for consideration we
remove those that are included in the above set. After
receiving the collection we will re-recognize the set H to
continue the algorithm:

H=M, (12)

where H — set of queries to be considered;

M — set of non-empty intersections.

Now we find the intersection of the fields of queries,
but already 3 elements:

Q. =QNnQ;NQ,;j#i;i,jym=1..|H, (13)

where Q, — k-th intersection of three elements;

H — set of queries under consideration;
Qi, Q;, Q, —i-th, j-th and m-th sets of queries.

Similarly, as with two elements, the resulting
nonvoid sets form a new set M and if H — M # @, a new
collection (11) is formed. Thus, the algorithm is repeated
until only one intersection is left at a certain step, that is,
the set H will not consist of one element, when this
condition is reached, it is necessary to form a new set
consisting of fields that entered the last intersection and
are not included in all previous collections.

Thus, as a result of the method, a set of collections of
documents with their field sets will be formed.

In further research, it is planned to compare such an
algorithm for migration between data models and other
algorithms on real database examples and to investigate its
effectiveness

Algorithm development

The migration support algorithm is represented by
means of the UML activity diagram in fig. 7.

The preparatory step for a relational model database
migration algorithm to a query-based document-oriented
model is to define a set of queries to the database. It is
suggested to use one of the query definition options for
the algorithm:

- for commercial projects, in most cases, in addition
to the schema database itself, the queries to this database
that are operated by the application are also known, in
which case known queries are taken for the algorithm;

- if the set of queries is unknown, it is reasonable to
make a deeper analysis of the subject area and the
database schema and to independently compose the
queries that are most likely to cover the business logic of

the subject area and the application where the database is
or can be used;

- if the previous two options cannot be used in a
particular situation, it is proposed to consider the links
between the tables as queries.

After defining a set of queries, it is necessary, using
set theory, to work with the representation of tables and
queries for the further work of the algorithm, namely:

- represent each table as a set of fields;

- represent each query as a set of fields used in it (in
any part: sampling, grouping, etc.);

- represent each field as a set of queries in which it
takes part.

If at this stage the presence of such fields that do not
participate in any of the queries are detected, it is
necessary to combine them into one collection (or several
collections, if the business logic does not allow combining
these fields into one collection) of links between the initial
tables, possibly with different degrees of nesting.

The next step in the algorithm is to make links
between sets of fields in queries, starting with pairwise
links. For each query, i.e. set of its fields, a search for
pairwise relations with all other sets of query fields is
performed. If the next section is not an empty set, you
must add queries from the section to the set of non-empty
sections. Thus, all the paired sections are traversed and the
queries from the next section are either attached or not
attached to the set of non-empty sections (if a certain
query is already contained in the resulting set of non-
empty sections, it does not need to be added to the second
set).

At the end of the formation of the resulting set of
non-empty intersections, it is necessary to find the
difference of the set of all queries considered at this stage
(in pairs intersections - the whole set of queries) and the
set of queries that entered the set of non-empty
intersections. If the found difference is not an empty set,
then the resulting difference is a new collection (it must be
further checked that each field is included in this
difference once, if there are more than one occurrence,
then remove repeating fields). Also, as with the formation
of the first collection, it is necessary to pay attention to the
connections between the initial tables, and, if necessary, to
form different degrees of the nesting of the newly created
collection.

For the next step, it is necessary to override the set of
queries under consideration by the set of
non-empty intersections of queries obtained in the
previous step.

Similarly, to the actions with pairwise sections, it is
necessary to determine the set of non-empty sections
queries (without repeating elements in the resulting set).
Having obtained the resulting set of non-empty sections,
you should find the difference between the sets of queries
considered at this step and the current set of non-empty
sections. If the found difference is not an empty set, then
the resulting difference makes a new collection (taking
into account the links between the initial tables, business
logic, formalizing the necessary levels of nesting in the
collection, etc.).

Cyuacnuti cmamn HayKo8ux O0CALONCeHb Mma mexnono2it 6 npomuciosocmi. 2022. Ne 2 (20)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

relational catabaze
schema selzction

s 3t of goaries to the datzhens, boown)

Ll o {rax}
wmd&ntim of r=lations considerztion of known
berwesn tablaa &5 queries queties to m.ed.alabase

compiling the =t of zll
datzbazs fislds

compiling setz of fislds
for datzbase gueriss

| fore=ch query the sat of
fislds usad in it is formed

for each fiald, the st of queries in .
which this fisld participates et

o the first stzgs -
=1 gueriss

z=t of

" Grmztion ofthesssulting g

(==t consists of one lement)

{wi}

compiling intersections of quary zats
{starting with two queriss in intersection)

|
{the next interzection iz not 2n smpty sat)

“ Tres]
{the guery is alrezdy in meny non-smpty sections)

pesy

iyes]
f-ad.d.mg guariss to non-smpty
(\ sactions =t
|
{remzining intersections)
{1;0)

obtzining the complats sat of

inE of the g2t of quarizs
uadar considaration. znd 2 st of non-smpty

{diference iz 2n smpty zat)

oy
izolation of 2 new collacti
consisting of all

T

redafining the zat of guariss wndar
considerztion by the s=t of

N

7

queriss of non-smpty intersections
|

S

Fig. 7. UML-activity diagram for the algorithm

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

¥
er--:F'_satir.g the 1zst collaction o the ﬁeldsﬂ‘-,__.

Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

l\ of tha 1=t intersaction

"
]

|
{the naxt fsld enters other interzections

ol <;>
(" thefisld is 2dded to “\f

- {ves)
%, the new collaction

{the fislds remzins in the intersaction)

i trznss to the naxt fi=ld
I“"'\-\. in the intsrsaction

niy '}\
@

The end Fig. 7.

St

Similar actions to form new collections with an
incremental number of queries to intersect at each step,
are repeated until there remains one element in the set of
queries considered at a particular step - that is, one query,
and since with this query is no longer possible to build a
cross section, the transition to the next stage of the
algorithm. In this step, each field is checked from the set
of fields of this query and, if this field does not yet belong
to any of the collections created during the previous work
of the algorithm, it is added to the last collection.

Thus, after the algorithm finishes, all fields are
distributed among the collections in the newly created
document-oriented data model.

Discussion of the results

To automate the migrations, the software was
developed in the programming language C#, on the
platform .NET Core. This software inputs a MS SQL
relational database and a set of queries to that database,
converts the database schema according to the algorithm
described in this study, shows the result and creates a
MongoDB database after confirmation by the user. After
the successful creation of collections, the process of data
transfer on the corresponding fields takes place. Such a
process was run on a test database, after the migration was
completed, it was verified that the data was migrated in
full and without corruption. The results of query execution
in the target database were also tested and matched the
results obtained on the source database. Such results prove
that the algorithm obtained in the study is workable and
can be used for heterogeneous model-heterogeneous data
migration between relational and document-oriented
storage models.

References

1. "International Roadmap for Devices and

Conclusions

Systems.

As a result of the study it was:

- reviewed the theoretical aspects of data migration,
related terms and processes;

- analyzed the popularity and relevance of using non-
relational databases, on the basis of this analysis non-
relational document-oriented storage model (using
MongoDB as an example) was selected for consideration
as a target database when migrating from the relational
model;

- an analytical review of existing methods and
strategies for migration between relational models and
document-oriented data storage models was performed,
features of such methods, limitations of such methods,
cases of expediency of use and disadvantages of such
methods were given;

- the possibility of using relational algebra and set
theory in the context of data and query models, as well as
in redesigning models was considered;

- selected a data model migration strategy that
involves redesigning the database schema in accordance
with database queries;

-a mathematical model for an algorithm for
heterogeneous model-inhomogeneous data migration
between relational and document-oriented data storage
models using set theory has been compiled

- formalized and described an algorithm for data
migration according to the principles of the
aforementioned strategy (data query-oriented strategy).

The obtained algorithm is suitable for use on real
examples, and is also an object for further research and

possible improvements, analysis of efficiency in
comparison with other methods.
More Moore White Paper", available at:

https://irds.ieee.org/images/files/pdf/2016_MM.pdf (last accessed: 25.03.2022).

2. Morris, J. (2012), Practical Data Migration, BCS, The Chartered Institute for IT, London, 266 p.

3. "Homogeneous vs Heterogeneous migration”, available at: https://rtfm.co.ua/aws-database-migration-service-obzor-i-primer-
migracii-self-hosted-mariadb-v-aws-aurora-rds/#Homogeneous_vs_Heterogeneous_migration (last accessed: 30.03.2022).

https://irds.ieee.org/images/files/pdf/2016_MM.pdf
https://rtfm.co.ua/aws-database-migration-service-obzor-i-primer-migracii-self-hosted-mariadb-v-aws-aurora-rds/#Homogeneous_vs_Heterogeneous_migration
https://rtfm.co.ua/aws-database-migration-service-obzor-i-primer-migracii-self-hosted-mariadb-v-aws-aurora-rds/#Homogeneous_vs_Heterogeneous_migration

ISSN 2522-9818 (print)

CyuacHuii cman HayKko8ux 00Caiodcenb ma mexHonoeitl 6 npomuciosocmi. 2022. Ne 2 (20) ISSN 2524-2296 (online)

4. Preston, Z. (2021), Practical Guide to Large Database Migration, CRC Press, USA, 198 p.

5. Andreas, M. (2015), "Providing Database Migration Tools. A Practitioner’s Approach”, 21st International Conference on Very
Large Data Bases (VLDB), P. 635 — 641.

6. Ji, L. F., Azmi, N. F. M. (2020), "The development of a new data migration model for NOSQL databases with different schemas
in environment management system", Journal of Environmental Treatment Techniques, No. 8 (2), P. 787-793.

7. Ceresnak, R., Dudas, A., Matiasko, K. (2021), "Mapping rules for schema transformation : SQL to NoSQL and back",
International Conference on Information and Digital Technologies, P. 52-58. DOI:
https://doi.org/10.1109/IDT52577.2021.9497629

8. Hanine, M., Bendarag, A., Boutkhoum, O. (2015), "Data Migration Methodology from Relational to NoSQL Databases",
International Journal of Computer, Electrical, Automation, Control and Information, Engineering, No. 9 (12), P. 2566-2570.

9. Alalfi, M. H. (2018), "Automated Algorithm for Data Migration from Relational to NoSQL Databases", Al-Nahrain Journal for
Engineering Sciences (NJES), No. 21 (1), P. 60-65. DOI: https://doi.org/10.29194/NJES2101

10. Fouad, T., Mohamed, B. (2019), "Model transformation from object relational database to NoSQL document database”, N1SS19,
No. 49, P. 1-5. DOI: https://doi.org/10.1145/3320326.3320381

11. Li, X., Ma, Z., Chen, H. (2014), "QODM: A Query-Oriented Data Modeling Approach for NoSQL Databases", IEEE Workshop
on Advanced Research and Technology in Industry Applications, P. 338-345.

12. Alotaibi, O., Pardede, E. (2019), "Transformation of Schema from Relational Database (RDB) to NoSQL Databases", Data, No. 4
(4), P. 148. DOI: https://doi.org/10.3390/data4040148

13. Ain El Hayat, S., Bahaj, M. (2020), "Modeling and transformation from temporal object relational database into mongodb:
Rules”, Advances in Science, Technology and Engineering Systems, No. 5 (4), P. 618-625. DOI:
https://doi.org/10.25046/aj050473

14. Mason, R. T. (2015), "NoSQL databases and data modeling techniques for a document-oriented NoSQL database", Informing
Science & IT Education Conference (InSITE), P. 259-268. DOI: https://doi.org/10.28945/2245

15. Alekseev, A. A., Osipova, V. V., Ivanov, M. A. (2016), "Efficient data management tools for the heterogeneous big data
warehouse", Physics of Particles and Nuclei Letters, No. 13 (5), P. 689-692. DOI: https://doi.org/10.1134/S1547477116050022

16. Gu, Y., Wang, X., Shen, S., Wang, J., Kim, J.-U. (2015), "Analysis of data storage mechanism in NoSQL database MongoDB",
2015 IEEE International Conference on Consumer Electronics, P. 158-159.

17. Dabowsa, N. I., Maatuk, A. M., Elakeili, S. M. (2021), "Converting Relational Database to Document-Oriented NoSQL Cloud
Database", 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control
and Computer Engineering MI-STA, P. 381-386. DOI: https://doi.org/10.1109/MI-STA52233.2021.9464488

18. Date, C. J. (2012), SQL and Relational Theory: How to Write Accurate SQL Code, O'Reilly Media, London, 448 p.

19. Kuzochkina, A., Shirokopetleva, M., Dudar, Z. (2018), "Analyzing and Comparison of NoSQL DBMS", International Scientific-
Practical Conference on Problems of Infocommunications Science and Technology, P. 560-564. DOI:
https://doi.org/10.1109/INFOCOMMST.2018.8632133 "DB-Engines Ranking", available at: https://db-engines.com/en/ranking
(last accessed: 10.04.2022).

20. Chickerur, S., Goudar, A., Kinnerkar, A. (2015), "Comparison of Relational Database with Document-Oriented Database
(MongoDB) for Big Data Applications”, 8th International Conference on Advanced Software Engineering & Its Applications
(ASEA), P. 41-47. DOI: https://doi.org/10.1109/ASEA.2015.19

21. Stepovik, A. N, Efanov, N. V. (2019), "Analysis of relational and non-relational databases”, Digitization of the economy:
directions, methods, tools, P. 414-416.

Received 13.04.2022

Bioomocmi npo asmopis / Ceedenus 06 asmopax / About the Authors

[epersitko Mapis BikropiBna — XapkiBcbkuil HaIlOHaJBHUH YHIBEPCHTET pPAaIiOCIEKTPOHIKH, MaricTpaHT Kadeapu
mporpaMHoi imkeHepii, M. Xapkis, Ykpaina; e-mail: mariia.peretiatko@nure.ua; ORCID ID: https://orcid.org/0000-0003-3711-3765.

Ilepersitko Mapusi BuktopoBna — XapbKOBCKHI HallMOHAIBHBIH YHUBEPCUTET PaJHOICKTPOHUKH, MarucTpaHT Kadeapsl
MPOrpaMMHON MH)KEHEpHH, T. XapbKOB, Y KpauHa.

Peretiatko Mariia — Kharkiv National University of Radio Electronics, undergraduate at the Department of Software
Engineering, Kharkiv, Ukraine.

IIupoxonernesa Mapisn CepriiBHa — XapkiBChbKUI HAI[lOHANGHUN YHIBEPCHTET paiOeNeKTPOHIKH, CTAapIIMil BHKIAIAd
kadenpy MPOrpamMHOi iH)XeHepii, 3acCTyMHHK TUPEKTOpa IIEHTpa MICIAAMIUIOMHOT ocBitH, M. XapkiB, VYkpaina; e-mail:
marija.shirokopetleva@nure.ua; ORCID ID: https://orcid.org/0000-0002-7472-6045.

IIupoxonerneBa Mapus CepreeBHa — XapbKOBCKHI HAI[MOHAIBHBIH YHHUBEPCHUTET PaJHOIEKTPOHHUKH, CTapIINi
TIperoaBaTeb Kadeaphl MPOrpaMMHON MHXEHEPHH, 3aMECTHTEIb AUPEKTOpa IEHTPa ITOCIESANITIOMHOr0 00pa3oBaHus, T. XapbKoB,
YkpauHa.

Shirokopetleva Mariia — Kharkiv National University of Radio Electronics, senior lecturer at the Department of Software
Engineering, Deputy Director of the Center for Postgraduate Education, Kharkiv, Ukraine.

Jlecha Hartanss CoBeTiBHa — KaHAWAAT TeXHIYHMX Hayk, npodecop, XapKiBCbKHI HalliOHaJbHHH YHIBEPCUTET
pamioenekTpoHiky, npodecop kadeapu mporpamHoi imkeHepii, M. Xapkis, Vkpaina; e-mail: natalya.lesna@nure.ua; ORCID ID:
https://orcid.org/0000-0001-9816-3251.

Jlecnass Hartanbsi CoBeTOBHA — KaHIUIAT TEXHHYECKUX HaykK, Hpodeccop, XapbKOBCKHH HAMOHAIBHBIA YHUBEPCUTET
Paxro3JIEKTPOHKKH, podeccop Kadeapsl MporpaMMHOM HHXeHepuy, . XapsKoB, Ykpauna; e-mail: natalya.lesna@nure.ua

Lesna Natalya — Candidate of Technical Sciences (PhD), Professor, Kharkiv National University of Radio Electronics,
Professor at the Department of Software Engineering, Kharkiv, Ukraine.

https://doi.org/10.1109/IDT52577.2021.9497629
https://doi.org/10.29194/NJES2101
https://doi.org/10.1145/3320326.3320381
https://doi.org/10.3390/data4040148
https://doi.org/10.25046/aj050473
https://doi.org/10.28945/2245
https://doi.org/10.1134/S1547477116050022
https://doi.org/10.1109/MI-STA52233.2021.9464488
https://doi.org/10.1109/INFOCOMMST.2018.8632133
https://db-engines.com/en/ranking
https://doi.org/10.1109/ASEA.2015.19
mailto:mariia.peretiatko@nure.ua
https://orcid.org/0000-0003-3711-3765
mailto:marija.shirokopetleva@nure.ua
https://orcid.org/0000-0002-7472-6045
mailto:natalya.lesna@nure.ua
https://orcid.org/0000-0001-9816-3251

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2022. No. 2 (20)

AOCIIUKEHHA METOAIB INATPUMKHA MITPAIIA JAHUX MIXK
PEJIAINIMHUMU I JOKYMEHTHUMMU MOJAEJIAMMU 35EPII'AHHA JAHUX

I[Ipeamerom 1ocmimkeHHS B CTaTTi € TeTEPOreHHA MOJCIBHO-HEOTHOPiAHA MIrpamis NaHUX MDK PETALiHHMMHU Ta JOKyMEHTO-
OpIEHTOBHUMH MOJIEISIMU 30epiraHHs JaHWX, iCHyIOUi cTpaTerii Ta METOAW MIATPUMKH TaKOrO POAY MIrparlii, BUKOPHCTAHHS
pemsiniitHoi anreOpu Ta Teopii MHOXHH y KOHTEKCTi 6a3 JaHUX Ipu 1mMoOyZoBi HOBOTO alropuTMy Mirpamnii maHux. Mera pobotu —
PO3TISIHYTH OCOOJIMBOCTI Ta TOPSIOK Mirpamii JaHWX, MOCTIIUTH METOOM MIITPHUMKH MIrpamii JaHuX MK pPeTIifHiIMHA i
JIOKyMEHTHHMH MOJIEISIMH JaHHX, MOOYyIyBaTH MaTeMaTH4HY MOJENb Ta alrOpUTM Ul Mirpamii qaHux. BuxopucroByroTscs Taki
METOJIM: aHali3 Ta MOPIBHAHHA ICHYIOUMX HiIXOXIB 10 Mirpauii JaHuX, BHOIp cTparerii AJs MOJANbIIOr0 BHUKOPHCTAHHS IIPH
CKJIaJJaHHI aJTOPUTMY Mirpauii, MaTeMaTH4YHE MOJETIOBAHHS aJITOPUTMY T'ETEPOT€HHOI MOAEIbHO-HEOJHOPIAHOI Mirpamii ZaHuX,
(dopmaizanis aaropuTMy Mirpamii JaHuxX. B cTarTi BUpIIIyIOThCA HACTYMHI 3aBAAHHSA: PO3IVILA MOHATTS Ta PI3HOBHIIB Mirparii
JTaHUX, OOIPYHTYBaHHS BHOOpPY JOKYMEHTO-OPI€EHTOBHOI MOJEINi JAaHHMX B SKOCTI IUJIBOBOI IJIS Mirpamii JaHuX, aHali3 iCHYIOYHX
JiTepaTypHHX JKEpel, IO CTOCYIOTECSI METOIIB Ta CTPATeTii reTeporeHHOI HeOAHOPIHO-MOAENBHOT MIirparlii JaHuX 3 PersIiiHHOl 10
JIOKYMEHTO-OPIEHTOBHOI MOJICT JTAaHWX, BUJIUICHHS IIepeBar Ta HEAONIKIB ICHYIOYHX METOJIB, BHOIp MiaXomy 10 (OpMyBaHHS
ITOPUTMY Mirpamii JaHuX, CKJIagaHHs Ta OIHMC MaTeMaTHYHOI MOJENi Mirpamii JaHuX 3a JOIIOMOTOI0 persniifiHoi anreOpy Ta Teopil
MHOXHH, TPEJICTaBICHHS aJrOPUTMY Mirpamii JaHHX, B OCHOBI SIKOTO JIGXXHTH OPi€HTAIlis Ha 3alUTH 10 AaHuX. OTpUMaHO HACTYIHI
pe3yJabTaTH: BUKOPUCTAHO MOXIIMBOCTI PEISLiiHOI anreOpu i Teopii MHOKUH Y KOHTEKCTI MOJIENICH TaHHWX Ta 3aIUTiB, & TAKOX MPH
MepenpoeKTyBaHHI MoJeNneid, 0OpaHo CTpaTeriro Mirparii Mojeneil JaHux, sKa nepeadavae MepenpoeKTyBaHHS CXEeMH 0a3d NTaHHUX y
BiJIIOBITHOCTI 10 3alHTIiB 0 0a3W JaHUX, CTBOPECHO MAaTEMaTHYHY MOJEIb METOIY TeTepOreHHOI HEOIHOPIAHO-MOEIBHOT Mirparii
MDK PeALiiHOI Ta JOKyMEHTO-OPi€HTOBHOIO MOJIENSIMU JIaHHX, OIMCAHO alIrOPHTM 3aCTOCYBAaHHS IIbOrO METOAy. BHCHOBKM: B
pe3ynbTaTi NMpoBeAeHOI POOOTH MPOAHATi30BaHO OCHOBHI METOAM IIATPUMKH MIrpamil Juisl pi3sHMX Mopenel 30epiraHHs JaHUX, 3a
JIOTIOMOTO0 persiniiiHol anreOpu Ta Teopil MHOXHMH MOOYZOBaHO MaTeMaTHYHY MOJENb Ta CKIAJCHO ajlrOpPUTM IEePEeTBOPEHHS
persiniiiHol MoJeNi TaHuUX 10 JOKYMEHTO-OpPIEHTOBHOI MOJENI JaHUX 3 ypaxyBaHHSIM 3amuTiB 10 MaHuX. OTpUMaHHUN alrOpPHTM €
NPUJATHUM 718 BUKOPHUCTAHHS Ha pEaJbHUX INPHKIAfax, a TaKoXX € 00’€KTOM Uil IOJAIBIIMX JOCTIDKEHb 1 MOMIIMBHX
YAOCKOHAJICHb, aHATI3Y ¢()EKTUBHOCTI y MOPIBHSHHI 3 IHIIUMH METOIaMH.
KurouoBi ciioBa: 6aza 1aHuX; reTeporeHHa Mirpallist; MOJesb JaHUX; TEOPis MHOKHH.

HCCJEIOBAHUE METO/JOB IOJAEPKKA MUTPALIUHA JIAHHBIX MEXIY
PEJIAINUOHHBIMUA U JOKYMEHTHBIMU MOJIEJIAMU XPAHEHUSA JAHHBIX

IIpeamerom uccieqoBaHUS B CTAaThe SBISETCS TETEPOreHHAs MOICIbHO-HEOAHOPOIHAS MUTPALIUS JaHHBIX MEXKIY PENSIHOHHBIMU U
JTIOKYMEHTO-OPHEHTHPOBAHHBIMU MOJEISIMH XPAaHEHUsI TaHHBIX, CYIICCTBYIOIINE CTPATETHH W METOIBI MOJACPKKH TaKOro poja
MUTpaluii, WCIOJIb30BAaHUE PENSIHOHHON anreOpsl W TEOPHH MHOXKECTB B KOHTEKCTE€ 0a3 NaHHBIX IMpPHU IOCTPOSHHH HOBOTO
anroputMa MHUrpanuu aaHabix. Lleab paboTel — paccMOTpeTh 0COOCHHOCTH U MOPSAAOK MHUTPAIUK JaHHBIX, UCCICIOBATH METOMIbI
MOJJIEPKKU MUTPALMH MEXIY PEJIILMOHHBIMM M JIOKYMEHTHBIMH MOJIENSIMU JaHHBIX, MOCTPOUTh MaTeMaTHYECKyl0 MOJEIb M
JIrOpUTM JUIsI MUTpalliM JaHHbIX. lcrmonb3yloTcs clieayrouiye MeToAbl: aHAJIM3 U CPaBHEHHE CYUIECTBYIOHIMX IOAXOJIOB K
MUTpalUH JaHHBIX, BBIOOP CTpaTeTHH Al JaTbHEHINEro UCTIOIB30BAHHUS NP COCTABJICHHH AJITOPUTMa MUTPAIMH, MATEMATHYECKOE
MOJICITUPOBAHUE AITOPUTMAa TETEPOTEHHOH MOJENbHO-HEOJAHOPOAHOW MUTpAalWH JAHHBIX, (opMmanu3amus aaropuTMa MHUTPaldN
JAaHHBIX. B craTbe pemiaroTcs cleAylomue 3aJadd: PacCMOTPEHHE MOHATHS W PAa3HOBUAHOCTEH MHTpAIMH JaHHBIX, 0OOCHOBaHUE
BEIOOpa JOKYMEHTO-OPHEHTUPOBAHHOW MOJETH MAaHHBIX B KadeCTBE LEJEBOW IS MHTPAIMU JaHHBIX, aHAIN3 CYHIECTBYIOMINX
JUTEPATYPHBIX MCTOYHHWKOB, KACAIOMIMXCS METOAOB M CTPATETHH TeTePOreHHOW HEOJHOPOIHO-MOAETBHOW MUTPAalUH NAaHHBIX W3
PENAMOHHON K TOKYMEHTO-OPHEHTHPOBAHHOW MOJEIH JAHHBIX CYIIECTBYIOIIMX METOAOB, BBHIOOp TOAX01a K (HOPMHUPOBAHHIO
aJropuTMa MUTpAIMM JTaHHBIX, COCTABJICHUE U OMHCAHUE MATEMaTH4YECKOW MOJEIM MHUIPAlMU JaHHBIX C MOMOIIBIO PENSLUOHHON
anreOpbl ¥ TCOPUM MHOKECTB, MTPEACTABICHUE AITOPUTMA MUTPAIMH JaHHBIX, B OCHOBE KOTOPOTO JIGKHUT OPUCHTAIIMS Ha 3aMpOChl K
naHHbIM. [lonydeHsl crenyronme pe3yJbTaThl: HCIOJB30BaHbl BO3MOXKHOCTH PENSLIMOHHON anreOpbl U TEOPUUM MHOXKECTB B
KOHTEKCTEe MOJeJNiel JaHHBIX M 3allpoCOB, a TaKXKe IMPH IEPENPOSKTHPOBAHUU MOJENEH, BEIOpaHa CTpaTerws MUTPALUH MOJeNer
JTAaHHBIX, TIPEIyCMaTPHUBAIOIIasl MEepepPOEeKTHPOBAHNE CXEMBI 0a3bl JaHHBIX B COOTBETCTBHHM C 3alpocaMH K 0asze JaHHBIX, CO3JaHa
MaTeMaTH4decKass MOJIeNIb METO/a TEeTEPOTeHHOW HEOTHOPOJHO-MOACTBHOW MHTpAlMd MEXAY PEISIHOHHOW M OKYMEHTO-
OpHUEHTUPOBAHHON MOJEISAMH JaHHBIX, OMUCaH aJTOPUTM MTPUMEHEHHS STOr0 MeTo/ia. BBIBOABI: B pe3ylbTaTe MPOBEAEHHOMN paboThl
NPOaHAU3UPOBAHbl OCHOBHBIC METOJbI TOJCPKKM MHUIPALMU JJIS PA3JIMYHBIX MOJEJCH XpaHEHUs JaHHBIX, C TMOMOIIBIO
PENAMOHHON anreOpbl W TEOPHMH MHOKECTB MOCTPOCH MaTeMaTHYecKas MOJCIb W COCTAaBICH alrOPUTM MpeoOpa3oBaHUs
PENALMOHHON MOAENH JaHHBIX B JOKyMEHTO-OPUEHTHPOBAHHYIO MOJENb JaHHBIX C Y4YeTOM 3alpocoB K AaHHBIM. [losyuyeHHBbIi
ITOPUTM TPUTOJCH ISl UCIIONB30BaHUS Ha PEAlbHBIX MPUMeEpax, a TAKKE SBIACTCS 00BEKTOM ISl JAIBHEUIINX UCCIACTIOBAHUN U
BO3MOXKHBIX YCOBEPIICHCTBOBaHUI, aHaM3a 3(p(PEeKTHBHOCTH IO CPABHEHHIO C IPYTUMH METOAaMH.
KnaiwoueBsbie ciioBa: 0a3a JaHHBIX; TeTEpOreHHAS MUTPALHST; MOJEINb JTAHHBIX; TEOPHS MHOXKECTB.

bibnioepaghiuni onucu / Bibliographic descriptions

Ilepersatko M. B., lllupokomnernera M. C., Jlecua H. C. [JocmimkeHHS METOIIB MIATPUMKH MIrparii JaHuX MK PeNSIiHHAMH 1
JIOKyMEHTHUMH MOJETIMH 30epiranns maHux. Cyyacuuii cman HAykosux 0ocCuiodceHb ma mexnonoeit 6 npomuciosocmi. 2022.
Ne 2 (20). C. 64-74. DOI: https://doi.org/10.30837/1TSS1.2022.20.064

Peretiatko M., Shirokopetleva M., Lesna N. (2022), "Research of methods to support data migration between relational and
document data storage models”, Innovative Technologies and Scientific Solutions for Industries, No. 2 (20), P.64-74.
DOI: https://doi.org/10.30837/ITSSI.2022.20.064

