METHOD OF INCREASING THE EFFICIENCY OF THE WATER SUPPLY NETWORK DUE TO ITS ZONING
DOI:
https://doi.org/10.30837/ITSSI.2023.23.083Keywords:
zoning; water supply network; stochastic model; pressure regulator; excess pressureAbstract
The goal of the work is to use a stochastic model of quasi-stationary modes of water supply network to reduce excess pressure in the water supply network by establishing pressure regulators at the entrances to the selected zones. The subject of research in the article is the optimization of the structure of water supply network by zoning. The article discusses the task of optimal zoning of water supply networks, which consists of two subtasks: allocation in the water supply network of isolated zones of nodes with excess pressure exceeding a given value; calculation of the parameters of pressure regulators installed at the entrances to the selected zones. A method based on the breadth-first search method is proposed for zone selection. The deterministic equivalent of this problem is solved using the Newton and Nelder-Mead methods. As a result of solving this problem, we obtain the minimum required values of the pressures stabilized at the outlets of the regulators and the maximum allowable values of the flow rates through them. To determine the minimum and maximum values of the ranges of flow rates and pressures at the inlets and outlets of the regulator, the forecast of the maximum and minimum water consumption by all categories of consumers in the selected zone is carried out and the problem of optimal load distribution between the pressure regulators is solved. As a result, we obtain a range of changes in the optimal flow rates through the regulator and the values of pressure stabilized at the output of the regulator. Based on this information, the type of regulators is determined that provides the necessary ranges of pressure changes at the inlets and outlets of the regulators for the minimum and maximum predicted costs through the regulator and the minimum allowable pressure at its inlet. The following results were obtained: calculations show that, using zoning and installation of pressure regulators at the inlets to isolated zones of the water supply network of the structure under consideration, it is possible to reduce the mathematical expectation of the total excess pressure in the network by 21%. Conclusions: the paper proposes a mathematical model for the problem of optimal zoning of the water supply network, based on a stochastic model of quasi-stationary modes of its operation, and a method for solving this problem. A computational experiment carried out for a water supply network of a given structure showed that as a result of installing pressure regulators at the entrances to the selected zones, it is possible to increase the efficiency of its operation.
References
Список літератури
Тевяшев А. Д., Матвиенко О. И. Стохастическая модель и метод зонирования водопроводных сетей. Восточно-Европейский журнал передовых технологий. 2014. Vol 1 (67). C. 17–24.
Perelman L. S., Allen M., Preis A., Iqbal M., Whittle A. J. Automated Sub-Zoning of Water Distribution Systems. Environmental Modelling & Software. 2015. № 65. P. 1–14. DOI: https://doi.org/10.1016/j.envsoft.2014.11.025
Nardo A. D., Natale M. D., Santonastaso G. F., Venticinque S. Graph Partitioning for Automatic Sectorization of a Water Distribution System. 2011. 841.
Nardo A.D., Natale M.D., Giudicianni C. Weighted Spectral Clustering for Water Distribution Network Partitioning. Appl Netw Sci. 2017. Vol 2. 19 р.
Diao K., Jung D., Farmani R., Fu G., Butler D., Lansey K. Modular interdependency analysis for water distribution systems. Water Research. 2021. № 201. 117320. DOI: https://doi.org/10.1016/j.watres.2021.117320
Zheng F., Zecchin A. C., Simpson A. R. A decomposition and multi-stage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research. 2013. № 49. P. 1–20. DOI: https://doi.org/10.1029/2012WR013160
Diao K., Zhou Y., Rauch W. Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management. March/april 2013. P. 184–190. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247
Matviienko О., Manchynska N. Method for Calculation of Dispersions of Dependent Variables of a Stochastic Model of Quasi-Stationary Operating Modes of the Main Water Pipeline. Innovative Technologies and Scientific Solutions for Industries / Mathematical Modeling & Computational Methods. 2022. No. 4 (22). Р. 58–69. DOI: https://doi.org/10.30837/itssi.2022.22.058
Tevyashev A., Matviyenko O., Nikitenko G. Construction of a Stochastic Model for a Water Supply Network with Hidden Leaks and a Method for Detecting and Calculating the Leaks. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 6/4 (102). P. 29–38. DOI: https://doi.org/10.15587/1729-4061.2019.186157
Тевяшев А. Д., Козыренко С. И., Непочатова В. Д. Метод построения модели квазистационарных режимов работы водопроводных сетей с утечками. Восточно-Европейский журнал передовых технологий. 2010. №9 (44). С. 9–12. DOI: https://doi.org/10.15587/1729-4061.2010.2738
Самойленко Н. И., Гавриленко И. А., Сенчук Т. С. Разработка моделей упорядочивания ребер графа трубопроводной распределительной сети. Восточно-Европейский журнал передовых технологий. 2015. №4 (75). С. 21–25. DOI: https://doi.org/10.15587/1729-4061.2015.42811
Безкоровайний В. В., Березовський Г. В. Оцінка властивостей технологічних систем із використанням нечітких множин. Сучасний стан наукових досліджень та технологій в промисловості №1 (1). 2017. С. 14–20. DOI: https://doi.org/10.30837/2522-9818.2017.1.014
Безкоровайний В. В. Параметричний синтез моделей багатокритеріального оцінювання технологічних систем. Сучасний стан наукових досліджень та технологій в промисловості №2 (2). 2017. С. 5–11. DOI: https://doi.org/10.30837/2522-9818.2017.2.005
Давідіч Ю. О., Галкін А. С., Давідіч Н. В., Галкіна О. П. Оцінка величини енергетичних витрат кінцевих споживачів логістичної системи в процесі освоєння матеріального потоку. Сучасний стан наукових досліджень та технологій в промисловості №2 (2). 2018. С. 5–11. DOI: https://doi.org/10.30837/2522-9818.2018.4.005
Elhay S., Deuerlein J., Olivier Piller O., Simpson A.R. Graph Partitioning in the Analysis of Pressure Dependent Water Distribution Systems. Journal of Water Resources Planning and Management. 2018. №144 (4). DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000896
References
Tevyashev, A. D., Matvienko, O. I. (2014), "Stochastic Model and Method of Zoning of Water Supply Networks", Eastern-European Journal of Enterprise Technologies, Vol 1 (67), Р. 17–24.
Perelman, L. S., Allen, M., Preis, A., Iqbal, M., Whittle, A. J. (2015), "Automated Sub-Zoning of Water Distribution Systems", Environmental Modelling & Software, Vol. 65, P. 1–14. DOI: https://doi.org/10.1016/j.envsoft.2014.11.025
Nardo, A. D., Natale, M. D., Santonastaso, G. F., Venticinque, S. (2011), Graph Partitioning for Automatic Sectorization of a Water Distribution System, 841 p.
Nardo, A.D., Natale, M.D., Giudicianni, C. (2017), "Weighted Spectral Clustering for Water Distribution Network Partitioning", Appl Netw Sci, Vol. 2, 19 р.
Diao, K., Jung, D., Farmani, R., Fu, G., Butler, D., Lansey, K. (2021), "Modular Interdependency Analysis for Water Distribution Systems", Water Research, Vol. 201, 117320. DOI: https://doi.org/10.1016/j.watres.2021.117320
Zheng, F., Zecchin, A. C., Simpson, A. R. (2013), "A Decomposition and Multi-Stage Optimization Approach Applied to the Optimization of Water Distribution Systems with Multiple Supply Sources", Water Resources Research, Vol. 49, P. 1–20. DOI: https://doi.org/10.1029/2012WR013160
Diao, K., Zhou, Y., Rauch, W. (2013), "Automated Creation of District Metered Area Boundaries in Water Distribution Systems", Journal of Water Resources Planning and Management, march/april 2013, P. 184–190. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000247
Matviienko, O., Manchynska, N. (2022), "Method for Calculation of Dispersions of Dependent Variables of a Stochastic Model of Quasi-Stationary Operating Modes of the Main Water Pipeline", Innovative Technologies and Scientific Solutions for Industries / Mathematical Modeling & Computational Methods, No. 4 (22), Р. 58–69. DOI: https://doi.org/10.30837/itssi.2022.22.058
Tevyashev, A., Matviyenko, O., Nikitenko, G. (2019), "Construction of a Stochastic Model for a Water Supply Network with Hidden Leaks and a Method for Detecting and Calculating the Leaks", Eastern-European Journal of Enterprise Technologies, Vol. 6/4 ( 102 ), P. 29–38. DOI: https://doi.org/10.15587/1729-4061.2019.186157
Tevyashev, A. D., Kozyrenko, S. I., Nepochatova, V. D. (2010), "Method for constructing a model of quasi-stationary modes of operation of water supply networks with leaks" ["Metod postroeniya modeli kvazistatsionarnykh rezhimov raboty vodoprovodnykh setey s utechkami"], Eastern-European Journal of Enterprise Technologies, No. 9 (44), P. 9–12. DOI: https://doi.org/10.15587/1729-4061.2010.2738
Samoylenko, N. I., Gavrilenko, I. A., Senchuk, T. S. (2015), "Development of mathematical models for ordering the edges of the pipeline distribution network graph" ["Razrabotka matematicheskikh modeley uporyadochivaniya reber grafa truboprovodnoy raspredelitel'noy seti"], Eastern-European Journal of Enterprise Technologies, No. 4 (75), P. 21–25. DOI: https://doi.org/10.15587/1729-4061.2015.42811
Bezkorovayniy, V. V., Berezovs'kiy, G. V. (2017), "Evaluation of the properties of technological systems using fuzzy sets" ["Otsinka vlastyvostey tekhnolohichnykh system iz vykorystannyam nechitkykh mnozhyn"], The current state of scientific research and technology in industry, No. 1 (1), P. 14–20. DOI: https://doi.org/10.30837/2522-9818.2017.1.014
Bezkorovayniy, V. V. (2017), "Parametric synthesis of models of multi-criteria assessment of technological systems" ["Parametrychnyy syntez modeley bahatokryterial'noho otsinyuvannya tekhnolohichnykh system"], The current state of scientific research and technology in industry, No. 2 (2), P. 5–11. DOI: https://doi.org/10.30837/2522-9818.2017.2.005
Davіdіch, Yu. O., Galkіn, A. S., Davіdіch, N. V., Galkіna, O. P. (2018), "Estimation of energy costs of end users of the logistics system in the process of mastering the material flow" ["Otsinka velychyny enerhetychnykh vytrat kintsevykh spozhyvachiv lohistychnoyi systemy v protsesi osvoyennya material'noho potoku"], The current state of scientific research and technology in industry, No. 2 (2), P. 5–11. DOI: https://doi.org/10.30837/2522-9818.2018.4.005
Elhay, S., Deuerlein, J., Piller, O., Simpson, A. R. (2018), "Graph Partitioning in the Analysis of Pressure Dependent Water Distribution Systems", Journal of Water Resources Planning and Management, No. 144 (4). DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000896
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.