ISSN 2522-9818 (print)

Cyuachuil cman HayKogux 00CIIONCeHy ma mexHono2itl 8 npomuciogocmi. 2023. Ne 1 (23) ISSN 2524-2296 (online)

UDC 004.43; 004.051; 811.93 DOI: https://doi.org/10.30837/ITSSI.2023.23.045

R. GAMZAYEV, M. TKACHUK

DEVELOPMENT OF PROBLEM-SPECIFIC MODELING LANGUAGE
TO SUPPORT SOFTWARE VARIABILITY IN "SMART HOME" SYSTEMS

Building conceptual models for software design, in particular for high-tech applications such as smart home systems, is a complex
task that significantly affects the efficiency of their development processes. One of the innovative methods of solving this problem
is the use of domain-specific modeling languages (DSMLs), which can reduce the time and other project resources required
to create such systems. The subject of research in this paper is approaches to the development of DSML for Smart Home systems
as a separate class of Internet of Things systems. The purpose of this work is to propose an approach to the development of
DSMLs based on a model of variability of the properties of such a system. The following tasks are being solved: analysis of some
existing approaches to the creation of DSMLs; construction of a multifaceted classification of requirements for them, application
of these requirements to the design of the syntax of a specific DSML-V for the creation of variable software in smart home systems;
development of a technological scheme and quantitative metrics for experimental evaluation of the effectiveness of the proposed
approach. The following methods are used: variability modeling based on the property model, formal notations for describing
the syntax of the DSML-V language, and the use of the open CASE tool metaDepth. Results: a multifaceted classification of
requirements for a broad class of DSML languages is built; the basic syntactic constructions of the DSML-V language are developed
to support the properties of software variability of "Smart Home" systems; a formal description of such syntax in the Backus-Naur
notation is given; atechnological scheme for compiling DSML-V specifications into the syntax of the language of the open
CASE tool metaDepth is created; the effectiveness of the proposed approach using quantitative metrics is experimentally investigated.
Conclusions: the proposed method of developing a specialized problem-oriented language for smart home systems allows
for multilevel modeling of the variability properties of its software components and provides an increase in the efficiency of
programming such models by about 14% compared to existing approaches.
Keywords: domain-specific language; software; modeling; variability; Smart-home.

Introduction variability and adaptability of relevant software solutions

consistently and effectively, which in modern software

Research actuality and motivation engineering has acquired a common definition —

In high-tech areas of IT development, such as
Smart-home systems, mobile applications [1], and
distributed information systems based on cloud
platforms [2], innovative approaches to software
development are required. This, in turn, involves the use
of the latest design methods and technologies: domain-
driven development, model-driven architecture, and
the use of knowledge-based software tools and
technologies [3]. The main practical goal of applying
such approaches to software development is to reduce
the time and other project resources required to meet
the requirements of different groups of future users.
To achieve this goal, methods and technologies for building
domain-specific programming languages (DSLs) [4] and
domain-specific modeling languages (DSMLs) [5] for
a particular domain of software development have been
successfully used recently, which makes it possible to
ensure more efficient software development and
maintenance processes. Another significant advantage
of using DSL and DSML is the ability to support the

"variability" of software [6]. It is the provision of
software variability properties that is a critical factor
in automating the process of creating software product
lines (SPL), which are complex software applications
that have a common and manageable set of functions to
meet the requirements of users of a particular segment of
the IT market and are built from a common set of project
assets (components) in a predetermined manner [7].
Thus, the above confirms the scientific relevance and
practical focus of this study.

Brief review of some related publications

A considerable number of recent publications are
devoted to the problems of developing approaches to the
creation and application of DSL and DSML. In the course
of the study, a brief review of works is made and special
attention is paid to the issues of ensuring software
variability in SPL.

Thus, work [8] analyzes and summarizes the
features of such modern software applications as Internet

© R. Gamzayev, M. Tkachuk, 2023

https://doi.org/10.30837/ITSSI.2023.23.045

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

of Things systems, Smart Home systems, Embedded
Control Software and some others at a fairly high
methodological level. The authors of this paper propose
to designate them as smart service systems (SSS). It is
also shown that it is to automate the development and
subsequent software implementation of SSS systems that
it is advisable to use appropriate subject-oriented
modeling languages (DSML), which also ensures the
achievement of a certain level of software variability in
such systems. The authors propose an approach to
creating a syntax, grammatical rules and a compilation
mechanism for such a language. The effectiveness of this
approach has been tested on the example of an intelligent
system for controlling thermostats in a Smart Home.

Paper [9] considers an original approach to creating
sets of semantically related DSML languages for
a particular domain, which are considered as a special
type of software product lines (SPL) and for the
development of which well-known domain engineering
methods and technologies can be applied. In particular,
the authors propose an appropriate metamodel for
describing the entire DSML family of languages, which
also provides support for the properties of variability in
design decisions in the process of developing the target
software system, and also offers an appropriate CASE
tool for automating the proposed approach.

Study [10] focuses on how the use of DSML can
increase the level of variability of SPLs at the stage of
generating the source code of their individual components.
The authors propose to apply the Model Driven
Engineering (MDE) software development methodology
consistently. To do this, the paper introduces
a methodology for building a DSML using the concept
of a metamodel, which is then transformed into
an equivalent set of feature diagrams, which then allows
the use of a well-known and effective method of
analyzing and modeling various domain models FODA
(Feature-oriented Domain Analysis) (for example, in [11]).
This approach is illustrated by the development of
software for a learning management system, where it is
the support of a sufficient level of variability that allows
you to customize flexibly its functionality to the needs of
different groups of students and teachers. The study [12]
also shows positive results of creating and applying SPL
construction methods and MDE principles to develop
a multi-level information system for the purpose of
communication among university students.

And finally, a new publication [13] (published
in 2022), which addresses an important methodological
problem of ensuring the possibility of transforming

a domain model built using a particular DSML into a set
of corresponding property models, i.e., FODA models,
in the process of developing any SPL, attracts special
attention. The authors propose to use a set of specific
tags to annotate the text of the description of the origin
model in DSML and a system of rules for its
transformation to obtain the corresponding property
models that can be represented in the form of
XML specifications.

It should be noted that, despite a considerable
number of publications on the development and
application of DSML, the following issues remain
insufficiently developed: analysis and structuring of the
set of requirements for creating DSML, use of formalized
notations to describe DSML syntax, selection and
methodology of applying certain quantitative metrics to
assess the effectiveness of using a particular DSML in
a particular subject area.

The purpose of this research is to study some of
the existing approaches to creating promising DSMLs;
to build one of the possible generalized classifications
of requirements for them; to apply the identified
requirements to design the syntax of a specific DSML to
support the processes of creating variable software in
Smart Home systems; to develop a technological scheme
and quantitative metrics for experimentally evaluating
the effectiveness of the proposed approach.

Materials and methods

To achieve the research objective, it was first
necessary to formulate the basic requirements for creating
an effective DSML in any problem domain. Based on the
analysis of the well-known work [14], as well as our
own positive experience [15, 16], such requirements
are presented in a structured form in Figure 1.

The Formal requirements define the basic rules for
choosing the notation and forms of describing the syntax
and grammar of the target DSML, namely (see Figure 1):

requirement F1 — it is necessary that the notation
for a modeling language have the means for accurate and
complete specification of its syntax and corresponding
formal grammar (e.g., Backus-Naur notation, etc.);

requirement F2 — the concepts used to define
DSML should be consistent with the general concepts
used in modern software development, such as
object-oriented approach, domain-driven design,
model-driven architectures, etc.;

requirement F3 — the modeling language should
allow building models at different levels of abstraction,

Cyuachuii cman HayKogux 00CaiONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Nel (23)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

i.e., support hierarchical sets of such models with the
possibility of their step-by-step detailing, i.e., support
mechanisms for building metamodels and meta-
metamodels;

requirement F4 — the modeling language should
contain concepts of the system's domain of application to
maintain the integrity of models created with the help of
DSML and ensure their reusability.

Requirements for domain-specific
_ modeling languages

k.

h 4

Formal requirements

User- oriented
requirements

Application-oriented
requirements

Fig. 1. Classification of requirements for domain-specific modeling languages DSML

The next group of requirements in Figure 1 are
User-oriented requirements: these are domain
experts, system analysts, and software developers.
These requirements include:

requirement Ul - the syntax and grammatical
constructions of the target DSML should correspond
to the semantic concepts and business processes that
its future users already work with to the maximum
extent possible;

requirement U2 — the modeling language should
provide a manageable set of basic functionalities
sufficient to create domain models with regard to the
variability of their properties, for example, in the form
of models in the FODA notation;

requirement U3 — grammatical rules for defining
the semantics of the target DSML must meet the functional
requirements of its future end users (see above).

Finally, the last group of requirements is focused on
supporting the ability to configure and adapt the target
DSML to the specifics of the relevant subject area
(Application-oriented requirements), and they can be
formulated as follows (see figure 1):

requirement Al — the modeling language should
provide opportunities for describing additional objects
and bindings that are specific to certain user groups, i.e.,
support certain mechanisms for extending language
structures and rules for their construction;

requirement A2 - based on the correct
specification of the problem task performed in DSML,

it should be possible to generate source code in one of the
common programming languages: Java, C#, C++, etc.;

requirement A3 — to support the effective work of
end users for the practical application of DSML, it is
necessary to have appropriate CASE tools with a friendly
user interface;

requirement A4 - for further programmatic
implementation of components in the target software
based on the obtained domain model (see above), it is
necessary to be able to use DSML compatibly with the
functionality of the corresponding DSL compiler;

requirement A5 — appropriate quantitative and/or
qualitative metrics should be developed and applied to
evaluate the effectiveness of the DSML in a particular
domain.

In creating the syntax (grammar) of the proposed
DSML, the main requirements of the above were met:
F1-F4, U1-U3, A1-A5.

The next important concept in the context of this
study is the concept of software variability [6]. In the
design of SPL, an appropriate variability model of its
properties is developed [7], which can reflect the ability
to change them flexibly at different phases of the life
cycle: domain analysis, architectural design, coding, and
maintenance; for different project assets: variability of
software requirements, variability of design options,
variability of software components, and variability of test
artifacts. Figure 2 shows a generic UML entity diagram,
which is a metamodel of project asset variability in some
SPL development process [17].

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

History

Metric

+modification: string
+when: Date

&

+name: string
+description: string

Fig. 2. Metamodel of project asset variability in SPL development

Figure 2 shows the main Asset entity, which
summarizes all possible artifacts in the development
of the LSP, and it is linked to the History entity,
which is responsible for tracking changes made to
some Asset objects, and the Issue entity, which contains
information about what specific changes were made,
in which object, and by whom. The "Asset" entity
is linked to the "Metric" entity, which contains
metrics for describing and defining the parameters
of individual assets, as well as to the "Version"
entity, which stores the current versions for each
modification of the "Asset" objects. The information
contained in the above-mentioned basic entities
of the variability metamodel can be expanded by
defining records in additional entities, such as Comment
and Attachment.

For a better understanding of the principles of
variability, let us consider more specifically the task of
modeling variability in the development of a hardware
and software system such as Smart Home Systems
(SHS). Paper [16] states that the variability of Smart
Home Systems can manifest itself in the following
features (in general):

1) variability of the user interface; a typical set of
options may, for example, include a graphical interface
via a control panel, via a web interface on a personal
computer or via an interface on a smartphone, and

Asset >
1 2§ % Version
+name: string N =
+description: string name: STine
ES
J> =
Comment * 1
E—— Issue
+text: string
+summary: string
+description: string
+priority: string
" 1 +comments: List<Comment>
Attachment +attachments: List<Attachment>
<>| +issuedAssets: List<Asset>
+content: file +milestone: string

in some cases, voice control (Amazon Alexa,
Apple HomePod, etc.)
2) variability of hardware and software

components; this feature implies the presence of different
groups of connected smart devices: lighting, water and
heat supply, control of electronic devices (e.g., TV or
audio speakers), various motion sensors, sensors responsible
for opening/closing objects (doors/windows), etc.;

3) variability of the level of controllability and
reliability of operation; the home automation system can
support different levels of these indicators, for example,
the basic level can provide self-diagnostics and error
reports. Higher levels can contain redundant system
components for the most important functions (light,
water, gas, opening and closing doors), perform tasks for
backing up and updating components through cloud
services (Google Cloud, Microsoft Azure, etc.).

Figure 3 shows a FODA model that represents
the variable components of a Smart Home system [15]
and can be used to comply with the above-mentioned
variability features in the development of a corresponding
DSML (see requirements A1-A5 above).

Based on this FODA model, a syntax and grammar
for the DSML language with variability support
(hereinafter referred to as DSML-V) can be created in
the process of designing a LSP for Smart Home tasks.
Due to the complexity of this task, we decided to apply

Cyuachuii cman HayKogux 00CaiONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Nel (23)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

a bottom-up rather than top-down approach to this
development [16], i.e., first, it is necessary to develop
the most important individual language constructs

Setfome
——
Xacrs SN 1 C-ome‘ 9: Apple 5+
e ppleany 03k
[}]]
Gateazy Nasmy Gy Goege Gateway Apple
17 Sulch Lt Lk

r!m;'éym

at the lower logical levels of modeling, which then
need to be generalized at the upper level of description
of the corresponding formal grammar.

e

] 3‘“.*:.,,
¢ Oplon

i A Mo ey
T Rsfesn

azpkcrice Pl
& 7

)
Gateway Aranone
frlg Teigut i}

U 3) ¥ D ¢ ¥ 4 t L U U 4 I
Tmewt Coubghooss Usowlsh Aomeicsndd Uaes| Adesic Tonakd Ciuswadefeds Twonkfl Cobolbmpectis | Caspimentre |Lckiokd Tmowt Stbmpestee TovomtH | Chargechawe | Cowed beadost

Fig. 3. Variable FODA-model of Smart Home system features

The first task is to determine how the proposed
DSML-V language will be used and extended by its
users, taking into account the list of requirements F1-F4.
For this purpose, special tags were used to identify
language elements that should be extensible and
to introduce restrictions on a certain degree of
extensibility. The list of possible tags was taken from
the syntax of the open source metaDepth toolkit [18].
Figure 4 shows the definition of the textual syntax of
the DSML-V language for the Smart Home system:

01) strict Model SmartHome@1 {
02) strict Node Device {

03) variability@1: double = 0;

04) isTurnedOn: boolean = false;

05) positiveVar: $self.variability > 0$
06) }

07)}

Fig. 4. Code snippet to describe the basic syntax of DSML-V

The SmartHome model does not have an ontological
type (that is, it is not a instance of another model), so it is
declared using the Model keyword (code line 1).
This model defines the Device class using the Node
keyword (line 2), which has certain attributes (lines 3, 4).
It is in Device that the key attribute variability is
introduced, which will help solve the problem of
supporting and ensuring variability.

Cnect wdh Bheod | | Commet w35

The level of model variability is indicated by
the "@" symbol. The "$" symbol should be used to
define certain constraints on model attributes.
For example, the positiveVar constraint requires that
the $variability attribute be more than 0 (code line 5).
Figure 5 (code line numbering continued) shows
an instance of creating the XiaomiShApplication model
and a LightSwitcher instance of this model:

08)SmartHome XiaomiShApplication {
09) Device GatewayXiaomi {

10) variability = 0.4;

1) }

12)}
13)14)XiaomiShApplication LightSwitcher {

14) GatewayXiaomi light {
15) isTurnedOn = true;
16) }

17)}

Fig. 5. Example of extending the basic DSML-V syntax

The XiaomiShApplication model created in
lines 8-12 has the SmartHome ontological type used
instead of the Model keyword. Line 10 sets the initial
variability for this model. If the value of the attribute
is negative, this will lead to a model verification
error, because the corresponding constraint was set
in Figure 4 (line 5). Lines 13-17 create an instance

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

of LightSwitcher of the XiaomiShApplication model,
as well as an instance of light of the GatewayXiaomi
model, and set the value of its isTurnedOn attribute.

Figure 6 shows an instance of creating
a XiaomiShApplication model (lines 01-03) and
a LightSwitcher instance (lines 04-06) using the

developed text syntax:

01)XiaomiShApplication {

02) GatewayXiaomi(0.4)

03)}

04)XiaomiShApplication LightSwitcher {
05) GatewayXiaomi light(true)

06)}

Fig. 6. An instance of creating a XiaomiShApplication model

Now, summarizing the above particular examples of
the proposed syntax of the DSML-V language, we can
describe the corresponding formal grammar for this
language in the Backus-Naur notation [19], which is
shown in Figure 7.

01)<metamodel> ::= <model Ivl 1> <EOL> <model Ivl 0>

02)<model Ivl 1> ::= <identifier> "{" <identifier> "("
<variability>")" "}"

03)<identifier> := <letter> | <identifier> <letter> |
<identifier> <decimal digit>

04)<letter> ::= [A-Za-Z]

05)<decimal digit> ::= [0-9]

06)<variability> ::= <decimal digit> | <decimal digit>"."
<decimal digit>

07)<model Ivl 0> := <identifier> <identifier> "{"
<identifier> <identifier> "("* <boolean>")" "}"

08)<boolean> ::= "true" | "false"

Fig. 7. Syntax of the DSML-V language in the
Backus-Naur notation

As you can see from Figure 7, the metamodel
(line 1) consists of two models: the level 1 model (line 2)
and the level 0 model (line 7), whose syntax pattern is
defined in Figure 4. The models of each level contain
identifiers (line 3) and other auxiliary syntactic
constructs. It is important to note that the variability
(line 6) in this case corresponds to a fractional number.

We propose to extend the templates to customize
the allowed extensions for a specific syntax. To do this,
let's introduce new keywords: flingext — to allow the
declaration of new attributes without an ontological type;
lingext — to allow the addition of new object classes

without an ontological type; constraints — to declare
constraints; super — to define new inheritance
relationships for object classes. In addition, two
additional keywords allow you to define how these
extensions should be created at meta-level 0: flinginst for
field instances and linginst for object class instances.

Figure 8 shows the definition of a specific extensible
text syntax with the addition of suggested keywords:

01)Syntax for SmartHome[".smarthome™] {

02) template@1 TSmartHome for Model SmartHome:
03) "id '{" (&TDevice | lingext)* '}

04) template@1 TDevice for Node Device:05) "id
('(#variability ')")? (‘extends' supers)?

05) (;"1'{ (flingext ;" | constraint)* '})"

06) template@2 DeepDevs for Model SmartHome:

07) "typename id '{' &DeepDev* '}
08) template@2 DeepDev for Node Device:
09) "typename id (" isTurnedOn flinginst*)™

Fig. 8. Code fragment for defining extensible syntax

The use of lingext (line 03) allows you to define
new object classes at meta-level 1. The expression on
line 04 enables inheritance between Device instances,
and the expression on line 07 allows you to define
new fields and constraints in Device instances.
In addition, line 09 allows you to create instances of
these additional fields in indirect Device instances.

Figure 9 shows an example of creating the
GatewayXiaomi model using the inheritance mechanism:

01)GatewayXiaomi {

02) BaseController(0.25) {

03) isTurnedOn: boolean = false;

04) }

05) PressureController extends BaseController;
06) LightController extends BaseController {
07) light: Light;

08) }

09) Node Light {

10)

10) brightness: double;

11) }

12)}

Fig. 9. An example of creating a GatewayXiaomi model

For the possible software implementation of
the proposed DSML-V language, an appropriate
tool environment is required, a fairly complete

Cyuachuii cman HayKogux 00CaiONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Nel (23)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

overview of which can be found, for example, in [18].
We have analyzed the functionality of several tools
for creating DSML.

= Clooca — is a development environment that
allows you to create DSML and their code generators
(JavaScript, Python, PHP, Ruby, etc.), is used according
to the Software as a Service (SaaS) architectural model,

8 0o
| 71 TestProject (clooca editor) L

clooca workbench

K’J) www clopca.com fwhtaolkay

Line Trace System (for NXT Mindstorms)
Preview Temolate

Package Explorer
= © root:Package
-~ Classdiagram: Class
IState:Class
- State:(lass
Start:Class
SendEventState:Cl
& L StateDiagram:Class
-~ Transition:Class

- E Action:Enumeration

~ -~ Event:Enumeration
B ClassGraphic:Graphic
e StateGraphic:Graphic

- StartGraphic: Graphic

0 7 Tranc# i Sranhaes

Error

7f241f058Bbac? 724815887636 7c2bacl#meatan

tool management »

SELECT Class Package Assodation

allows you to create a description of the syntax
of the corresponding DSML in JSON text format using
avisual graphical interface where the user works
with tabular forms and diagrams to describe objects,
relationships and properties in a particular domain.
Figure 10 shows an example of such an interface, which
is quite typical for other similar CASE tools (see below).

clooca workbench e

g eS|

e | L E}- Google

FP—D R F

Q) (&) (@] (@3-

Property

roat:
properties

Al B

BN &
metametamodel. Property
name

abstract: false

superClass: MR L

Fig. 10. An example of a developer interface in the Clooca CASE tool

= Generic Modeling Environment (GME) is
a software tool in the form of a web-based application
for creating DSMLs for various purposes, which can be
further extended by adding new properties that are
specific to the selected domain. GME has a well-
developed visual user editor in which you can create
appropriate metamodels, which can be further exported
in XML format or stored in external distributed
noSQL databases [20] for reuse.

= Eclipse Modeling Framework (EMF) -
is anopen-source, extensible, Java-based domain
modeling platform that offers advanced functionality
in the form of its own IDE. EMF allows you to create
or import a suitable domain data model, as well as
tables and XMI schema for such a model. The Java
source code generated from this model can be edited
by the user to develop the target application.

Along with the above tools for creating DSML,
we have considered the MetaDepth toolkit [21],
which uses ontological specifications to describe syntax
and grammatical rules, has functionality that is largely

similar to the already analyzed Clooca, GME, and EMF
environments, but, unlike them, allows building
systems with an arbitrary number of meta-levels of
modeling a particular domain that meets the requirements
of F1-F4 (see the above diagram at Figure 1).

That is why this tool was chosen to develop
atechnological scheme for the implementation
of the proposed DSML-V language, shown in IDEFO
notation at Figure 11.

In this diagram, the first functional block (FB),
designated as AO, compiles a program created by experts
in a particular subject area using the proposed
DSML-V syntax, as well as taking into account
the variable FODA model of the Smart Home system
(see Figure 3). The output of this FB is the corresponding
metamodel in the .mdepth format [21]. The second
FB A1l processes the resulting metamodel for a subject-
oriented metamodeling language using the metaDepth
APl and Multi-Level Language tools. The output
of FB Al is a specific specification of a subject-oriented
metamodeling language.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

Foda (SH) Compilation
model algorithm
: Relations between
Proposed r Absfractions objects and classes
DSML-V syniax DSML-V
Compilation
AD
k,
o metaDepth
metaDepth processing Metamodeling
Domain Compiler metamodel Language
expert executiable
Multi-Level metaDepth
Language API

Fig. 11. Compilation flowchart for DSML-V language

Experimental results and their discussions

To investigate the effectiveness of using the
DSML-V language, it is proposed to compare its syntax
with the built-in syntax of the metaDepth tool [21] to
build a conditional model in the Smart Home domain
based on the variable FODA model of such a system
shown in Figure 3.

As an example, let's consider the task of creating
amodel of variable software for controlling the
equipment of one room, which is part of the Smart Home
system. A variety of sensors can be installed in such
aroom: light, pressure, air, motion, etc. They can be

controlled by a common control mechanism — a specific
gateway. Each such gateway has its own variability
index, as well as special attributes. A light sensor,
for example, should turn on the night light and
turn off the daylight depending on the time of day.
Accordingly, there can be several devices using
such a gateway. To illustrate the user interface for
managing the configurations of hardware and
software resources in such a system, you can use
the functionality of the open CASE tool LabView
with the built-in visual modeling environment

Home 1/0O [22]. The example of a possible interface
is shown in Figure 12.

Fig. 12. An example of a fragment of the user interface of the Smart Home system

Cyuachuii cman HayKogux 00CaiONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Nel (23)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Figure 13 shows the code snippet required to create
the described model using the built-in metaDepth syntax:

01) strict Model SmartHome@2 {

02) strict Node Device {

03) variability@1: double;

04) isTurnedOn: boolean = false;

05) positiveVar: $self.variability > 03

06) extid@1: $self.newFields().exists(f | f.isld())$
07) }

08) }
09) SmartHome XiaomiShApplication {

10) Device GatewayXiaomi {
11) variability = 0.4;
12) }

13) }
14) XiaomiShApplication LightSwitcher {

15) GatewayXiaomi light {
16) isTurnedOn = false;
17) }

18) GatewayXiaomi switch {
19) isTurnedOn = true;

20) }
21) }

Fig. 13. Code fragment for creating a model
in the metaDepth language

Figure 14 shows the code fragment necessary
to create the described model using the proposed
syntax of the DSML-V language, which is presented
in Figure 7 and Figure 8.

01)Syntax for SmartHome[".smarthome"] {

02) template@1 TSmartHome for Model SmartHome:
03) "id '{" (&TDevice | lingext)* '}"

04) template@1 TDevice for Node Device:05) "id
('(" #Variability ")")? (‘extends' supers)?

06) (;"1'{ (flingext ;' | constraint)* '})"
07) template@2 DeepDevs for Model SmartHome:
08) "typename id '{' &DeepDev* '}

09) template@2 DeepDev for Node Device:

10) "typename id (" action flinginst* ")™

11)

12)XiaomiShApplication {

13) GatewayXiaomi(0.4)

14)}

15)XiaomiShApplication LightSwitcher {
16) GatewayXiaomi light(false)

17) GatewayXiaomi switch(true)

18)}

Fig. 14. Code snippet for creating a model in DSML-V

To compare the code snippets in Figure 13 and
Figure 14, you can use such an efficiency indicator as the
number of lines of code (LOC). Then the corresponding
efficiency factor for the proposed DSML-V syntax,

K (1), can be calculated using the following formula:
K, (1)= LOC,,, —LOC g
ef -

LOC,,»
where LOC,,, — number of code in the metaDepth;
L()cDSML

— number of code lines in the DSML-V
language.

x100% , 1)

The indicator K, (1) determines the advantage of

using the appropriate DSLM-V syntax to reduce the
clinesost of describing the model of the Smart Home
system. The calculation of this indicator by formula (1) is
21-18
Ke ="
As you increase the number of model instances
created, the efficiency of using the proposed syntax
also increases, since the number of lines required
to create each subsequent model instance decreases.
For example, in Figure 13, the 8 lines of code are
required to create instances of the GatewayXiaomi
light, switch model (lines 14-21), and to create the
same instances in Figure 14 using the proposed syntax,
the 7 lines are required (lines 12-18).
Then the second possible performance indicator,

x100% =14.28%.

K (2), can be calculated using the following formula:

LOCEiMD - LOCEiDSML
LOCe o

where LOC. ,,, is the number of code lines required to

Kes (2):

x100%, (2)

create model instances (lines 14-21 in Figure 13) using
the built-in metaDepth syntax; LOC; g, is the number

of code lines required to create model instances
(lines 12-18 in Figure 14) using the proposed syntax.
For the described case, this indicator, calculated

by formula (2), is:
Ky (2)= ;7><100%:12.5%.

In order to obtain a weighted average estimate

of the final effectiveness of the proposed DSML-V

syntax K_, , the assessment described by the following

8

avg !
formula can be applied:

Ky (1)+Kq (2)
Kavg = % ! (3)

where K, (1) is the efficiency indicator from formula (1);

K (2) is the efficiency indicator from formula (2).

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

The value of the weighted average estimate of the
final efficiency, calculated using formula (3), is

K 14.28+12.5

avg

Thus, the approximate weighted average
efficiency estimate (13.39%) of the use of the developed
problem-oriented variability = modeling language
DSML-V obtained in this study basing on the
formulas (1)-(3) proves its superiority over such
a common open tool for general DSML language
development as metaDepth [21].

=13.39%.

Conclusions and further work

The proposed work substantiates the relevance
of solving the scientific and technical problem
of building conceptual models for the design of
high-tech applications such as Smart Home systems,
in particular, using domain-specific modeling
languages (DSML), which can significantly reduce
the time and other project resources required to create
these systems. To this end, the authors have identified
and accomplished the following tasks Analyzing
some existing approaches to the development

References

of DSML, proposing a multifaceted classification
of requirements for them, based on which the basic
syntactic structures of the target DSML-V language were
created, which provides support for the variability
properties of Smart Home systems; formally describing
such a syntax in the Backus-Naur notation; developing
a technological scheme for compiling metamodels
in DSML-V into the syntax of the language of the open
CASE-tool metaDepth. A study of the effectiveness
of this approach using selected quantitative metrics
was conducted, which proved that the proposed
method of developing a specialized problem-oriented
language for Smart Home systems allows for multilevel
modeling of the variability properties of its software
components and provides an increase in the efficiency
of programming such models by about 14% compared
to some existing approaches.

To continue this research, it is planned to extend
the proposed DSML-V syntax with the addition of more
complex, comprehensive, and subject-oriented constructs,
as well as to implement fully programmatically
a prototype compiler for this language for modeling
Smart Home systems.

1. Joanna, F., DeFranco, a, Mohamad, Kassab. (2021), "Smart Home Research Themes: An Analysis and Taxonomy",
Procedia Computer Science, Vol. 185. P. 91-100. DOI: https://doi.org/10.1016/j.procs.2021.05.010
2. Davydov, V., & Hrebeniuk, D. (2020), "Development of the methods for resource reallocation in cloud computing

systems”, Innovative Technologies and
https://doi.org/10.30837/ITSSI1.2020.13.025
3. Gamzayev R.O., Tkachuk M.V,

Scientific Solutions for

Shevkoplias D.O. (2020),

Industries, 3 (13), P. 25-33. DOI:

"Knowledge-oriented Information Technology to

Variability Management on Domain Analysis Stage in Software Development”, Advanced Information Systems, Vol. 4, No. 4,

P. 39-47. DOI: https://doi.org/10.20998/2522-9052.2020.4.06

4. D. Karagiannis, H.C. Mayr, J. Mylopoulos. (2016), "Domain-Specific Conceptual Modeling: Concepts, Methods and

Tools", Springer, Berlin, 606 p.

5. Tomaz Kos, Marjan Mernik and Tomaz Kosar. (2022), "Evolution of Domain-Specific Modeling Language: An Example
of an Industrial Case Study on an RT-Sequencer”, Appl. Sci., 12 (23), 12286. https://doi.org/10.3390/app122312286

6. Berger, Th., Chechik, M., Kehrer, T. (2019), "Software Evolution in Time and Space: Unifying Version and
Variability Management", Dagstuhl Seminar Reports, Vol. 9, Issue 5, P. 1-31.

7. Jaffari, A., Lee, J.,, Kim, E. (2021), "Variability Modeling in Software Product Line: A Systematic Literature Review",
Studies in Computational Intelligence, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-64773-5_1

8. Huber, R., Pueschel, L., Roeglinger, M. (2019), "Capturing smart service systems: Development of a domain-specific
modelling language”, Inf. Systems Journal, Volume 29, Issue 6, P. 1207-1255.

9. Leila Samimi-Dehkordi, Bahman Zamani, Shekoufeh Kolahdouz-Rahimi. (2019), "Leveraging product line engineering
for the development of domain-specific metamodeling languages”, Journal of Computer Language,s VVolume 51, P. 193-213.

DOI: https://doi.org/10.1016/j.cola.2019.02.006

10. Maouaheb Belarbi (2018), "A methodological framework to enable the generation of code from DSML in SPL", Proceedings
of the 22nd International Systems and Software Product Line Conference (SPLC 2018) - Vol. 2, P. 64-71.

DOI: https://doi.org/10.1145/3236405.3236426

ISSN 2522-9818 (print)
Cyuachuii cman HayKogux 00CaiONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Nel (23) ISSN 2524-2296 (online)

11. Eko K. Budiardjo, Elviawaty M. Zamzami. (2014), "Feature Modeling and Variability Modeling Syntactic
Notation Comparison and Mapping"”, Journal of Computer and Communications, Vol. 2, No. 2, P. 102-108.
DOI: 10.4236/jcc.2014.22018

12. Vale, A., Fernandes, S., Magalhdes, A. P. (2019), "Towards a customizable Student Information System
integrating MDD and SPL (S)", Proceedings of the 31st International Conference on Software Engineering
and Knowledge Engineering (SEKE 2019), Lisbon, Portugal, July 10-12 2019, P. 98-106. DOI:
https://doi.org/10.18293/SEKE2019-089

13. Cunha, A., Fernandes, S. and Magalhdes, A. (2019), "Integrating SPL and MDD to Improve the Development
of Student Information Systems”, Proceedings of the 21st International Conference on Enterprise Information
Systems (ICEIS 2019), P. 197-204. DOI: https://doi.org/10.5220/0007711201970204

14. Maouaheb Belarbi and Vincent Englebert (2022), "Transforming Domain Specific Modeling Languages into Feature
Models", Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2022), P. 137-146. DOI: https://doi.org/10.5220/0010772000003119

15. Frank, U., (2010), "Outline of a method for designing domain-specific modelling languages", Research Reports, Institut
fiir Informatik und Wirtschaftsinformatik (ICB), Universitit Duisburg-Essen, Germany, P. 1-76.

16. Rustam Gamzayev, Mykola Tkachuk and Oleksandr Nelipa. (2021), "Domain-Specific Language for Adaptive
Development of "Smart-Home" Applications”, Proceedings of the 1st International Workshop on Information
Technologies: Theoretical and Applied Problems 2021 (ITTAP-2021) Ternopil, Ukraine, November 16-18, 2021,
CEUR-WS.org/Vol-3039, P. 154-165.

17. Rustam Gamzayev, (2023), "A Methodology for Development and Usage of Problem-oriented Modeling Languages
in "Internet Of Things" Systems", Proceedings of the V International Scientific and Practical Conference Stockholm,
Sweden (February 07-10, 2023), P. 603-608. DOI: https://doi.org/10.46299/1SG.2023.1.5

18. Cavalcanti Y.C., Machado I.C., Lobato L.L. et al. (2011), "Towards Metamodel Support for Variability and
Traceability in Software Product Lines", Proceedings of the 5th International Workshop on Variability Modelling
of Software-Intensive Systems, Namur, Belgium (January 27-29, 2011), P. 1-10. DOI: https://doi.org/10.1145/
1944892.1944898.

19. Bashroush R., Garba M., Rabiser E. et al. (2017), "CASE Tool Support for Variability Management in Software Product Lines",
ACM Computing Surveys, 50 (1), P. 1-45. DOI: https://doi.org/10.1145/3034827

20. Quinlan, D, Wells, JB & Kamareddine, F., (2019), "BNF-Style Notation as It Is Actually Used", Proceedings
of the 12th Conference on Intelligent Computer Mathematics 2019, Prague, Czech Republic, P. 187-204. DOI:
https://doi.org/10.1007/978-3-030-23250-413

21. Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation
methods for distributed databases wusing replication technology”, Innovative Technologies and Scientific
Solutions for Sndustries, Ne 2 (16), P. 19—-31. DOI: https://doi.org/10.30837/ITSSI1.2021.16.019

22. Juan de Lara, Esther Guerra, Jesus Sanchez Cuadrado. (2015), "Model-driven engineering with domain-specific meta-modelling
languages", Software and Systems Modeling (Springer), Vol 14(1). P. 429-459.

23. A. Philippot, B. Riera, M. Koza, et al. (2017). "HOME 1/0 and FACTORY 1/0O: 2 Pieces of innovative PO simulation
software for automation education”, European Association for Education in Electrical and Information Engineering
Annual Conference (EAEEIE), Grenoble, France, P. 1-6. DOI: https://doi.org/10.1109/EAEEIE.2017.8768639

Received 22.02.2023

Bidomocmi npo asmopis / About the Authors

I'am3aes Pycram OJjekcaHapoBM4 — KaHIWIAT TEXHIYHUX HAyK, JOIEHT, XapKiBCbKUH HaliOHAIBHUH
yHiBepcurer imeni B.H. Kapasina, noueHT kadeapu MOJENIOBaHHA cuUcTeM 1 TexHojorid, Xapkis, VYkpaina; e-mail:
rustam.gamzayev@karazin.ua; ORCID: https://orcid.org/0000-0002-2713-5664

Trauyk Muxojga B’suecaBoBHY — JOKTOp TEXHIYHHMX Hayk, mnpodecop, XapKiBCHKUH HaI[lOHATGHUN YHIBEPCHTET
imeni B.H. Kapaszima, 3aBimyBau kadempu = MOJACTIOBaHHS CHCTeM 1 TexHoJjorid, XapkiB, YKpaiHa;
e-mail: mykola.tkachuk@karazin.ua; ORCID: https://orcid.org/0000-0003-0852-1081

https://doi.org/10.1109/EAEEIE.2017.8768639
https://orcid.org/0000-0002-2713-5664
https://orcid.org/0000-0003-0852-1081

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

Gamzayev Rustam — PhD, associate professor, Kharkiv National University named after V. N. Karazina, associate
professor of the Department of Systems and Technologies Modeling Kharkiv, Ukraine.

Tkachuk Mykola — doctor of technical sciences, professor, Kharkiv National University named after V. N. Karazina,
head of the Department of Systems and Technologies Modeling, Kharkiv, Ukraine.

PO3POBKA MMPOBJIEMHO-OPIEHTOBAHOI MOBU MOJIEJIFOBAHHS
AJIA HIATPUMKHA BAPIABEJIBHOCTI IPOI'PAMHOI'O 3ABE3ITEYEHHA
B CUCTEMAX "PO3YMHHUI BYIUHOK"

[loOynoBa KOHIENTyadbHUX MOJENEH M TPOEKTyBaHHA mporpamHoro 3abesmedyeHHs (I13), 3okpema ans Takux
BHUCOKOTEXHOJIOTIYHHX 3aCTOCYHKIB, K cucTeMH 'Po3ymHuil OynuHOK", € CKIagHUM 3aBIaHHSAM, BiJ pe3yJbTaTiB BUKOHAHHA
SIKOTO CYTT€BO 3aJICKHUTh €(QEKTHBHICTh IPOIECIB iXHBOro po3pobieHHs. OOHMM 3 IHHOBAIIMHUX METOMAIB BHpIIICHHA Li€l
npoOiIeMH € BHKOPUCTaHHS NPEJAMETHO OpPIEHTOBaHMX MOB MozemtoBanHA (DSML), mo maioTh 3MOTY CKOPOTHTH BUTpaTH
yacy Ta IHIOUX TIPOEKTHHX pECypCiB, MOTPIOHMX [UIS CTBOpPEHHS TakuX cucrteM. I[IpeamMeTrom IOCTiKEHHS B pPOOOTL
€ migxomu 3 Meror pospobienns DSML st cucrem "Posymumii GyamHOk" sik okpemoro kimacy cucteMm Internet of Things.
Meta po0oTM — 3ampoNOHYBaTH MmiaXig Ao po3pobmenHs DSML Ha ocHOBI Monenmi BapiaOeNbHOCTI BIACTHBOCTEH TakKoi
CHUCTeMH. BupimyroTecs Taki 3aBJaHHSI: aHANi3 JEIKUX YK€ HasgBHUX MiAXomiB g0 crtBopeHHs DSML; mnobynosa
GararoacneKkTHOI Kiacu}ikaIiif BUMOT 0 HUX, 3aCTOCYBAaHHS IUX BHMOT IOJO IIPOEKTYBaHHS CHHTAKCHCy KoHKpeTHOoro DSML-V
Uil cTBOpeHHsT BapiabempHOro II3 y cmcremax "Posymumii OynuHOK"; pO3pOOJNEHHS TEXHOJOTIYHOI CXeMH W KUIBKICHHX
METPUK ISl eKCIePUMEHTAIFHOTO OLIHIOBAaHHA e(QEeKTHUBHOCTI 3allPOIIOHOBAHOIO IIJIXOAy. BHKOpPHCTOBYIOTECS — Taki
METOAM: MOJEIIIOBaHHS BapiabeNbHOCTI, OCHOBaHE Ha MOJENI BIIACTHBOCTEH, (opManbHI HOTAIil Ui ONUCY CHHTaKCHCY
moBu DSML-V, 3acrocyBanHs Bigkputoro iHctpymenrtaibHoro CASE-zacob6y metaDepth. 3p06yti pesyabratu:
noOynoBaHo OaraToacnekTHy Kiacudikalilo BHMOT J0 IIUPOKO kiacy MoB DSML; po3poGiieHO OCHOBHI CHHTAaKCHUHI
KkoHCTpykuii moBu DSML-V s miatpumku BrnactuBoctedd BapiabenpHocTi [I3 cuctem “Posdymuumit OyamHOk"; HamaHo
¢dopmanbHUil omUC Takoro cuHTakcucy B HoTauii bekyca — Haypa; cTBOpeHO TEXHOJOTiUHYy cxeMy KOMMUIALil crenudikaiii
moBoro DSML-V 'y cuHTakcuc MoOBH Bigkpuroro iHctpymentansHoro CASE-3zaco0y metaDepth; excrnepumeHtanbHO
OCTIDKEHO e(eKTUBHICTP 3aCTOCYBaHHS 3alPOIMIOHOBAHOTO MiAXOAy 3 BUKOPUCTAHHAM KUIBKICHUX METpHK.
BuCHOBKH: 3ampoNOHOBAaHMH METOA pO3pOOJICHHS CHEliami30BaHOI MPOOJIEMHO OpI€EHTOBAaHOI MOBH OIS CHCTEM
"Posymumii OyamHOK" mae 3MOTy HpOBOAMTH OaraTopiBHEBE MOJETIOBAaHHS BJIACTHBOCTEH BapiabempHOCTI i
MPOrpaMHHUX KOMITOHEHTIB 1 3abe3nedye 3pocTaHHS e()eKTHBHOCTI MPOTpaMyBaHHS TaKUX Mojenel mpuoam3Ho Ha 14% mOpiBHSHO
3 HASIBHUMH IiJXO/IaMH.

KawuoBi cmoBa: npoOieMHO-Opi€HTOBaHA MOBa; MporpaMHe 3a0e3NEeUeHHs; MOJENIOBAaHHS, BapiaOeNbHICTh;

"Po3ymumii Oy 1nHOK".

bionioepaghiuni onucu / Bibliographic descriptions

lamzaeB O. P., Tkauyk M. B. Po3poOka mpoOieMHO-Opi€eHTOBaHOI MOBH MOJEITIOBAaHHSA IJIsl MIATPUMKH BapiaOeIbHOCTI
mporpaMHoro 3a0esmedeHHs B cucteMax '"Posymumit OymmHOK". Cyuacuuil cmau HAYKoSUX OOCHIONCEeHb MA MeXHON02il
6 npomucnosocmi. 2023. Ne 1 (23). C. 45-56. DOI: https://doi.org/10.30837/ITSSI.2023.23.045

Gamzayev, O., Tkachyk, V. (2023), "Development of problem-specific modeling language to support software variability
in "Smart Home" systems”, Innovative Technologies and Scientific Solutions for Industries, No.1(23), P.45-56.
DOI: https://doi.org/10.30837/ITSSI.2023.23.045

https://doi.org/10.30837/ITSSI.2023.23.045
https://doi.org/10.30837/ITSSI.2023.23.045

