ANALYSIS OF METHODS AND DEVELOPMENT OF THE CONCEPT OF GUARANTEED DETECTION AND RECOGNITION OF EXPLOSIVE OBJECTS
DOI:
https://doi.org/10.30837/ITSSI.2022.22.020Keywords:
methods of detection and recognition, explosive objects, unmanned aerial vehicles; performance, probability of detectionAbstract
The subject of the article are the methods of detection and recognition of explosive objects. The aim of the work is to develop the main provisions of the concept of guaranteed detection and recognition of explosive objects. The following tasks were solved in the article: an analysis of existing approaches to the use of traditional single and combined, as well as non-traditional (biological) methods of detecting explosive objects, development of a classification table of methods of detection of explosive objects according to physical principles, analysis of advantages and disadvantages of the considered methods of detection of explosive objects, development of comparative table methods of detecting explosive objects, formulation of the introductory provisions of the concept of guaranteed detection and recognition of explosive objects. The following methods are used – methods of comparison, methods of abstraction, methods of analysis and synthesis, methods of scientific induction. The following results were obtained – an analysis of the features of the existing traditional and non-traditional (biological) methods of detecting explosive objects was carried out. A classification of methods for detecting explosive objects is proposed, taking into account the parameters that affect the probability of detection and productivity. The results of a comparative analysis of explosive object detection methods are presented in tabular form according to the following indicators: type of interaction with explosive objects, platform type, potential productivity, information technology support, quality parameters, and economic indicators. The main provisions of guaranteed detection and recognition of explosive objects are formulated. Conclusions: the low productivity of the existing methods does not allow for quick and effective clearing of the territory contaminated by explosive objects, which leads to a large number of injuries and deaths of people due to the detonation of explosive objects. The use of individual detection methods alone cannot significantly increase the probability of detecting explosive objects. To increase the productivity and safety of the search and disposal of explosive objects, it is advisable to use unmanned intelligent platforms to deliver information and measurement tools.
References
Landmine Monitor 2022. URL: http://www.the-monitor.org/en-gb/reports/2022/landmine-monitor-2022.aspx (дата звернення: 18.11.2022).
Ukraine: Mine Action – 5W Situation Report (as of 01 June 2022). URL: https://reliefweb.int/report/ukraine/ukraine-mine-action-5w-situation-report-01-june-2022 (дата звернення: 18.11.2022).
Kenny P. Landmines killed 7,073 in 2020, says UN institute. URL: https://www.aa.com.tr/en/world/landmines-killed-7-073-in-2020-says-un-institute/2417253 (дата звернення: 18.11.2022).
Аналіз виконання робіт щодо очищення території України від вибухонебезпечних предметів у 2021 році. URL: https://dsns.gov.ua/uk/protiminna-diyalnist/gumanitarne-rozminuvannya (дата звернення: 18.11.2022).
Огляд збитків від війни в сільському господарстві України: непряма оцінка пошкоджень. URL: https://kse.ua/wp-content/uploads/2022/06/Damages_report_issue1_ua-1.pdf (дата звернення: 18.11.2022).
Robledo L., Carrasco M., Mery D. A survey of land mine detection technology. International Journal of Remote Sensing. 2009. Vol. 30. Issue 9. P. 2399–2410. DOI: https://doi.org/10.1080/01431160802549435
Kasban H., Zahran O., Elaraby S. M., El-Kordy M., Abd El-Samie F. E. A comparative study of landmine detection techniques. Sensing and Imaging. 2010. Vol. 11. Issue 3. P. 89–112. DOI: https://doi.org/10.1007/s11220-010-0054-x
Гайдарли Г. С. Розмінування території і об’єктів інженерними підрозділами збройних сил України у міжнародних операціях з підтримання миру і безпеки (1992–2018): дис. канд. іст. наук: 20.02.22. Київ, 2020. 274 с.
Молочко С. М., Башинський В. Г., Каламурза О. Г., Журахов В. А. Аналіз сучасного стану, характеристик та перспектив розвитку датчиків виявлення вибухонебезпечних предметів, встановлених на БпАК. Збірник наукових праць Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки. 2021. № 2 (8). C. 80–90. DOI: https://doi.org/10.37701/dndivsovt.8.2021.09
Fernandez M. G., Lopez Y. A., Arboleya A. A., Valdes B. G., Vaqueiro Y. R., Andres F. L. H., Garcia A. P. Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle. IEEE Access. 2018. Vol. 6. P. 45100–45112. DOI: https://doi.org/10.1109/ACCESS.2018.2863572
Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering and Remote Sensing. 2015. Vol. 81. Issue 4. P. 281–329. DOI: https://doi.org/10.14358/PERS.81.4.281
Field trials of the smart system and technical survey dogs in Cambodia: Final report 2021. URL: https://www.gichd.org/fileadmin/GICHD-resources/rec-documents/SMART_Cambodia_v13__1__01.pdf (дата звернення: 18.11.2022).
Filipi J., Stojnić V., Muštra M., Gillanders R. N., Jovanović V., Gajić S., Turnbull G. A., Babić Z., Kezić N., Risojević V. Honeybee-based biohybrid system for landmine detection. Science of The Total Environment. 2022. Vol. 803. DOI: https://doi.org/10.1016/j.scitotenv.2021.150041
Shemer B., Palevsky N., Yagur-Kroll S., Belkin S. Genetically engineered microorganisms for the detection of explosives’ residues. Frontiers in Microbiology. 2015. Vol. 6. DOI: https://doi.org/10.3389/fmicb.2015.01175
Challenges for Mine Action due to russian aggression against Ukraine. URL: https://www.mineaction.org/sites/
default/files/2.1.1_challenges_for_mine_action_in_ukraine.pdf (дата звернення: 18.11.2022).
A Study of Mechanical Application in Demining. URL: https://www.gichd.org/fileadmin/GICHD-resources/rec-documents/Mechanical_study_complete.pdf (дата звернення: 18.11.2022).
The MW370 is a powerful mine and route clearance platform used for the effective clearance of landmines across large areas. URL: https://www.pearson-eng.com/product/mw370/ (дата звернення: 18.11.2022).
van Verre W., Podd F. J., Daniels D. J., Peyton A. J. A Review of Passive and Active Ultra-Wideband Baluns for Use in Ground Penetrating Radar. Remote Sensing. 2021. Vol. 13. Issue 10. DOI: https://doi.org/10.3390/rs13101899
Song X., Liu T., Xiang D., Su Y. GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis. Remote Sensing. 2019. Vol. 11. Issue 8. DOI: https://doi.org/10.3390/rs11080984
Schweitzer K. M., Davis B. M., Pettijohn B. A., Clark R. D., Davison A. D., Staszewski J. J. Optimization of Army-Navy/Portable Special Search (AN/PSS)-14 Operator Training. URL: https://apps.dtic.mil/sti/pdfs/ADA457012.pdf (дата звернення: 18.11.2022).
U.S. Navy Demos MCM Equipment Prototype On MQ-8C. URL: https://www.navalnews.com/naval-news/2022/07/u-s-navy-demos-mcm-equipment-prototype-on-mq-8c (дата звернення: 18.11.2022).
Вижва С. А., Онищук І. І., Черняєв О. П. Ядерна геофізика: підручник. Київ. Видавничо-поліграфічний центр "Київський університет", 2012. 608 с.
Efficiency and Effectiveness Study using MDR capability. URL: https://www.gichd.org/fileadmin/GICHD-resources/rec-documents/APOPO-GICHD-Mine-Detection-Rats-30Jun2016.pdf (дата звернення: 18.11.2022).
Mine detection dog programs. URL: https://www.marshall-legacy.org/mine-detection-dog-programs (дата звернення: 18.11.2022).
Kharchenko V., Kliushnikov I., Rucinski A., Fesenko H., Illiashenko O. UAV Fleet as a Dependable Service for Smart Cities: Model-Based Assessment and Application. Smart Cities. 2022. Vol. 5. Issue 3. P. 1151–1178. DOI: https://doi.org/10.3390/smartcities5030058
Sun Y., Fesenko H., Kharchenko V., Zhong L., Kliushnikov I., Illiashenko O., Morozova O., Sachenko A. UAV and IoT-Based Systems for the Monitoring of Industrial Facilities Using Digital Twins: Methodology, Reliability Models, and Application. Sensors. Vol. 22. Issue 17. DOI: https://doi.org/10.3390/s22176444
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.