
45

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 1 (23) ISSN 2524-2296 (online)

© R. Gamzayev, M. Tkachuk, 2023

UDC 004.43; 004.051; 811.93 DOI: https://doi.org/10.30837/ITSSI.2023.23.045

R. GAMZAYEV, M. TKACHUK

DEVELOPMENT OF PROBLEM-SPECIFIC MODELING LANGUAGE

TO SUPPORT SOFTWARE VARIABILITY IN "SMART HOME" SYSTEMS

Building conceptual models for software design, in particular for high-tech applications such as smart home systems, is a complex

task that significantly affects the efficiency of their development processes. One of the innovative methods of solving this problem

is the use of domain-specific modeling languages (DSMLs), which can reduce the time and other project resources required

to create such systems. The subject of research in this paper is approaches to the development of DSML for Smart Home systems

as a separate class of Internet of Things systems. The purpose of this work is to propose an approach to the development of

DSMLs based on a model of variability of the properties of such a system. The following tasks are being solved: analysis of some

existing approaches to the creation of DSMLs; construction of a multifaceted classification of requirements for them, application

of these requirements to the design of the syntax of a specific DSML-V for the creation of variable software in smart home systems;

development of a technological scheme and quantitative metrics for experimental evaluation of the effectiveness of the proposed

approach. The following methods are used: variability modeling based on the property model, formal notations for describing

the syntax of the DSML-V language, and the use of the open CASE tool metaDepth. Results: a multifaceted classification of

requirements for a broad class of DSML languages is built; the basic syntactic constructions of the DSML-V language are developed

to support the properties of software variability of "Smart Home" systems; a formal description of such syntax in the Backus-Naur

notation is given; a technological scheme for compiling DSML-V specifications into the syntax of the language of the open

CASE tool metaDepth is created; the effectiveness of the proposed approach using quantitative metrics is experimentally investigated.

Conclusions: the proposed method of developing a specialized problem-oriented language for smart home systems allows

for multilevel modeling of the variability properties of its software components and provides an increase in the efficiency of

programming such models by about 14% compared to existing approaches.

Keywords: domain-specific language; software; modeling; variability; Smart-home.

Introduction

Research actuality and motivation

In high-tech areas of IT development, such as

Smart-home systems, mobile applications [1], and

distributed information systems based on cloud

platforms [2], innovative approaches to software

development are required. This, in turn, involves the use

of the latest design methods and technologies: domain-

driven development, model-driven architecture, and

the use of knowledge-based software tools and

technologies [3]. The main practical goal of applying

such approaches to software development is to reduce

the time and other project resources required to meet

the requirements of different groups of future users.

To achieve this goal, methods and technologies for building

domain-specific programming languages (DSLs) [4] and

domain-specific modeling languages (DSMLs) [5] for

a particular domain of software development have been

successfully used recently, which makes it possible to

ensure more efficient software development and

maintenance processes. Another significant advantage

of using DSL and DSML is the ability to support the

variability and adaptability of relevant software solutions

consistently and effectively, which in modern software

engineering has acquired a common definition –

"variability" of software [6]. It is the provision of

software variability properties that is a critical factor

in automating the process of creating software product

lines (SPL), which are complex software applications

that have a common and manageable set of functions to

meet the requirements of users of a particular segment of

the IT market and are built from a common set of project

assets (components) in a predetermined manner [7].

Thus, the above confirms the scientific relevance and

practical focus of this study.

Brief review of some related publications

A considerable number of recent publications are

devoted to the problems of developing approaches to the

creation and application of DSL and DSML. In the course

of the study, a brief review of works is made and special

attention is paid to the issues of ensuring software

variability in SPL.

Thus, work [8] analyzes and summarizes the

features of such modern software applications as Internet

https://doi.org/10.30837/ITSSI.2023.23.045

46

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

of Things systems, Smart Home systems, Embedded

Control Software and some others at a fairly high

methodological level. The authors of this paper propose

to designate them as smart service systems (SSS). It is

also shown that it is to automate the development and

subsequent software implementation of SSS systems that

it is advisable to use appropriate subject-oriented

modeling languages (DSML), which also ensures the

achievement of a certain level of software variability in

such systems. The authors propose an approach to

creating a syntax, grammatical rules and a compilation

mechanism for such a language. The effectiveness of this

approach has been tested on the example of an intelligent

system for controlling thermostats in a Smart Home.

Paper [9] considers an original approach to creating

sets of semantically related DSML languages for

a particular domain, which are considered as a special

type of software product lines (SPL) and for the

development of which well-known domain engineering

methods and technologies can be applied. In particular,

the authors propose an appropriate metamodel for

describing the entire DSML family of languages, which

also provides support for the properties of variability in

design decisions in the process of developing the target

software system, and also offers an appropriate CASE

tool for automating the proposed approach.

Study [10] focuses on how the use of DSML can

increase the level of variability of SPLs at the stage of

generating the source code of their individual components.

The authors propose to apply the Model Driven

Engineering (MDE) software development methodology

consistently. To do this, the paper introduces

a methodology for building a DSML using the concept

of a metamodel, which is then transformed into

an equivalent set of feature diagrams, which then allows

the use of a well-known and effective method of

analyzing and modeling various domain models FODA

(Feature-oriented Domain Analysis) (for example, in [11]).

This approach is illustrated by the development of

software for a learning management system, where it is

the support of a sufficient level of variability that allows

you to customize flexibly its functionality to the needs of

different groups of students and teachers. The study [12]

also shows positive results of creating and applying SPL

construction methods and MDE principles to develop

a multi-level information system for the purpose of

communication among university students.

And finally, a new publication [13] (published

in 2022), which addresses an important methodological

problem of ensuring the possibility of transforming

a domain model built using a particular DSML into a set

of corresponding property models, i.e., FODA models,

in the process of developing any SPL, attracts special

attention. The authors propose to use a set of specific

tags to annotate the text of the description of the origin

model in DSML and a system of rules for its

transformation to obtain the corresponding property

models that can be represented in the form of

XML specifications.

It should be noted that, despite a considerable

number of publications on the development and

application of DSML, the following issues remain

insufficiently developed: analysis and structuring of the

set of requirements for creating DSML, use of formalized

notations to describe DSML syntax, selection and

methodology of applying certain quantitative metrics to

assess the effectiveness of using a particular DSML in

a particular subject area.

The purpose of this research is to study some of

the existing approaches to creating promising DSMLs;

to build one of the possible generalized classifications

of requirements for them; to apply the identified

requirements to design the syntax of a specific DSML to

support the processes of creating variable software in

Smart Home systems; to develop a technological scheme

and quantitative metrics for experimentally evaluating

the effectiveness of the proposed approach.

Materials and methods

To achieve the research objective, it was first

necessary to formulate the basic requirements for creating

an effective DSML in any problem domain. Based on the

analysis of the well-known work [14], as well as our

own positive experience [15, 16], such requirements

are presented in a structured form in Figure 1.

The Formal requirements define the basic rules for

choosing the notation and forms of describing the syntax

and grammar of the target DSML, namely (see Figure 1):

requirement F1 – it is necessary that the notation

for a modeling language have the means for accurate and

complete specification of its syntax and corresponding

formal grammar (e.g., Backus-Naur notation, etc.);

requirement F2 – the concepts used to define

DSML should be consistent with the general concepts

used in modern software development, such as

object-oriented approach, domain-driven design,

model-driven architectures, etc.;

requirement F3 – the modeling language should

allow building models at different levels of abstraction,

47

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. №1 (23) ISSN 2524-2296 (online)

i.e., support hierarchical sets of such models with the

possibility of their step-by-step detailing, i.e., support

mechanisms for building metamodels and meta-

metamodels;

requirement F4 – the modeling language should

contain concepts of the system's domain of application to

maintain the integrity of models created with the help of

DSML and ensure their reusability.

Fig. 1. Classification of requirements for domain-specific modeling languages DSML

The next group of requirements in Figure 1 are

User-oriented requirements: these are domain

experts, system analysts, and software developers.

These requirements include:

requirement U1 – the syntax and grammatical

constructions of the target DSML should correspond

to the semantic concepts and business processes that

its future users already work with to the maximum

extent possible;

requirement U2 – the modeling language should

provide a manageable set of basic functionalities

sufficient to create domain models with regard to the

variability of their properties, for example, in the form

of models in the FODA notation;

requirement U3 – grammatical rules for defining

the semantics of the target DSML must meet the functional

requirements of its future end users (see above).

Finally, the last group of requirements is focused on

supporting the ability to configure and adapt the target

DSML to the specifics of the relevant subject area

(Application-oriented requirements), and they can be

formulated as follows (see figure 1):

requirement A1 – the modeling language should

provide opportunities for describing additional objects

and bindings that are specific to certain user groups, i.e.,

support certain mechanisms for extending language

structures and rules for their construction;

requirement A2 – based on the correct

specification of the problem task performed in DSML,

it should be possible to generate source code in one of the

common programming languages: Java, C#, C++, etc.;

requirement A3 – to support the effective work of

end users for the practical application of DSML, it is

necessary to have appropriate CASE tools with a friendly

user interface;

requirement A4 – for further programmatic

implementation of components in the target software

based on the obtained domain model (see above), it is

necessary to be able to use DSML compatibly with the

functionality of the corresponding DSL compiler;

requirement A5 – appropriate quantitative and/or

qualitative metrics should be developed and applied to

evaluate the effectiveness of the DSML in a particular

domain.

In creating the syntax (grammar) of the proposed

DSML, the main requirements of the above were met:

F1–F4, U1–U3, A1–A5.

The next important concept in the context of this

study is the concept of software variability [6]. In the

design of SPL, an appropriate variability model of its

properties is developed [7], which can reflect the ability

to change them flexibly at different phases of the life

cycle: domain analysis, architectural design, coding, and

maintenance; for different project assets: variability of

software requirements, variability of design options,

variability of software components, and variability of test

artifacts. Figure 2 shows a generic UML entity diagram,

which is a metamodel of project asset variability in some

SPL development process [17].

48

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

Fig. 2. Metamodel of project asset variability in SPL development

Figure 2 shows the main Asset entity, which

summarizes all possible artifacts in the development

of the LSP, and it is linked to the History entity,

which is responsible for tracking changes made to

some Asset objects, and the Issue entity, which contains

information about what specific changes were made,

in which object, and by whom. The "Asset" entity

is linked to the "Metric" entity, which contains

metrics for describing and defining the parameters

of individual assets, as well as to the "Version"

entity, which stores the current versions for each

modification of the "Asset" objects. The information

contained in the above-mentioned basic entities

of the variability metamodel can be expanded by

defining records in additional entities, such as Comment

and Attachment.

For a better understanding of the principles of

variability, let us consider more specifically the task of

modeling variability in the development of a hardware

and software system such as Smart Home Systems

(SHS). Paper [16] states that the variability of Smart

Home Systems can manifest itself in the following

features (in general):

1) variability of the user interface; a typical set of

options may, for example, include a graphical interface

via a control panel, via a web interface on a personal

computer or via an interface on a smartphone, and

in some cases, voice control (Amazon Alexa,

Apple HomePod, etc.)

2) variability of hardware and software

components; this feature implies the presence of different

groups of connected smart devices: lighting, water and

heat supply, control of electronic devices (e.g., TV or

audio speakers), various motion sensors, sensors responsible

for opening/closing objects (doors/windows), etc.;

3) variability of the level of controllability and

reliability of operation; the home automation system can

support different levels of these indicators, for example,

the basic level can provide self-diagnostics and error

reports. Higher levels can contain redundant system

components for the most important functions (light,

water, gas, opening and closing doors), perform tasks for

backing up and updating components through cloud

services (Google Cloud, Microsoft Azure, etc.).

Figure 3 shows a FODA model that represents

the variable components of a Smart Home system [15]

and can be used to comply with the above-mentioned

variability features in the development of a corresponding

DSML (see requirements A1–A5 above).

Based on this FODA model, a syntax and grammar

for the DSML language with variability support

(hereinafter referred to as DSML-V) can be created in

the process of designing a LSP for Smart Home tasks.

Due to the complexity of this task, we decided to apply

49

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. №1 (23) ISSN 2524-2296 (online)

a bottom-up rather than top-down approach to this

development [16], i.e., first, it is necessary to develop

the most important individual language constructs

at the lower logical levels of modeling, which then

need to be generalized at the upper level of description

of the corresponding formal grammar.

Fig. 3. Variable FODA-model of Smart Home system features

The first task is to determine how the proposed

DSML-V language will be used and extended by its

users, taking into account the list of requirements F1–F4.

For this purpose, special tags were used to identify

language elements that should be extensible and

to introduce restrictions on a certain degree of

extensibility. The list of possible tags was taken from

the syntax of the open source metaDepth toolkit [18].

Figure 4 shows the definition of the textual syntax of

the DSML-V language for the Smart Home system:

01) strict Model SmartHome@1 {

02) strict Node Device {

03) variability@1: double = 0;

04) isTurnedOn: boolean = false;

05) positiveVar: $self.variability > 0$

06) }

07)}

Fig. 4. Code snippet to describe the basic syntax of DSML-V

The SmartHome model does not have an ontological

type (that is, it is not a instance of another model), so it is

declared using the Model keyword (code line 1).

This model defines the Device class using the Node

keyword (line 2), which has certain attributes (lines 3, 4).

It is in Device that the key attribute variability is

introduced, which will help solve the problem of

supporting and ensuring variability.

The level of model variability is indicated by

the "@" symbol. The "$" symbol should be used to

define certain constraints on model attributes.

For example, the positiveVar constraint requires that

the $variability attribute be more than 0 (code line 5).

Figure 5 (code line numbering continued) shows

an instance of creating the XiaomiShApplication model

and a LightSwitcher instance of this model:

08)SmartHome XiaomiShApplication {

09) Device GatewayXiaomi {

10) variability = 0.4;

11) }

12)}

13)14)XiaomiShApplication LightSwitcher {

14) GatewayXiaomi light {

15) isTurnedOn = true;

16) }

17)}

Fig. 5. Example of extending the basic DSML-V syntax

The XiaomiShApplication model created in

lines 8–12 has the SmartHome ontological type used

instead of the Model keyword. Line 10 sets the initial

variability for this model. If the value of the attribute

is negative, this will lead to a model verification

error, because the corresponding constraint was set

in Figure 4 (line 5). Lines 13–17 create an instance

50

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

of LightSwitcher of the XiaomiShApplication model,

as well as an instance of light of the GatewayXiaomi

model, and set the value of its isTurnedOn attribute.

Figure 6 shows an instance of creating

a XiaomiShApplication model (lines 01–03) and

a LightSwitcher instance (lines 04–06) using the

developed text syntax:

01)XiaomiShApplication {

02) GatewayXiaomi(0.4)

03)}

04)XiaomiShApplication LightSwitcher {

05) GatewayXiaomi light(true)

06)}

Fig. 6. An instance of creating a XiaomiShApplication model

Now, summarizing the above particular examples of

the proposed syntax of the DSML-V language, we can

describe the corresponding formal grammar for this

language in the Backus-Naur notation [19], which is

shown in Figure 7.

01)<metamodel> ::= <model lvl 1> <EOL> <model lvl 0>

02)<model lvl 1> ::= <identifier> "{" <identifier> "("

<variability> ")" "}"

03)<identifier> ::= <letter> | <identifier> <letter> |

<identifier> <decimal digit>

04)<letter> ::= [A-Za-z]

05)<decimal digit> ::= [0-9]

06)<variability> ::= <decimal digit> | <decimal digit> "."

<decimal digit>

07)<model lvl 0> ::= <identifier> <identifier> "{"

<identifier> <identifier> "(" <boolean> ")" "}"

08)<boolean> ::= "true" | "false"

Fig. 7. Syntax of the DSML-V language in the

Backus-Naur notation

As you can see from Figure 7, the metamodel

(line 1) consists of two models: the level 1 model (line 2)

and the level 0 model (line 7), whose syntax pattern is

defined in Figure 4. The models of each level contain

identifiers (line 3) and other auxiliary syntactic

constructs. It is important to note that the variability

(line 6) in this case corresponds to a fractional number.

We propose to extend the templates to customize

the allowed extensions for a specific syntax. To do this,

let's introduce new keywords: flingext – to allow the

declaration of new attributes without an ontological type;

lingext – to allow the addition of new object classes

without an ontological type; constraints – to declare

constraints; super – to define new inheritance

relationships for object classes. In addition, two

additional keywords allow you to define how these

extensions should be created at meta-level 0: flinginst for

field instances and linginst for object class instances.

Figure 8 shows the definition of a specific extensible

text syntax with the addition of suggested keywords:

01)Syntax for SmartHome[".smarthome"] {

02) template@1 TSmartHome for Model SmartHome:

03) "id '{' (&TDevice | lingext)* '}'"

04) template@1 TDevice for Node Device:05) "id

('(' #variability ')')? ('extends' supers)?

05) (';' | '{' (flingext ';' | constraint)* '}')"

06) template@2 DeepDevs for Model SmartHome:

07) "typename id '{' &DeepDev* '}'"

08) template@2 DeepDev for Node Device:

09) "typename id '(' isTurnedOn flinginst* ')'"

Fig. 8. Code fragment for defining extensible syntax

The use of lingext (line 03) allows you to define

new object classes at meta-level 1. The expression on

line 04 enables inheritance between Device instances,

and the expression on line 07 allows you to define

new fields and constraints in Device instances.

In addition, line 09 allows you to create instances of

these additional fields in indirect Device instances.

Figure 9 shows an example of creating the

GatewayXiaomi model using the inheritance mechanism:

01)GatewayXiaomi {

02) BaseController(0.25) {

03) isTurnedOn: boolean = false;

04) }

05) PressureController extends BaseController;

06) LightController extends BaseController {

07) light: Light;

08) }

09) Node Light {

10)

10) brightness: double;

11) }

12)}

Fig. 9. An example of creating a GatewayXiaomi model

For the possible software implementation of

the proposed DSML-V language, an appropriate

tool environment is required, a fairly complete

51

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. №1 (23) ISSN 2524-2296 (online)

overview of which can be found, for example, in [18].

We have analyzed the functionality of several tools

for creating DSML.

 Clooca – is a development environment that

allows you to create DSML and their code generators

(JavaScript, Python, PHP, Ruby, etc.), is used according

to the Software as a Service (SaaS) architectural model,

allows you to create a description of the syntax

of the corresponding DSML in JSON text format using

a visual graphical interface where the user works

with tabular forms and diagrams to describe objects,

relationships and properties in a particular domain.

Figure 10 shows an example of such an interface, which

is quite typical for other similar CASE tools (see below).

Fig. 10. An example of a developer interface in the Clooca CASE tool

 Generic Modeling Environment (GME) is

a software tool in the form of a web-based application

for creating DSMLs for various purposes, which can be

further extended by adding new properties that are

specific to the selected domain. GME has a well-

developed visual user editor in which you can create

appropriate metamodels, which can be further exported

in XML format or stored in external distributed

noSQL databases [20] for reuse.

 Eclipse Modeling Framework (EMF) –

is an open-source, extensible, Java-based domain

modeling platform that offers advanced functionality

in the form of its own IDE. EMF allows you to create

or import a suitable domain data model, as well as

tables and XMI schema for such a model. The Java

source code generated from this model can be edited

by the user to develop the target application.

Along with the above tools for creating DSML,

we have considered the MetaDepth toolkit [21],

which uses ontological specifications to describe syntax

and grammatical rules, has functionality that is largely

similar to the already analyzed Clooca, GME, and EMF

environments, but, unlike them, allows building

systems with an arbitrary number of meta-levels of

modeling a particular domain that meets the requirements

of F1–F4 (see the above diagram at Figure 1).

That is why this tool was chosen to develop

a technological scheme for the implementation

of the proposed DSML-V language, shown in IDEF0

notation at Figure 11.

In this diagram, the first functional block (FB),

designated as A0, compiles a program created by experts

in a particular subject area using the proposed

DSML-V syntax, as well as taking into account

the variable FODA model of the Smart Home system

(see Figure 3). The output of this FB is the corresponding

metamodel in the .mdepth format [21]. The second

FB A1 processes the resulting metamodel for a subject-

oriented metamodeling language using the metaDepth

API and Multi-Level Language tools. The output

of FB A1 is a specific specification of a subject-oriented

metamodeling language.

52

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

Fig. 11. Compilation flowchart for DSML-V language

Experimental results and their discussions

To investigate the effectiveness of using the

DSML-V language, it is proposed to compare its syntax

with the built-in syntax of the metaDepth tool [21] to

build a conditional model in the Smart Home domain

based on the variable FODA model of such a system

shown in Figure 3.

As an example, let's consider the task of creating

a model of variable software for controlling the

equipment of one room, which is part of the Smart Home

system. A variety of sensors can be installed in such

a room: light, pressure, air, motion, etc. They can be

controlled by a common control mechanism – a specific

gateway. Each such gateway has its own variability

index, as well as special attributes. A light sensor,

for example, should turn on the night light and

turn off the daylight depending on the time of day.

Accordingly, there can be several devices using

such a gateway. To illustrate the user interface for

managing the configurations of hardware and

software resources in such a system, you can use

the functionality of the open CASE tool LabView

with the built-in visual modeling environment

Home I/O [22]. The example of a possible interface

is shown in Figure 12.

Fig. 12. An example of a fragment of the user interface of the Smart Home system

53

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. №1 (23) ISSN 2524-2296 (online)

Figure 13 shows the code snippet required to create

the described model using the built-in metaDepth syntax:

01) strict Model SmartHome@2 {

02) strict Node Device {

03) variability@1: double;

04) isTurnedOn: boolean = false;

05) positiveVar: $self.variability > 0$

06) extid@1: $self.newFields().exists(f | f.isId())$

07) }

08) }

09) SmartHome XiaomiShApplication {

10) Device GatewayXiaomi {

11) variability = 0.4;

12) }

13) }

14) XiaomiShApplication LightSwitcher {

15) GatewayXiaomi light {

16) isTurnedOn = false;

17) }

18) GatewayXiaomi switch {

19) isTurnedOn = true;

20) }

21) }

Fig. 13. Code fragment for creating a model

in the metaDepth language

Figure 14 shows the code fragment necessary

to create the described model using the proposed

syntax of the DSML-V language, which is presented

in Figure 7 and Figure 8.

01)Syntax for SmartHome[".smarthome"] {

02) template@1 TSmartHome for Model SmartHome:

03) "id '{' (&TDevice | lingext)* '}'"

04) template@1 TDevice for Node Device:05) "id

('(' #Variability ')')? ('extends' supers)?

06) (';' | '{' (flingext ';' | constraint)* '}')"

07) template@2 DeepDevs for Model SmartHome:

08) "typename id '{' &DeepDev* '}'"

09) template@2 DeepDev for Node Device:

10) "typename id '(' action flinginst* ')'"

11)

12)XiaomiShApplication {

13) GatewayXiaomi(0.4)

14)}

15)XiaomiShApplication LightSwitcher {

16) GatewayXiaomi light(false)

17) GatewayXiaomi switch(true)

18)}

Fig. 14. Code snippet for creating a model in DSML-V

To compare the code snippets in Figure 13 and

Figure 14, you can use such an efficiency indicator as the

number of lines of code (LOC). Then the corresponding

efficiency factor for the proposed DSML-V syntax,

 1efK , can be calculated using the following formula:

 1 100%MD DSML

ef

MD

LOC LOC
K

LOC


  , (1)

where MDLOC – number of code in the metaDepth;

DSMLLOC – number of code lines in the DSML-V

language.

The indicator  1efK determines the advantage of

using the appropriate DSLM-V syntax to reduce the

clinesost of describing the model of the Smart Home

system. The calculation of this indicator by formula (1) is

 
21 18

1 100% 14.28%.
22

efK


  

As you increase the number of model instances

created, the efficiency of using the proposed syntax

also increases, since the number of lines required

to create each subsequent model instance decreases.

For example, in Figure 13, the 8 lines of code are

required to create instances of the GatewayXiaomi

light, switch model (lines 14–21), and to create the

same instances in Figure 14 using the proposed syntax,

the 7 lines are required (lines 12–18).

Then the second possible performance indicator,

 2efK , can be calculated using the following formula:

 
_ _

_

2 100%
E MD E DSML

ef

E MD

LOC LOC
K

LOC


  , (2)

where _E MDLOC is the number of code lines required to

create model instances (lines 14–21 in Figure 13) using

the built-in metaDepth syntax; _E DSMLLOC is the number

of code lines required to create model instances

(lines 12–18 in Figure 14) using the proposed syntax.

For the described case, this indicator, calculated

by formula (2), is:

 
8 7

2 100% 12.5%.
8

efK


  

In order to obtain a weighted average estimate

of the final effectiveness of the proposed DSML-V

syntax avgK , the assessment described by the following

formula can be applied:

   1 2
,

2

ef ef

avg

K K
K


 (3)

where  1efK is the efficiency indicator from formula (1);

 2efK is the efficiency indicator from formula (2).

54

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

The value of the weighted average estimate of the

final efficiency, calculated using formula (3), is

14.28 12.5
13.39% .

2
avgK


 

Thus, the approximate weighted average

efficiency estimate (13.39%) of the use of the developed

problem-oriented variability modeling language

DSML-V obtained in this study basing on the

formulas (1)–(3) proves its superiority over such

a common open tool for general DSML language

development as metaDepth [21].

Conclusions and further work

The proposed work substantiates the relevance

of solving the scientific and technical problem

of building conceptual models for the design of

high-tech applications such as Smart Home systems,

in particular, using domain-specific modeling

languages (DSML), which can significantly reduce

the time and other project resources required to create

these systems. To this end, the authors have identified

and accomplished the following tasks Analyzing

some existing approaches to the development

of DSML, proposing a multifaceted classification

of requirements for them, based on which the basic

syntactic structures of the target DSML-V language were

created, which provides support for the variability

properties of Smart Home systems; formally describing

such a syntax in the Backus-Naur notation; developing

a technological scheme for compiling metamodels

in DSML-V into the syntax of the language of the open

CASE-tool metaDepth. A study of the effectiveness

of this approach using selected quantitative metrics

was conducted, which proved that the proposed

method of developing a specialized problem-oriented

language for Smart Home systems allows for multilevel

modeling of the variability properties of its software

components and provides an increase in the efficiency

of programming such models by about 14% compared

to some existing approaches.

To continue this research, it is planned to extend

the proposed DSML-V syntax with the addition of more

complex, comprehensive, and subject-oriented constructs,

as well as to implement fully programmatically

a prototype compiler for this language for modeling

Smart Home systems.

References

1. Joanna, F., DeFranco, a, Mohamad, Kassab. (2021), "Smart Home Research Themes: An Analysis and Taxonomy",

Procedia Computer Science, Vol. 185. P. 91–100. DOI: https://doi.org/10.1016/j.procs.2021.05.010

2. Davydov, V., & Hrebeniuk, D. (2020), "Development of the methods for resource reallocation in cloud computing

systems", Innovative Technologies and Scientific Solutions for Industries, 3 (13), P. 25–33. DOI:

https://doi.org/10.30837/ITSSI.2020.13.025

3. Gamzayev R.O., Tkachuk M.V., Shevkoplias D.O. (2020), "Knowledge-oriented Information Technology to

Variability Management on Domain Analysis Stage in Software Development", Advanced Information Systems, Vol. 4, No. 4,

P. 39–47. DOI: https://doi.org/10.20998/2522-9052.2020.4.06

4. D. Karagiannis, H.C. Mayr, J. Mylopoulos. (2016), "Domain-Specific Conceptual Modeling: Concepts, Methods and

Tools", Springer, Berlin, 606 p.

5. Tomaž Kos, Marjan Mernik and Tomaž Kosar. (2022), "Evolution of Domain-Specific Modeling Language: An Example

of an Industrial Case Study on an RT-Sequencer", Appl. Sci., 12 (23), 12286. https://doi.org/10.3390/app122312286

6. Berger, Th., Chechik, M., Kehrer, T. (2019), "Software Evolution in Time and Space: Unifying Version and

Variability Management", Dagstuhl Seminar Reports, Vol. 9, Issue 5, P. 1–31.

7. Jaffari, A., Lee, J., Kim, E. (2021), "Variability Modeling in Software Product Line: A Systematic Literature Review",

Studies in Computational Intelligence, vol 930. Springer, Cham. https://doi.org/10.1007/978-3-030-64773-5_1

8. Huber, R., Pueschel, L., Roeglinger, M. (2019), "Capturing smart service systems: Development of a domain‐specific

modelling language", Inf. Systems Journal, Volume 29, Issue 6, P. 1207–1255.

9. Leila Samimi-Dehkordi, Bahman Zamani, Shekoufeh Kolahdouz-Rahimi. (2019), "Leveraging product line engineering

for the development of domain-specific metamodeling languages", Journal of Computer Language,s Volume 51, P. 193–213.

DOI: https://doi.org/10.1016/j.cola.2019.02.006

10. Maouaheb Belarbi (2018), "A methodological framework to enable the generation of code from DSML in SPL", Proceedings

of the 22nd International Systems and Software Product Line Conference (SPLC 2018) – Vol. 2, P. 64–71.

DOI: https://doi.org/10.1145/3236405.3236426

55

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. №1 (23) ISSN 2524-2296 (online)

11. Eko K. Budiardjo, Elviawaty M. Zamzami. (2014), "Feature Modeling and Variability Modeling Syntactic

Notation Comparison and Mapping", Journal of Computer and Communications, Vol. 2, No. 2, P. 102–108.

DOI: 10.4236/jcc.2014.22018

12. Vale, A., Fernandes, S., Magalhães, A. P. (2019), "Towards a customizable Student Information System

integrating MDD and SPL (S)", Proceedings of the 31st International Conference on Software Engineering

and Knowledge Engineering (SEKE 2019), Lisbon, Portugal, July 10–12 2019, P. 98–106. DOI:

https://doi.org/10.18293/SEKE2019-089

13. Cunha, A., Fernandes, S. and Magalhães, A. (2019), "Integrating SPL and MDD to Improve the Development

of Student Information Systems", Proceedings of the 21st International Conference on Enterprise Information

Systems (ICEIS 2019), P. 197–204. DOI: https://doi.org/10.5220/0007711201970204

14. Maouaheb Belarbi and Vincent Englebert (2022), "Transforming Domain Specific Modeling Languages into Feature

Models", Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development

(MODELSWARD 2022), P. 137–146. DOI: https://doi.org/10.5220/0010772000003119

15. Frank, U., (2010), "Outline of a method for designing domain-specific modelling languages", Research Reports, Institut

für Informatik und Wirtschaftsinformatik (ICB), Universität Duisburg-Essen, Germany, P. 1–76.

16. Rustam Gamzayev, Mykola Tkachuk and Oleksandr Nelipa. (2021), "Domain-Specific Language for Adaptive

Development of "Smart-Home" Applications", Proceedings of the 1st International Workshop on Information

Technologies: Theoretical and Applied Problems 2021 (ITTAP-2021) Ternopil, Ukraine, November 16-18, 2021,

CEUR-WS.org/Vol-3039, P. 154–165.

17. Rustam Gamzayev, (2023), "A Methodology for Development and Usage of Problem-oriented Modeling Languages

in "Internet Of Things" Systems", Proceedings of the V International Scientific and Practical Conference Stockholm,

Sweden (February 07–10, 2023), P. 603–608. DOI: https://doi.org/10.46299/ISG.2023.1.5

18. Cavalcanti Y.C., Machado I.C., Lobato L.L. et al. (2011), "Towards Metamodel Support for Variability and

Traceability in Software Product Lines", Proceedings of the 5th International Workshop on Variability Modelling

of Software-Intensive Systems, Namur, Belgium (January 27–29, 2011), P. 1–10. DOI: https://doi.org/10.1145/

1944892.1944898.

19. Bashroush R., Garba M., Rabiser Е. et al. (2017), "CASE Tool Support for Variability Management in Software Product Lines",

ACM Computing Surveys, 50 (1), Р. 1–45. DOI: https://doi.org/10.1145/3034827

20. Quinlan, D, Wells, JB & Kamareddine, F., (2019), "BNF-Style Notation as It Is Actually Used", Proceedings

of the 12th Conference on Intelligent Computer Mathematics 2019, Prague, Czech Republic, P. 187–204. DOI:

https://doi.org/10.1007/978-3-030-23250-413

21. Mazurova, O., Naboka, A., Shirokopetleva, M. (2021), "Research of ACID transaction implementation

methods for distributed databases using replication technology", Innovative Technologies and Scientific

Solutions for Sndustries, № 2 (16), Р. 19–31. DOI: https://doi.org/10.30837/ITSSI.2021.16.019

22. Juan de Lara, Esther Guerra, Jesús Sánchez Cuadrado. (2015), "Model-driven engineering with domain-specific meta-modelling

languages", Software and Systems Modeling (Springer), Vol 14(1). P. 429–459.

23. A. Philippot, B. Riera, M. Koza, et al. (2017). "HOME I/O and FACTORY I/O: 2 Pieces of innovative PO simulation

software for automation education", European Association for Education in Electrical and Information Engineering

Annual Conference (EAEEIE), Grenoble, France, P. 1–6. DOI: https://doi.org/10.1109/EAEEIE.2017.8768639

Received 22.02.2023

Відомості про авторів / About the Authors

Гамзаєв Рустам Олександрович – кандидат технічних наук, доцент, Харківський національний

університет імені В. Н. Каразіна, доцент кафедри моделювання систем і технологій, Харків, Україна; e-mail:

rustam.gamzayev@karazin.ua; ORCID: https://orcid.org/0000-0002-2713-5664

Ткачук Микола В’ячеславович – доктор технічних наук, професор, Харківський національний університет

імені В. Н. Каразіна, завідувач кафедри моделювання систем і технологій, Харків, Україна;

e-mail: mykola.tkachuk@karazin.ua; ORCID: https://orcid.org/0000-0003-0852-1081

https://doi.org/10.1109/EAEEIE.2017.8768639
https://orcid.org/0000-0002-2713-5664
https://orcid.org/0000-0003-0852-1081

56

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 1 (23)

Gamzayev Rustam – PhD, associate professor, Kharkiv National University named after V. N. Karazina, associate

professor of the Department of Systems and Technologies Modeling Kharkiv, Ukraine.

Tkachuk Mykola – doctor of technical sciences, professor, Kharkiv National University named after V. N. Karazina,

head of the Department of Systems and Technologies Modeling, Kharkiv, Ukraine.

РОЗРОБКА ПРОБЛЕМНО-ОРІЄНТОВАНОЇ МОВИ МОДЕЛЮВАННЯ

ДЛЯ ПІДТРИМКИ ВАРІАБЕЛЬНОСТІ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

В СИСТЕМАХ "РОЗУМНИЙ БУДИНОК"

Побудова концептуальних моделей для проєктування програмного забезпечення (ПЗ), зокрема для таких

високотехнологічних застосунків, як системи "Розумний будинок", є складним завданням, від результатів виконання

якого суттєво залежить ефективність процесів їхнього розроблення. Одним з інноваційних методів вирішення цієї

проблеми є використання предметно орієнтованих мов моделювання (DSML), що дають змогу скоротити витрати

часу та інших проєктних ресурсів, потрібних для створення таких систем. Предметом дослідження в роботі

є підходи з метою розроблення DSML для систем "Розумний будинок" як окремого класу систем Internet of Things.

Мета роботи – запропонувати підхід до розроблення DSML на основі моделі варіабельності властивостей такої

системи. Вирішуються такі завдання: аналіз деяких уже наявних підходів до створення DSML; побудова

багатоаспектної класифікацій вимог до них, застосування цих вимог щодо проєктування синтаксису конкретного DSML-V

для створення варіабельного ПЗ у системах "Розумний будинок"; розроблення технологічної схеми й кількісних

метрик для експериментального оцінювання ефективності запропонованого підходу. Використовуються такі

методи: моделювання варіабельності, основане на моделі властивостей, формальні нотації для опису синтаксису

мови DSML-V, застосування відкритого інструментального CASE-засобу metaDepth. Здобуті результати:

побудовано багатоаспектну класифікацію вимог до широко класу мов DSML; розроблено основні синтаксичні

конструкції мови DSML-V для підтримки властивостей варіабельності ПЗ систем "Розумний будинок"; надано

формальний опис такого синтаксису в нотації Бекуса – Наура; створено технологічну схему компіляції специфікацій

мовою DSML-V у синтаксис мови відкритого інструментального CASE-засобу metaDepth; експериментально

досліджено ефективність застосування запропонованого підходу з використанням кількісних метрик.

Висновки: запропонований метод розроблення спеціалізованої проблемно орієнтованої мови для систем

"Розумний будинок" дає змогу проводити багаторівневе моделювання властивостей варіабельності її

програмних компонентів і забезпечує зростання ефективності програмування таких моделей приблизно на 14% порівняно

з наявними підходами.

Ключові слова: проблемно-орієнтована мова; програмне забезпечення; моделювання; варіабельність;

"Розумний будинок".

Бібліографічні описи / Bibliographic descriptions

Гамзаєв О. Р., Ткачук М. В. Розробка проблемно-орієнтованої мови моделювання для підтримки варіабельності

програмного забезпечення в системах "Розумний будинок". Сучасний стан наукових досліджень та технологій

в промисловості. 2023. № 1 (23). С. 45–56. DOI: https://doi.org/10.30837/ITSSI.2023.23.045

Gamzayev, O., Tkachyk, V. (2023), "Development of problem-specific modeling language to support software variability

in "Smart Home" systems", Innovative Technologies and Scientific Solutions for Industries, No. 1 (23), P. 45–56.

DOI: https://doi.org/10.30837/ITSSI.2023.23.045

https://doi.org/10.30837/ITSSI.2023.23.045
https://doi.org/10.30837/ITSSI.2023.23.045

