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MATHEMATICAL MODELS FOR DETERMINING
THE PARETO FRONT FOR BUILDING TECHNOLOGICAL PROCESSES OPTIONS
UNDER THE CONDITIONS OF INTERVAL PRESENTATION OF LOCAL CRITERIA

The subject of research in the article is decision-making support processes in the tasks of optimizing technological processes (TP)
at the stages of their design or reengineering. The goal of the work is to improve the efficiency of technologies of automated
design of TP due to the development of mathematical models of the tasks of selecting subsets of effective design solutions
with intervally specified characteristics of options. The following tasks have been solved in the article: review and analysis
of the current state of the problem of supporting decision-making in the tasks of optimization of TP at the stages of their design
or reengineering; decomposition of the problem of making project decisions; formalization of the task of comparing intervals
for selection of Pareto fronts using comparison indices based on the generalized Hukuhari difference; development of
a mathematical model of the problem for the method based on Carlin's lemma; development of a mathematical model of the
problem for the method based on Hermeyer's theorem; determination of the Pareto front in the task of optimization of TP by
the method of pairwise comparisons. The following methods were used: system approach, theories of systems, theories
of usefulness, theories of decision-making, system design, optimization and operations research. Results. The place and connections
of the problem of determining the Pareto front in the problem of making project decisions are determined. A formalized interval
comparison procedure for the selection of Pareto fronts using Hukuhari total difference comparison indices. Mathematical models
of the problem of selection of Pareto fronts using methods based on Carlin's lemma and Hermeyer's theorem have been developed
for the case of interval publication with the value of local criteria. An example of the formation of the Pareto front in the
problem of optimization of the technological process by the method of pairwise comparison according to the indicators of the
duration of the technological cycle, reliability and specified costs is given. Conclusions. The proposed mathematical models expand
the methodological bases of the automation of TP design processes. They make it possible to correctly reduce the set of alternative
options for construction of TP for the final choice, taking into account the knowledge, experience of designers and factors that
are difficult to formalize. The practical use of mathematical models will allow to increase the degree of automation of design
or control processes, to reduce the time of decision-making in conditions of incomplete certainty of input data and to guarantee
their quality by selecting them only from a subset of effective ones.

Keywords: technological processes; design automation; optimization; reengineering; multi-criteria evaluation; decision
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Introduction

In the context of the transition to Industry 4.0, the
quality and price of manufacturing companies' products
are increasingly determined by the quality of the
technological processes (TP) used to make them [1].
The effectiveness of manufacturing processes, in turn, is
determined by decisions made at the stages of their
design or reengineering. The process of TP design
involves the iterative solution of a set of problems of their
structural, parametric, topological optimization and
the establishment of basic modes of operation [2-4].
The selection of the best options for the TP construction
is carried out using a set of functional and cost indicators
(local performance criteria). Mathematical models and
methods of decision theory are used to optimize
the options for the TP construction [5-7]. Due to the
combinatorial nature of most TP optimization models,
the number of alternative options for their construction

increases sharply with the growth of the problem
dimension. The overwhelming majority of the options
for constructing TPs generated in the process of their
design are inefficient (dominated). There is a problem
of forming a subset of efficient (non-dominated) design
solutions that form a Pareto front or selecting such
a subset from the formed set of valid options [8-9].
The evaluation of options for the construction
of TPs according to local criteria is based on the
results of modeling with a certain error [10]. As a result,
decisions on the choice of the best option for the
construction of the TP are made under conditions of
incomplete certainty of its quality indicators. For TPs that
involve dozens of operations, the generated or selected
Pareto front may be quite powerful, unsuitable for
final expert evaluation and selection. It is necessary
to further reduce the set of effective options for building
a TA, taking into account the given preferences
between quality indicators.
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The aforementioned, as well as the need to consider
the errors in the estimates of the options determined using
modeling, raises the problem of supporting design
decisions on the TP, taking into account the interval
representation of the values of local quality criteria.
The use of interval mathematics methods to account
for this kind of uncertainty requires the formalization
of the interval comparison operation.

Analysis of the current state
of the problem and methods of its solution

Today, the transition from traditional to additive
manufacturing is relevant. Hybrid (integrated, combined)
production, which combines the advantages of additive
and traditional production technologies, is considered
an intermediate stage. This requires a comprehensive
optimization of the technological production chain and
the necessary equipment. It is believed that the
integration of product design, optimization of production
technology, and operational management will allow
companies to increase their competitiveness [11].
However, such integration significantly complicates
the process of designing TP.

Digital modeling is used to determine the
functional characteristics of the created TPs. It allows
you to automatically evaluate the technological
routes generated during the design process. It involves
formalization based on  modular  technology,
optimization, product realization modeling, and
analysis of the results. Technological routes optimized
in this way ensure a balanced and efficient
organization of the production process [10]. However,
the use of modeling allows only an approximate
determination of TP characteristics, which in decision-
making situations meets the challenges of incomplete
data certainty.

As a result of the decomposition of the TP system
optimization problem as a territorially or spatially
distributed object at the lower level | a set of interrelated

tasks is identified at the lower level Tasks ={Task'} [12]:
Task, — determination of requirements for TP and their

formalization; Task, — optimization of the structure of
TP (a set of equipment and transitions between them);
Task, — optimization of the topology of TP elements
(equipment Task; -

placement); optimization of

operating modes; Task; — selection of types or

parameters of equipment and transitions between them;

Task, — evaluation and selection of the best option
for building TP.
The process of system TP optimization as
a distributed object can be represented as a logical
scheme for constructing an appropriate design
solution [12].
LS =<Tasks, InDat, Res, DD, PD >, 1)

where Tasks =<Task' >, i =16 — an ordered set of TP
design tasks (models);

InDat — set of input data of tasks;

Res — set of task constraints;

DD - a set of local design solutions (problem
solutions);

PD - mappings presented in the form of design
procedures (solution methods) that correspond to each

pair < InDat/,Res] > a nonempty subset of local design
solutions <DD! >, i=16.

It is known that the ordered set of tasks in (1)
is completely solvable if there are design procedures
for each of them PD/,
is unique [12]:

|PD (< InDat/,Res! >)|=1,i=16.  (2)

i=16and each solution

Modern technologies for designing TPs as complex
objects are iterative. They involve the repeated
implementation of procedures for generating and
analyzing TP construction options and choosing
the best among them. The essence of the decision-making

in problems Task, is represented by the logical statement

"It is necessarys’" or formally in the form<-,s° >

(wheres® is the optimal design solution belonging to the
set X of acceptable solutions) [13]. In this case, the
decision-making situation Sit is usually incompletely
defined due to the incomplete definition of goals
and/or input data. To move to the decision-making
problem< Sit,s® >, it
the problem by solving auxiliary problems of the

is necessary to decompose

form "Given< Sit,—>, Required< Sit,s’>", i.e.
<< Sit,— >,< Sit,s° >>, or "Given<—,s° >, Required
< Sit,s® > ", i.e. <<—53° > <Sit, s >>.

Each of the tasks of the subset Task!, i=2,6
involves making decisions according to a set of local
criteria k;(s), j=l,_m (wherem is the number of

criteria). In this case, the local criteria are contradictory,
have different physical content, dimensionality,
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and measurement interval. In the most general case,
the decision-making process is a set of tasks [14]:
formalizing the goal of creating a TP; determining
a universal set of options for building a TP SY;
determining a subset of valid options S < S" ; selecting
a Pareto front (a subset of effective options) S®cS ;

ranking optionss® >s; >s; ~..>s,; selecting the

best option s° € S .

TP design methods involve the generation
and analysis of powerful sets of feasible options S .
To reduce the time for solving problems, it is proposed
to generate and analyze only effective options
belonging to the Pareto front S =S . The power of
a subset of efficient options Card (S%) can range from

a few percent to a few thousandths of a percent
of Card (S). A variant of a design solution is called

efficients® € S* if there is no variant seS for
which the inequalities are satisfied on the set of
admissible ones j =1,m [13]:
k; (s) 2 k;(s%), if k;(s) > max, €)
k;(s) <k;(s%),if k;(s)— min 4)
and at least one of them was strict.

Depending on the specifics of decision-making
tasks, different methods and algorithms for Pareto front
selection are used: pairwise comparisons, based on
Carlin's lemma and Hermeyer’s theorem, evolutionary
search based on genetic algorithms, sector, and
segment [9, 13, 14].

The method of pairwise comparisons allows you
to fully isolate the Pareto front S® ={s} on convex sets

of options S . It involves a pairwise comparison of all
possible pairs of options s,veS and therefore has
a relatively high time complexity [13].

Weighting methods, in particular those based
on Carlin's lemma and Hermeyer theorem, allow
for the identification of incomplete fronts. In addition,
the method based on Carlin's lemma, like the
sector and segment methods, is designed for convex
sets of valid solutions [13]. When genetic algorithms
are used for multicriteria optimization of options,
their effectiveness is tested by solving two problems:
the ability of the algorithm to converge to the
Pareto front (convergence problem) and to distribute
options evenly across the Pareto front (propagation
problem) [9, 15]. One of the most widely used

genetic algorithms for solving the problem of forming
a Pareto front on admissible sets of super-large sizes
is the NSGA-Il non-dominant sorting algorithm.
Its features are: the ability to use binary data
representation in conjunction with classical genetic
operators (single-point crossing and point mutation);
the ability to use decimal data representation for
continuous optimization problems. The latter requires
the use of specific genetic operators, such as simulated
binary crossover and polynomial mutation.

To reduce the time complexity of the existing
methods, procedures for preliminary selection of
approximate Pareto fronts S’ using sector or segment
methods are used [13]. For such approximations,

the requirement fulfilled.

These procedures provide for the preliminary
determination of the options lying on the boundaries
of the approximate set of options S’ in the space

SEcS'cS must be

of local criteria k;(s), ] =1,m on the set of admissible
options S ={s}. Hyperplanes are drawn through the
points <k, kj >, j=1Lm lying on the boundary
of the set of admissible options S ={s} in the space
of local criteria k;(s), j =1,m which divide the options

into subsets that fall into the sector S/ > S® or segment
S; oS, respectively, and are clearly ineffective 5

s=s/US", s/Ns =@; (5)

s=s,US", S;NS =. (6)

In models of TP optimization problems, you can

use the interval representation of characteristics

k;(s)=[k; (s);k;(s)], j=Lm of the variants seS.

In this case, each of the characteristics will be

represented not by one value, but by two values
that define its boundaries. For some interval values

aefa;a’] and be[b ;b"] of the local criteria k;(s),

jzl,_m the rules for performing classical arithmetic
operations are determined by the relations [16-17]:

[c;c']=[a";a"]o[b";b"]; )
[a]+[b]=[a +b7;a* +b"]; (8)
[a]-[b]=[a" -b";a" -b7]; ©)
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[a]-[P]=[min{fa” -b™,a” -b*,a"-b",a" -b"};max{a” -b",a" -b*,a"-b",a" -b*}]; (10)
[al/[P]=[a]-[1/b";1/b7]. (12)

It is possible to compare the scores of design
options represented by non-overlapping intervals by
comparing their centers (mean values). For interval
values of local criteria that intersect, the estimate of
the generalized Hukuhari difference (interval difference,
gH-difference) can be used [18-21].

An analysis of publications devoted to solving
the problems of determining Pareto fronts in TP design
decision-making technologies shows that

— existing mathematical models and methods
are designed for conditions with point input data and
have significantly different computational complexity
and accuracy;

— features of modern decision support technologies
show a tendency to increase the universalization of
their mathematical support;

— it is possible to formulate requirements
for effective technologies for solving the problems
of forming and selecting subsets of non-dominated
alternatives.

In view of this, the aim of the article is to increase
the efficiency of TP computer-aided design technologies
by developing mathematical models of the tasks
selecting subsets of effective design solutions
with interval-specific characteristics of options.

a=[a +a']/2,a=[a"-a]/2,

The generalized Hukuhari differenceA;HB and

the comparison index y,, built on its basis for

Study results

Mathematical model
of the interval comparison task
The implementation of Pareto front detection
methods involves comparing options from the set

of valid ones S ={s} for each of the local criteria k;(s),
kj (s) =[k; () ki ()],

j=Lm. The comparison of the evaluations of design

presented in interval form

options according to local criteria, represented by non-
overlapping intervals, will be carried out by comparing
their average values (centers). If the intervals do
intersect, the choice will depend on their relative
position. To make a decision in such cases, some formal
indicator (additional criterion) is needed. To compare the
overlapping intervals, we will use the generalized
Hukuhari difference estimate as such an indicator.

Here are the values of the j-th characteristic of
the options s;,s, € S as intervals A=[k; (s;); k; (s;)] and
B=[kj(s);k;(s)] in the form A=[4; a&] and
B=[b; b] where 4 b, @ b - respectively, are the
centers and the radiuses of the intervals A and B :
b=[b +b"]/2,b=[b"-b]/2. (12)

intervals A=[4; a]and B=[b; b]are determined by
the relation [18-19]:

A;HB:[min{a’— b;a"—b'}; max{a —ba - b*}}z(é— 5;|§— 5|) (13)

7as =(a-D)/(a-D). (14)

In optimization problems with interval parameters
or comparison index variables y,, (14) the measure of
profit or risk is important when choosing an interval A
instead of Bonly based on the fulfillment of the
inequality a>b [20-21].

In multifactorial evaluation of design decisions,
local criteria may have different directions of desired
change. In maximization problems with positive
average returnd > b, the following situations of interval
intersection are possible [18].

Situation 1.1:
values of the intervalae 4 are worse than all values of
the interval be B, and the possible loss of decision

a <b™. In this situation, some

quality in the worst case is a—b <0. The ratio of the
worst-case loss to the average gain is:

L (AB)=(a - b)/(a-b)=1-7,,<0. (15)

Situation 2.1: a >=b". In this situation, some
values of the interval be B are worse than all values
of the interval ae 4.
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No losses in the worst-case scenario:

,y(AB)=(a"~b")/(4-b)=1-7,, >0. (16)

Situation 3.1; a* <b™. In this situation, all values
of the interval aeA4 are worse than some values
of the interval b e B. Negative value of the difference
a'—b" <0 reflects possible losses in the worst-case

scenario. The ratio of losses to average profit in the
worst case is determined by the ratio:

I,y (AB)=(a" = b") /(4= b)=1+7,, <0. (17)

Situation 4.1: a* >b*. In this situation, some
values of the interval a< 4 are better than all values
of the interval be B, and there are no losses in the
worst-case scenario:

l,.(AB)=(a" - b*)/(é— 6):l+7/A’B >0. (18)

In minimization problems, the interval A s

pre-selected compared to B, if a<b. Using the value
of y,s (14), the risk measure for such a choice can be

established. A significant differenceb—4 >0 indicates
a correct choice, but it is necessary to take into account
the type of intersection of the intervals A and B [18].

Situation 1.2: a” <b™. In this situation, for each
value of the interval be B there are such values of
acA,that a<b:

l,,(AB)=(a - b‘)/(é— 6):1—“B >0.  (19)

Situation 2.2: a” >b". In this situation, some
values of the interval be B better (smaller) than all
values of the interval ae 4. A positive difference

a —b™ >0 indicates possible losses in the worst case.
The ratio of the worst-case loss to the average profit
is given by the ratio:

1, (AB)=(a —b)/(a=b)=1-y,5<0. (20)

Situation 3.2: a" <b". In this situation, some
values of the interval b e B worse (larger) than all values
of the interval ae 4:

I, (AB)=(a"~b")/[(4-B)=147,,>0. (21)

Situation 4.2: a*>b". In this situation, some
values of the interval ae 4 are worse (larger) than
all values of the interval beB. A positive difference
a'—b" >0 indicates possible losses in the worst case.
The ratio of worst-case losses to average return is:

1,2 (AB)=(a" ~b")/(4-b)=1+7,5<0.  (22)

Using comparison indices based on the estimation
of the generalized Hukuhari difference (13)-(22),
we obtain mathematical relations for determining
Pareto fronts by the Carlin, Hermeyer, and pairwise
comparison methods [13] for problems with interval
values of local criteria.

Mathematical model of the problem
for the method based on Carlin's lemma
A subset of feasible options S effective on a convex

setS*®
combining optionss; that optimize each of the local

programming

based on Carlin's lemma can be found by

criteria jzl,_m by solving a parametric

problem  with  respect to the

parameters A,, j=1m:

ﬂjeAz{ﬂj:ﬂj>0 vi=1m, 2/11:1}, (23)
=

57 =arg max {[P‘ (s). P*(s)]

where 4;, j=1lm -

importance coefficients of
local criteria; P (x), P'(x)

bounds of the global performance criterion for the

— lower and upper

option seS; & (s), & (s) — lower and upper bounds

34 [:;<s>,:;<s)]}, 4

=t

of the value of the utility function of the i-th local
criterion, j=1,_m.

To compute the bounds of the utility functions
of local criteria, we wuse the classical relations
with parameters «; [17]:

k- (s)—k" 1" k*(s)—k" ] _
r:,-(s){L} , éf(S){L} . j=im, (25)

b w
k; —k;

b w
ki —K;




Cyuachuil cman HayKogux 00CIIONCeHy ma MexHoNo2it 8 npomuciogocmi. 2023. Ne 2 (24)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

where k; (s), kj(s) —lower and upper limits of the value
of the j -th local criterion for the design solution seS;
kf’, ki’ — the best and worst values of the criterion

on the set of valid options S .
To calculate the interval values of the total

operations of adding and multiplying intervals by the

numbers  ;, jzl,_m are performed. Addition of
intervals A=[4; a] and B:[B; 5] and multiplication

of an interval A=[4; a] by a certain number B3>0

utility function P (x), P'(x) in model (24), the are performed according to the relations [18, 21]:
A+B=[a +b;a +b ]=(a+b; a+b); (26)
BA=[min{pa"; pa‘'}; max{Ba ; pa‘}]=(B4; pa). 27)

In a reasonable time, it is possible to accurately
determine the front S® = S only for small sets of valid
solutions S ={s} [13].

A mathematical model of the problem
for the method based on Hermeyer's theorem
A subset of effective optionsS® on an arbitrary
set of admissible optionsS using this method can be
found by combining options s} that optimize each

of the local criteria k;(s), j=1,_m, by solving

a parametric programming problem with respect
to the parameters 4,, j =1m:
A eA={4;:4;>0 Vj=1m, _1/11:1}, (28)
=
s =arg max{[P"(s), P" ()] = min 47 (s).&7 ()]} - (29)

This method allows Pareto fronts on both convex
and non-convex sets of options S ={s}. Usually,
it is impossible to determine the exact front using
this method for sets of admissible options of large
sizes due to the high complexity of the parametric
programming problem (28)—(29) [13].

Experiment

Let us consider an example of solving the problem
of forming a Pareto front in the TP optimization problem
using the proposed models by the method of pairwise
comparisons. The basic version of this method involves
comparing different pairs of options from the set of
admissible options [13]. The first option is selected from
the set of valid options s e S, which at this stage is the
basis of the Pareto front S®. Each of the following
options v e S is compared with each of the front options

seSF (at the first step is the only option). If the current
option v e S is better than every variant of the previously

defined front S® at least by one of the indicators ki,
j=1m, it is added to SE. If some variant of the front

seS* is worse by all indicators ki, ] =1,m, than the

current option ve S, it is excluded from the front, and

the option ve S is added to the set S®. After reviewing
all the alternative options for building a TP, a full front
will be selected, containing all the effective options SF.
In this way, the set of permissible TP construction
options will be divided into two non-intersecting subsets
of effective ones S® and inefficient S® options:
S=SEUS , S* NS =9. (30)
This method allows you to identify complete
Pareto fronts on both convex and non-convex sets of
admissible options S . Based on the fact that the vast
majority of TP construction options generated in the
process of their design are inefficient (dominated),
it is proposed to use this method already in the process
of generating acceptable options seS. This will
significantly reduce computer time and memory
consumption in TP computer-aided design technologies.
Statement of the problem. The characteristics
of the set of options for acceptable design solutions
S={s}, i=18, are evaluated according to three

local criteria: the length of the technological
cycle k (s) —> min, reliability k,(s) > max and the
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above costs k;(s)— min. The characteristics of the

options are determined with an error ¢; ~0,05,

j=13: k, (s) €[3,601; 5,359]; k,(s)<[0,910; 0,993];
k,(s) €[9,683; 13,927] (Table 1).

It is necessary to determine a subset of options
that make up the Pareto front S® on the set of options
S ={s;} for acceptable design solutions.

According to the ratio (12) for local criteria k;(s),
i =1,3 we calculate the values of the centers IZJ. (s) and

radiuses IZJ (s) of the corresponding intervals (Table 1).

the second, it becomes necessary to check the
relative position of the corresponding intervals
in all the situations considered above (15)—(22). In order
to reduce the number of checks depending on
the direction of the desired change in the local criteria
by the relations (25) for «;=1 we calculate the
corresponding values of their utility (value) functions
&(s), &/(s), as well as the values of their centers
and radiuses éj (s), EJ (si), j=1,_3 (Table 2). Based
on the fact that ¢&,(s)— max, j=1,_m this  will

allow us to check the type of intersection of

Based on the fact that
the first and

third

local

it is desirable to minimize
criteria and maximize

intervals only for

Table 1. Characteristics of acceptable design options for TP construction options

the case of maximization -
situations 1.1-4.1, i.e. (15)—(18).

option | k(s) | k'(s) | k(s) [ k() | k(s) | ki(S) | Ky(S) | ky(S) | Ks(S) | Ki(s) | ky(8) | Ky (S)
S, 4,923 5,359 5,141 0,218 0,913 0,961 0,937 0,024 9,683 10,247 | 9,965 0,282
S, 3,601 3,890 3,746 0,145 0,922 0,970 0,946 0,024 13,179 | 13,927 | 13,553 | 0,374
S, 4,562 4,958 4,760 0,198 0,932 0,981 0,956 0,025 9,812 10,383 | 10,098 | 0,286
S, 4,412 4,902 4,657 0,245 0,936 0,985 0,960 0,025 11,149 | 11,790 | 11,470 | 0,321
Sg 4,405 4,894 4,650 0,245 0,935 0,984 0,959 0,025 12,666 | 13,387 | 13,027 | 0,361
Se 4,382 4,758 4,570 0,188 0,943 0,993 0,968 0,025 10,112 | 10,698 | 10,405 | 0,293
S, 4,476 4973 4,725 0,249 0,923 0,972 0,948 0,024 12,522 | 13,235 | 12,879 | 0,357
Sg 3,935 4,261 4,098 0,163 0,910 0,958 0,934 0,024 12,140 | 12,833 | 12,487 | 0,347
Table 2. Values of utility functions of local criteria for TP construction options
option | &(5) | &) | &) | &) | &) | &6) | &6) | &) | &6) | &) | &) | &)
S, 0,248 0,000 0,124 0,124 0,036 0,614 0,325 0,289 1,000 0,867 0,934 0,066
S, 1,000 0,836 0,918 0,082 0,139 0,723 0,431 0,292 0,176 0,000 0,088 0,088
S, 0,453 0,228 0,341 0,113 0,264 0,855 0,560 0,295 0,970 0,835 0,902 0,067
S, 0,539 0,260 0,399 0,139 0,310 0,904 0,607 0,297 0,655 0,504 0,579 0,076
Sg 0,543 0,265 0,404 0,139 0,299 0,892 0,595 0,296 0,297 0,127 0,212 0,085
Se 0,556 0,342 0,449 0,107 0,402 1,000 0,701 0,299 0,899 0,761 0,830 0,069
S; 0,502 0,220 0,361 0,141 0,161 0,747 0,454 0,293 0,331 0,163 0,247 0,084
Sg 0,810 0,625 0,717 0,093 0,001 0,578 0,290 0,289 0,421 0,258 0,339 0,082

To determine the composition of the front,
we will use the method of pairwise comparisons.

Taking into account that &;(s) — max, j:1,_3, we use
formulas (13)—(18) to calculate the value of the
generalized Hukuhari difference and comparison

indices for the utility functions of the first (Table 3),
second (Table 4), and third (Table 5) local criteria.

After analyzing the value of the logical function
True/False (T/F=1v0) for all possible pairs
<s,,s; >, we establish the ratio of strict preference

R;(S) on the set of acceptable design options S ={s;},

i =1,8 for each of the local criteria k;(s), ] =13:
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R(S)={<s,.5,> <5,,8 > <55, ><8,S ><8,, S ><S5, Sg >, <S5, 3 >,<S;, S5 >}, (31)

R,(S)={<s,s, > <5, ><5,8, ><8,,S;, ><85,,S >,<5,,S; > <85, S >}, (32)

R,(8)={<s,,s, > <8,,8,>,<5,8, ><8,5 ><8,8, ><5,,5; ><5S, S; >,<S, S, ><5S, S >}. 33)
Table 3. Values of indices for comparing pairs of options by local criterion K, (S)

Pair | 7(s;,S;) | Situations Indexes I, T/F | Pair | 7(s;,s;) | Situations | Indexes I, T/F
8§ =5, -0,392 21,41 1,392 0,608 1 S, =8, -0,053 11,31 1,053 0,947 0
s, >S, | -0711 21,41 1,711 0,289 1 | Ss>S | -0052 21,41 | 1,052 | 0,948 1
S, > S, -0,655 21,41 1,655 0,345 1 S > S, -0,055 11,31 1,055 0,945 0
s, >S; | -0,053 11,31 1,053 0,947 0 | s >=s | -0053 21,41 | 1,053 | 0947 1
S, > S; -0,051 21,41 1,051 0,949 1 Sg > S; -0,053 11,31 1,053 0,947 0
S, >S; -0,054 11,31 1,054 0,946 0 Sg > Sg -0,050 11,31 1,050 0,950 0
S, > S; -0,053 21,41 1,053 0,947 1 S; > S -0,054 21,41 1,054 0,946 1

Table 4. Values of indexes for comparing pairs of options by local criterion K, (S)

Pair 7(si,s;) | Situations Indexes |, | TIF Pair 7(s;,s;) | Situations Indexes |, T/F
S, >S, 0,024 21,41 0,976 1,024 1 S, > S, 0,026 11,31 0,974 1,026 0
S =5, 0,021 21,41 0,979 1,021 1 Ss > S 0,026 11,31 0,974 1,026 0
8 =9, 0,020 21,41 0,980 1,020 1 S; > S, 0,026 11,31 0,974 1,026 0
S =S; 0,024 21,41 0,976 1,024 1 S; > Sg 0,026 11,31 0,974 1,026 0
S, = Sg 0,024 21,41 0,976 1,024 1 Sg >~ S; 0,026 11,31 0,974 1,026 0
S| =S, 0,024 21,41 0,976 1,024 1 Sg > Sg 0,026 11,31 0,974 1,026 0
S, > Sg 0,022 21,41 0,978 1,022 1 S; »§ 0,026 11,31 0,974 1,026 0

Table 5. Values of indexes for comparing pairs of options by local criterion k;(s)
Pair 7(si,s;) | Situations | Indexes I, T/F | Pair 7(si,S;) | Situations | Indexes I, , T/F
S, >S5S, | 0,078 21,41 0,922 1,078 1 S, »S; | -0,043 21,41 1,043 0,957 1
S, >~ S; | -0,026 21,41 1,026 0,974 1 S; > S; | -0,026 11,31 1,026 0,974 0
S, >~S, | -0,026 21,41 1,026 0,974 1 S. >S5, | -0,024 21,41 1,024 0,976 1
S, >~ S; | -0,026 21,41 1,026 0,974 1 S; > S | -0,026 11,31 1,026 0,974 0
S, > Sg | -0,030 11,31 1,030 0,970 0 Sg =~ S; | -0,026 21,41 1,026 0,974 1
S, >~ S; | -0,025 21,41 1,025 0,975 1 Sg ~ S | -0,043 21,41 1,043 0,957 1
S, >~ S | -0,024 21,41 1,024 0,976 0 S; > S | -0,025 11,31 1,025 0,975 0

From the intersection of the binary relations of strict
preference (31)—(33), we establish the composition of
a subset of inefficient options S® and the Pareto front S©:

SE={s,, s, 8,}; S =1{s,, 5,5 S, 5} (34)

For the defined subset of inefficient options S and

the Pareto front S® the initial conditions are met (30):

—E
SFUS =S={s,,5,,5;, 5,5 S 57,5} »

e (35)
SENS ={s,, S, S 5.8 N{{S,, 83,8, } =D

It has been experimentally established that the
accuracy and time of solving such problems by methods
based on Carlin's lemma (23)-(24) and Hermeyer's
theorem (28)—(29) significantly depend on the step A4,

of changing the parameters 4,, jzl,_m. Thus, during

the solution of the problem with a uniform distribution
of the characteristics of the options by the method of

pairwise comparisons for |S|=100000 and m=3 the
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method based on Carlin's lemma identified 16.9%, and
the method based on Hermeyer's theorem identified

only 8.5% of solutions belonging to the Pareto front S©.

Conclusion

Based on the results of the analysis of the current
state of the problem of decision support in the process
of TP optimization, the following has been established:
the vast majority of problems are combinatorial and
multicriteria; the number of alternative options for
building TP increases sharply with the growth of their
complexity; the vast majority of options are inefficient
(dominated) and can be improved simultaneously by all
local criteria; existing mathematical models, methods
and algorithms are designed to solve problems with point
input data; evaluation of options by In recent years, there
have been publications on interval analysis, which
propose a relatively simple and rational formalization
of interval comparison operations in optimization
problems. This has created the prerequisites for
improving the efficiency of design decision support
technologies by developing mathematical models
of the tasks of selecting subsets of effective options,
taking into account the interval representation of
the values of local quality criteria.

It is proposed to compare the evaluations of design
options according to local criteria, which are represented
by non-overlapping intervals, by comparing their centers
(average values). To compare overlapping intervals,
it is proposed to use comparison indices based on the
generalized Hukuhari difference as a formal indicator
(additional criterion). Depending on the type of
optimization criterion and the relative position of the
intervals, such indices have the value of an indicator of
the degree of gain or risk, when one of the intervals is
selected only on the basis of comparison of their centers.
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MATEMATHUYHI MOAEJII BUSBHAYEHHA ITAPETO-®POHTY
JJI51 BAPIAHTIB IOBY1IOBU TEXHOJIOI'TYHUX ITPOLECIB
B YMOBAX IHTEPBAJIbHOT'O IIOJJAHHS JIOKAJIBHUX KPUTEPIIB

IIpenMeToM NOCTIUKEHHSI € MPOLECH MiATPUMKH NPUHHSATTS pillleHb Yy 3ajadax onTumizaii texHomorignux npoueciB (TII) na
eTamax iX IPOEKTYBaHHS 4YM pEiHKUHIpUHry. MeTa po6oTH — miABUIICHHS e(QEKTHBHOCTI TEXHOJOTIH aBTOMAaTH30BaHOTO
npoektyBanHs TII 3 monmomoror po3poOJieHHs MaTeMaTHYHHX MOJeNel 3aqad BUIUICHHS IiIJMHOXUH e(pEeKTHBHHX IPOEKTHHX
pillIeHb 3 IHTEPBAIBHO 33aHMMH XapaKTEPUCTHKAMH BapiaHTIB. Y CTaTTi pO3B’S3yIOTHCS TaKi 3aBAAHHS: OIJIAJ i aHAI3 Cy4acHOTo
CTaHy MpoOJeMu MIATPUMKH HPUHHATTS pimieHb y 3amadax ontuMizanii TII Ha eramax iX HpPOEKTYBaHHS YM PEIHKUHIPUHTY;
JIEKOMITO3UIIis MPOOJIeMH MPUHAHATTS MPOEKTHUX pilieHb; (opMmanizamis 3amadyi MOpIBHAHHS iHTepBamiB i BugileHHs [lapero-
(hpOHTIB 13 BUKOPUCTAHHAM 1HIEKCIB MOPIBHSAHHSA Ha OCHOBI y3aralbHEHOI pi3HHLI XyKyXapH; po3poOieHHs MaTeMaTHYHOI MOAEL
3ajayi U1 METOAy Ha OCHOBI JieMH KapiiHa; cTBOpeHHS MaTeMaTH4HOI MOJeNi 3a/1adi A1 METOAYy Ha OCHOBI TeopeMu [epmeepa;
BU3HaueHHs (poHTy ITapero B 3ama4i onrumisawii TIT MeToOM NapHUX MOPIiBHSAHB. BHKOPHCTOBYIOTBCS Taki MeTOAH: CHCTEMHUIH
MmiAxig, Teopii cucrteM, Teopii KOPUCHOCTI, Teopil MPUHHATTS pilIeHb, CHCTEMHOTO MPOEKTYBAaHHS, ONTHUMI3allii Ta JOCIiIKECHHS
omepaniii. PesyabraTn. BuzHaueHo Micue Ta 3B’SI3KM 3amadi BU3Ha4deHHS [lapero-QpoHTYy B mpoOiieMi NMPHUHAHATTS MPOEKTHUX
pimenp. DopMatiz3oBaHO MPONEAYPY INOPIBHSHHSA IHTEpBANiB JUIs BUAUICHHS [lapeTo-(QpoHTIB i3 BUKOPHCTAHHSAM IHIEKCIB
MOPIBHSHHS Ha OCHOBI y3arajbHeHOi pi3HHII XyKyxapu. Po3poOieHo MmaremaTwuHi Mozeni 3anmadi BunpineHHs Ilapero-¢poHTiB
MeToJaMi Ha ocHOBi Jiemn Kapiina i teopemm I'epMmeepa s BHIanKy iHTEpBaJIbHOTO MOAAHHS 3HAYCHD JIOKAIBHHX KPUTEPIiB.
HaBeneHo npukinan ¢opmysanHus IlapeTo-hpoHTY B 3amadi onTuMizamii TEXHOJIOTIYHOIO HPOIECY METOJOM IapHUX IOPIBHSHB 3a
MOKa3HUKAMH TPUBAJIOCTI TEXHOJIOTIYHOTO IMKITY, HAAIHHOCTI Ta HaBeIeHMX BHUTpaT. BHCHOBKH. 3ampornoHOBaHI MaTeMaTHYHI
MOZENi PO3IIMPIOIOTH METOJOJIOTIUHI OCHOBM aBTOMAaTH3alil mpoueciB npoektyBaHHsS TII. BOHH yMOIIMBIIOIOTH KOPEKTHE
CKOPOUYCHHSI MHOXXHHHM aJIbTEPHATUBHUX BapiaHTiB moOymoBu TII mns ocraTouHoro BHOOpY 3 ypaxyBaHHSM 3HaHb, JOCBITy
MPOEKTYBANBHHKIB 1 (haKTOPIB, 110 BAXKKO MiATal0Thes popmarizanii. [[pakTHuHe BUKOPUCTAHHS MAaTEMAaTHYHUX MOJIEINCH MiIBUIINTD
CTYIMiHb aBTOMATH3aLli] MPOLIECIB MPOEKTYBAHHS YK KEPYBaHHS, CKOPOTHUTH Yac MPUHHATTS PillleHb B yMOBaX HEMOBHOI BU3HAYEHOCTI
BXIJIHUX JaHUX 1 TapaHTYBaTUMeE SIKiCTh LIUX JAHUX 3aBASKH iX BUOOPY 3 MiIMHOXHMHH e(peKTUBHUX.

Kir04oBi cjioBa: TEXHOJOTiYHI MPOIECH; aBTOMATH3allisl NMPOEKTYBAaHHSI; ONTUMI3allis; PEIHXHUHIPUHT; OaraToKpuTepiaibHe

OILIIHIOBAHHS; MIATPUMKA IPUAHATTS pieHsb; [lapeto-¢poHT.
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