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COMPARISON OF DATASET OVERSAMPLING ALGORITHMS
AND THEIR APPLICABILITY TO THE CATEGORIZATION PROBLEM

The subject of research in the article is the problem of classification in machine learning in the presence of imbalanced classes
in datasets. The purpose of the work is to analyze existing solutions and algorithms for solving the problem of dataset imbalance
of different types and different industries and to conduct an experimental comparison of algorithms. The article solves the
following tasks: to analyze approaches to solving the problem — preprocessing methods, learning methods, hybrid methods
and algorithmic approaches; to define and describe the oversampling algorithms most often used to balance datasets; to select
classification algorithms that will serve as a tool for establishing the quality of balancing by checking the applicability of the
datasets obtained after oversampling; to determine metrics for assessing the quality of classification for comparison;
to conduct experiments according to the proposed methodology. For clarity, we considered datasets with varying degrees
of imbalance (the number of instances of the minority class was equal to 15, 30, 45, and 60% of the number of samples
of the majority class). The following methods are used: analytical and inductive methods for determining the necessary
set of experiments and building hypotheses regarding their results, experimental and graphic methods for obtaining a visual
comparative characteristic of the selected algorithms. The following results were obtained: with the help of quality metrics,
an experiment was conducted for all algorithms on two different datasets — the Titanic passenger dataset and the dataset for
detecting fraudulent transactions in bank accounts. The obtained results indicated the best applicability of SMOTE and
SVM SMOTE algorithms, the worst performance of Borderline SMOTE and k-means SMOTE, and at the same time described
the results of each algorithm and the potential of their usage. Conclusions: the application of the analytical and experimental
method provided a comprehensive comparative description of the existing balancing algorithms. The superiority of
oversampling algorithms over undersampling algorithms was proven. The selected algorithms were compared using
different classification algorithms. The results were presented using graphs and tables, as well as demonstrated in general using heat
maps. Conclusions that were made can be used when choosing the optimal balancing algorithm in the field of machine learning.
Keywords: categorization; machine learning; methods of balancing; data generation methods; dataset; unbalanced datasets.

Introduction

Unbalanced data classification is a problem in
which the proportional sizes of the classes in a dataset
differ significantly. In this case, at least one class has
only a few samples — the minority class — and the rest
falls into another class — the majority class (Fig. 1).

Fig. 1. An example of an unbalanced data problem [1]

This problem affects the performance of the
classifier, which can be seen from the fact that when
training on an unbalanced dataset, the algorithm begins
to adjust to the influence of a more numerous class,

which causes a shift in accuracy. This means that
machine learning decisions are made with different
efficiency on the majority and minority classes, and
the classifier distinguishes samples of certain classes
with greater accuracy, namely samples of the majority
classes, and the results of identifying samples with
low accuracy are in the minority classes. This is because
classifiers strive to achieve the best possible results
during training. Since "normal” observations are
predominant in number, ML algorithms focus on
learning the behavior of the "normal" class [2].
Consequently, the model can achieve greater accuracy
due to the fact that it pays more attention to studying
the properties and identifying the majority class rather
than a uniform distribution of powers. This is because,
for example, in very unbalanced datasets, the algorithm
will have good accuracy even if it always categorizes
any instances as members of the majority class [3].

One of the main obstacles in learning from
imbalanced data is that the minority class is usually the
class of interest, which is often the case in applications
such as medical diagnosis, face recognition, tampering,
error, or fraudulent transaction detection [5]. The most
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popular methods wused to eliminate or ignore
data imbalance are synthesizing new instances of the
minority class, oversampling the minority class,
undersampling the minority class, and a method of tuning
the cost function of learning algorithms to make
misclassification of minority class samples more
important than misclassification of majority class
samples [6]. This makes it possible to achieve a more
unbiased attitude of ML algorithms to classes.

Analysis of recent research and publications

The problem of unbalanced data distribution is quite
common in applied problems. There are three main
approaches to classification based on unbalanced data.

Also, approaches to solving imbalance problems in data
classification are sometimes divided into the following:
preprocessing methods, cost-sensitive learning methods,
hybrid methods, and algorithmic approaches.

The study will focus on methods of preprocessing
datasets. Below is a diagram illustrating the hierarchy
of approaches (Fig. 2).

Pre-processing approaches are those that are
performed on the training data. They are divided into
Sampling Methods and Feature Selection and Extraction.

Pre-processing methods are used to obtain more
balanced training data. Pre-processing approaches are
also called data-driven approaches and work by directly
acting on the data space in an attempt to reduce the
imbalance ratio between classes.

Imbalanced data solutions
Preprocessing Algorithmic Cost Ensemble
Techniques Approaches Sensitivity Learning
Over Under SVM and Clustering Feature One class Bagging Boosting
sampling sampling its variants Selection learning Based Based
*SMOTE [10] «IRUS[37]  #MTD-SVM  eClusteringby  »DaFs[54] ®0neclass Cost sensitive #'0%er = ShOTEGoost
« NEBag [31] [42] technique jearning learning [56] B.ag ging [64] [67]
« MSMOTE [33] +PSS-SVM[44]  similarity- 51 « AdaCost [59] o Under: & MEMOTER G2t
« MIWMOTE [35] * SOCP-SVM based Bagging [65]  [33]
» SMOTE + PSO [47 hi hical » Under Over-  * RUSBoost [68]
+C5[39) * NBSVM [4§] erarctisca Bagging [64] * DetaBoost.IM
+ ACO-SVM decompositio o Votes [66] (6]
{411 n, outlier
« EaSVM aad detection
EaSVM=[45]  [49].
«FRBCSs, 2
tuple based
genetic
algorithms,
genetic fuzzy
systems. [50]
Fig. 2. Classification of approaches for unbalanced data [7]
Sampling Methods is a simple and popular approach Another  approach, Feature Selection and

for balancing the class distribution of training data.
The original data space is balanced by using one
of the methods to eliminate redundant instances
or generate somehow insufficient information in
the sample. The main idea of resampling data instances
is to obtain balanced classes. This process is repeated
until a balanced dataset is achieved. The resampling
approach is based on techniques that eliminate the
imbalanced set by adding or removing samples from the
dataset to reduce the biased behavior of the unbalanced
dataset, thus resizing the training dataset.

Extraction, is the selection of a subset of relevant
features or attributes from large data sets. It helps
to improve the performance of the classifier.

The sampling approach, in turn, is divided into t
hree more variants:

— undersampling of the majority class — creating
a subset of the original data by removing selected
samples from the class, i.e., selecting the dominant
data from the majority class and selecting a number
of examples of each category that is too large compared
to the others (Fig. 3);
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— oversampling of the minority class — creating a
superset of the original dataset, or forming new samples
from existing ones, or replicating existing ones, i.e.
replicating examples of the minority class and artificially

"reproducing” examples of all categories with a smaller
presence (Fig. 3);

— hybrid methods that combine the previous two
approaches for a more natural distribution of data.

Undersampling

Samples of
majority class

Original dataset

Oversampling

Copies ofthe [
minority class
s

Original dataset

Fig. 3. Undersampling and oversampling [8]

The simplest methods of preprocessing a dataset
are  Random Undersampling (RU) and Random
Oversampling (RO). The main disadvantage of random
oversampling is that it can discard potentially useful data
that is important for training. On the other hand, for
random oversampling, overfitting can occur, as this
process generates exact copies of existing instances.
To prevent this situation, other solutions have been
proposed. For example, in the SMOTE algorithm
(Synthetic ~ Minority ~ Oversampling ~ Technique),
"artificial* minority class instances are generated
by interpolating several randomly selected adjacent
minority instances (nearest neighbors) to increase the
number of minority class instances in the training set.
Nearest neighbors are found by Euclidean distance.
The SMOTE algorithm generates the same amount of
synthetic data for each original minority instance without
considering the neighboring examples from the majority
classes. This can increase the frequency of overlap
between classes. Therefore, some variants of the method
have been proposed to reduce the noticeable limitations,
namely Borderline-SMOTE, SMOTE SVM, etc.

0o 0s 10 15 20

Overview of oversampling algorithms

Outlying minority class

One way to deal with the problem of unbalanced
data is to create new samples in underrepresented classes.
The most naive strategy is to create new samples by
randomly selecting and replacing the current available
samples [9]. In the RO algorithm, the selected samples
are simply copied randomly in order to increase the
importance of the minority class.

As a result, the majority class does not dominate the
others during the learning process. Thus, all classes are
represented by the decision function. In addition, Random
Oversampler allows to select data of mixed type.

The SMOTE algorithm synthesizes new minority
instances between existing (real) minority instances.
SMOTE draws lines between the instances of the
minority class and then represents the new, synthetic
minority instances somewhere on these lines [10].
If there are instances in the minority class that are distant
and appear in the majority class, this creates a problem
for SMOTE. The algorithm can start creating a linear
bridge with the majority class (Fig. 4).

Fig. 4. Disadvantage of the SMOTE algorithm [4]
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In this regard, SMOTE offers three additional
options for creating samples: Borderline-SMOTE,
SMOTE SVM, and SMOTE k-means. These methods
focus on samples near the boundary of the optimal
decision function and will create samples in the direction
opposite to that of the nearest neighbor class.

Recent work on data imbalance has pointed
out some important issues related to performance
degradation, namely:

— the presence of small disjuncts; this means that
the minority class can be divided into many subclusters
with very few examples in each, surrounded by examples
of the majority class [11];

— overlap between classes; there are often examples
from different classes with very similar characteristics,
in particular if they are located in areas around the
boundaries of solutions between classes.

The problem mentioned in the previous paragraph
can be partially solved by the Borderline-SMOTE
algorithm. It divides samples into three groups (Fig. 5).
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Fig. 5. Types of samples Borderline-SMOTE [11]

These groups are:

— safe samples — placed in relatively homogeneous
areas;

— noisy samples from one class present in safe
areas of another class;

— borderline samples are located in the area
surrounding the class boundaries, where either the
minority and majority classes overlap or the samples
are very close to a complex boundary shape.

The Borderline-SMOTE algorithm selects a point
that is bordered by another class (but not noise) and
performs the same actions as a regular SMOTE.

In SVM-SMOTE, the borderline is approximated
by support vectors after training the SVM classifier
on the training set. Synthetic data is created randomly

along the lines connecting each support vector of the
minority class with a number of its nearest neighbors.
The peculiarity of SMOTE SVM compared to
Borderline-SMOTE s that it synthesizes more data away
from the area of overlapping classes. It focuses more
on the areas where the data is separated [12]. Below is
a comparison of the SMOTE algorithm types (Fig. 6).

Original set SMOTE
5 5
0 0
-5 -5
= 0 5 = 0 5
Borderline-SMOTE SVM-SMOTE
5 5
. e , ° o e
-5 -5
3 0 5 5 0 5

Fig. 6. Distribution of samples after applying SMOTE algorithms

Even from the figure, it can be seen that
SVM-SMOTE reinforces samples on all minority class
boundaries, unlike Borderline-SMOTE, which reinforces
class boundaries only on the border with another class.

The k-means-SMOTE method uses a simple and
popular  k-means clustering algorithm combined
with SMOTE resampling to rebalance the data sets.
It manages, unlike conventional SMOTE, to avoid noise
generation by resampling instances only in safe areas.
Furthermore, its focus is on both inter-class imbalance
and intra-class imbalance, dealing with the problem
of small disjuncts by expanding small minority areas.
SMOTE can generate minority samples in majority areas
in the presence of noise. Most noiseless samples
are generated in already dense minority areas, which
contributes to the intra-class imbalance [13].

The k-means algorithm works by iteratively
repeating two instructions. First, it assigns each
observation to the closest of the k cluster centroids.
Secondly, it updates the position of the centroids so that
they are centered between the observations assigned
to them. The algorithm converges when no more
observations are assigned. It is guaranteed to converge to
a typical local optimum in a finite number of iterations.

ADASYN is similar to SMOTE and its derivative
algorithm, but it has an important difference. It shifts
the sampling space (i.e., the probability that any
particular point will be selected for copying) to points
that are not located in homogeneous neighborhoods.
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The main idea of ADASYN s to create
an appropriate number of synthetic alternatives for each
observation belonging to the minority class. The concept
of "appropriate number" depends on how difficult it is
to study the original observation. In particular,
an observation from a minority class is "hard to learn"
if there are many examples from the majority class
with features similar to that observation.

Conducting the experiment

Two datasets were chosen for the experiment:
"Credit Cards" [14] and "Titanic" [15].

They are different tasks with different types
of data, which made it possible to analyze the
performance of different oversampling algorithms
on different tasks. Some of them were immediately
unbalanced, some were not. Therefore, to make the
experiment more clear, we decided to modify the
number of instances in the original training datasets.
For each dataset, four initial modifications were created
that had exactly the same imbalance, where the
number of samples in the minority class was equal
to 15, 30, 45, and 60% of the majority class. Based on the
results obtained, comparative tables, graphs, and
diagrams were created to show the degree of accuracy
achieved by the algorithms after eliminating the
imbalance in different ways. For comparison purposes,
the models were also trained on the original datasets
to understand how much the chosen approaches improve
the training efficiency of ML algorithms.

For some datasets, features were normalized.
A scaling technique in which values are shifted and
scaled so that they ultimately range from 0 to 1 [16].
Below is the normalization formula:

' X - Xmin
= Xmax_Xmin , (1)

where X, and X, — the maximum and minimum

max
values of the function, respectively.

For many features represented by strings or lists
(e.g., class A, B, and C), normalization cannot be
applied, so we had to use the one-hot encoding algorithm.
This is a method of transforming data to prepare it
for the algorithm and get a better prediction.
With one-hot, each categorical value is converted into
a new categorical column, and these columns are
assigned a binary value of 1 or 0 [17], [18].

The Credit Cards dataset was chosen because it
represents an important application problem: companies

want to recognize fraudulent credit card transactions
so that their customers are not charged for goods they
did not purchase. The dataset contains a set of two types
of transactions: normal and fraudulent.

This dataset contains transactions that occurred
over two days in September 2013 on European
credit cards, where 492 frauds occurred out of
284.807 transactions. The dataset is very unbalanced,
with the minority class (fraud) accounting for 0.172%
of all transactions. It contains only numeric input
variables, which are the result of a PCA (principal
component analysis) transformation. Due to confidentiality
issues, the authors are unable to provide the original
features and additional information about the data.
The features are represented as V1, V2, ... V28 and
are the principal components obtained by PCA.
The only features not transformed by PCA are "Time"
and "Quantity". The "Time" function contains the
seconds elapsed between each transaction and the
first transaction in the dataset. The "Quantity" function
(the number of transactions) can be wused for
cost-dependent learning. The "Class" function is
a response variable, and it takes the value of 1 in case
of fraud and 0 otherwise.

The "Titanic" dataset was chosen first as one
of the most famous datasets. It is a dataset of passengers
of a ship that was in the center of a catastrophic event.
The main task of the models is to predict whether
a passenger will survive based on data about their
tickets, financial status, and relatives.

The dataset contains the following features:

— survival is a class variable, 0 indicates that
the passenger did not survive, and 1 indicates that he
or she did,;

— pclass — 1, 2, 3 — passenger’s ticket class;

— sex — sex of the passenger;

— age — passenger’s age;

— sibsp — siblings / spouses (number of brothers,
sisters and spouses on board);

— parch — parents / children (number of parents
and children on board);

— ticket — ticket
unnecessary information);

— fare —ticket price;

— cabin — cabin number;

— embarked — port of embarkation.

This dataset does not solve any applied problem,
but the categories of passengers are the most random,
S0 it was interesting to analyze this dataset.

number (deleted field as
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To check the quality of the datasets created
by oversampling, they were examined and tested
by training various ML algorithms. The study used
classification algorithms related to supervised machine
learning. The selected algorithms were given a training
set of features and a test set of training labels known
in advance. The models were trained on this data,
and during model validation, they received a test
dataset without labels.

The following classification models were used:

— logistic regression;

— decision tree;

— support vector machine;

— k-nearest neighbors;

— naive Bayesian classifier.

To analyze and compare the results obtained, it is
necessary to use certain metrics. The main metric for
data analysis is accuracy (Fig. 7).

relevant elements
1

false negatives true negatives

true positives false positives

retrieved elements

Fig. 7. Schematic representation of metrics

Model accuracy, or Accuracy, determines
how many correct predictions are made out of those

generated by the model. In other words, it can
be represented by the following formula:
true positive +true negative
Accuracy = — posit g1 — (2
true positive +true negattive + false positive + false negative
where true positive is the number of correctly Each modification was subjected to oversampling,
predicted items; namely six variants. The model was also trained

unpredicted items;

false positive
predicted items;

false negative is the number of incorrectly
unpredicted items.

The study involved training five machine learning

models on three datasets. Each set was presented in four
modifications (with 15, 30, 45, and 60% imbalance).

is the number of incorrectly

the experimental datasets. A total of 280 experiments
were conducted, the results of which are documented
in the form of tables, graphs, and bar charts.

It was decided to present only two tables
(one modification of 15% of each dataset) and to include
only these results in the report, as they most clearly
reflect the experiment. The first one shows the results
on the Credit Cards dataset.

Table 1. Model accuracy (Credit Cards dataset, 15% modification)

O\Srf)?ri]tqﬁrl#ng Basic Borderline K-Means SVM Random
g _ unbalanced ADASYN SMOTE SMOTE SMOTE SMOTE over-

Model training dataset sampler
algorithm
Decision Tree 0.995 0.995 0.995 0.995 0.995 0.995 0.995
Classifier
K-Neighbors 0.975 0.990 0.985 0.980 0.990 0.985 0.985
Classifier
Logistic
Regression 0.915 1.000 1.000 0.975 0.975 1.000 0.975
Naive Bayes 0.990 0.980 0.980 0.995 0.995 0.990 0.990
Classifier
SVM Classifier 0.975 0.995 0.995 0.990 0.995 0.995 1.000
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As you can see from the table, the results are quite
different. Some algorithms, such as the k-nearest
neighbor classifier, logistic regression, and support vector
machine, improved their results, while the decision
tree showed exactly the same results on all algorithms,

Table 2. Model accuracy (Titanic dataset, 15% modification)

and the naive Bayesian classifier generally did a better
job on unbalanced data.

The following table shows the results of model
training on the "Titanic" dataset (Table 2).

O\;?gg?ﬂ?:ﬁrlrl]ng untE; ?;ir?ce d ADASYN Borderline KMeans SMOTE SVM Rgcgr(_)_m
Mode_l training dataset SMOTE SMOTE SMOTE sampler
algorithm
DecisionTree 0.849 0.698 0.864 0.849 1.000 0.849 0.834
Classifier
K-Neighbors 0.840 0.840 0.837 0.850 0.833 0.861 0.800
Classifier
Logistic 0.810 0.852 0.867 0.849 0.909 0.972 0.897
Regression
Naive Bayes 0.710 0.812 0.816 0.831 0.816 0.767 0.700
Classifier
SVM Classifier 0.849 0.879 0.906 0.993 1.000 1.000 0.997

Below are graphs showing the accuracy of the
classifiers on datasets with varying degrees of imbalance
that have been oversampled, as well as the original
dataset, which has not been corrected in any way. Figure 8

demonstrates how the decision tree works on data that
has been aligned in different ways. The graph shows
the benefits of using oversampling methods compared
to the baseline dataset on the "Credit Cards" dataset.
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Fig. 8. Advantages of using decision tree algorithms on a 15% dataset

As can be seen from the figure, the Credit Cards
dataset shows neither advantages nor disadvantages
of using oversampling algorithms. Let’s show the same
graph for the logistic regression for the sake of
representativeness (Fig. 9).

We can see the stable advantages of using
each of the oversampling algorithms. The accuracy

of logistic regression for the 60% dataset is
shown in Fig. 10.

As can be seen in the graph, oversampling
algorithms are most effective when there is a strong
imbalance. After conducting all the experiments and
calculating the average benefit of using each algorithm,

we have the results shown in Fig. 11.
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Fig. 9. Advantages of using algorithms with logistic regression on the 15%th dataset
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Fig. 10. Advantages of using logistic regression algorithms on 60% of the dataset
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Fig. 11. Heat map of the benefits of using oversampling on the "Credit Cards" dataset
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After creating a heat map for the "Titanic" dataset,
we have the results shown in Fig. 12.
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Fig. 12. Heat map of the benefits of using oversampling
on the "Titanic" dataset

The bar charts show the absolute increase in
accuracy of each model compared to the models trained
on the unbalanced datasets.

The decision tree demonstrated an increase only
for the "Titanic" dataset, but it was quite noticeable
(up to 16%). For all other datasets, there was no
difference compared to the original dataset, and for
the Salary dataset, ADASYN even worsened the result,
but by less than 1%.

The k-nearest-neighbors algorithm did not perform
as well, and for the "Titanic" dataset, oversampling
significantly worsened the results. However, as for
the Credit Cards dataset, all balancing algorithms
yielded an increase in accuracy of 1-2%. This is very
noticeable, given that the accuracy of the models
before the modification also had a performance of
90% accuracy or more.

Logistic regression yielded very satisfactory results
of 15%. It improved the accuracy of both datasets
after they were modified for balancing. SVM-SMOTE
improved the accuracy of the model on the Titanic dataset
by 16%. For the "Credit Cards" dataset, ADASYN,
SVM-SMOTE, and Borderline-SMOTE performed
well at all degrees of imbalance, and for the dataset with
only 15% minority class, the accuracy increased by 8%.

For the naive Bayesian classifier, only the "Titanic"
dataset showed much better results with an increase
of 4 to 12%. For the most part, the accuracy has not
changed. The only exception is the k-means-SMOTE

algorithm, which consistently improved the results
of the algorithm on the "Credit Cards" dataset. Although,
on the contrary, this algorithm was the only one
that began to deteriorate the classifier’s performance
on the "Titanic" dataset.

For the SVM classifier, Random Oversampling,
k-means-SMOTE, and regular SMOTE showed the
greatest stability on the "Titanic" dataset, sometimes
providing almost 30% increase in accuracy, which
allowed us to obtain a 100% accurate model. For "Credit
Cards", only ADASYN had such an accuracy, and
SVM-SMOTE, Borderline-SMOTE, and regular SMOTE
performed quite well, which helped to achieve
an accuracy of 99.5-100%.

Bar charts show the absolute increase in accuracy of
each model compared to models trained on unbalanced
datasets. Analyzing the research, | would like to note
that there were two different datasets — "Credit Cards"
and "Titanic" — that belonged to different types and
behaved differently during the training process.

The "Titanic" dataset is less applicable, and
models trained on unbalanced datasets typically yielded
70-90% accuracy. Oversampling algorithms gave a huge
increase in accuracy (in some cases up to 100%).

The second dataset was the "Credit Cards" dataset,
which showed excellent results. Even with an unbalanced
dataset, its accuracy rates reached 90% and higher.
As for the balancing algorithms, they performed
differently, but in most cases they still improved
the results by 1-2%, which is an excellent result given
such accuracy.

Conclusions

In the course of the study, the balancing of
unbalanced datasets was carried out using various
algorithms and applied to solving categorization
problems. The paper analyzes the problems of a given
domain and methods of balancing unbalanced datasets,
and considers and investigates six balancing algorithms:
Random Oversampling, SMOTE, Borderline-SMOTE,
k-means-SMOTE, SVM-SMOTE, and ADASYN.

All the experiments were conducted on two
datasets "Credit Cards" and "Titanic", which
demonstrated  different performance. The results
of the study are presented in the form of graphs, tables,
and bar charts representing the accuracy indicators.

The best results were obtained for the "Credit cards"
dataset. The data was well selected, the accuracy of the
models increased after using almost all algorithm
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variants, the completeness increased significantly,
but most importantly, the accuracy of the minority
class improved. This indicates that it was possible
to get rid of the problem without losing the accuracy
of the model as a whole.

For the "Titanic" dataset, where there is no clear

algorithms show a positive trend, and the best RO
accuracy is achieved by SMOTE and k-means-SMOTE
on the SVM classifier model.

The obtained results can be applied if it is necessary
to use an unbalanced dataset or for further research
in the field of machine learning.

dependency (unlike "Credit Cards"), many of the
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IHOPIBHAHHA AJII'OPUTMIB OBEPCEMIIVIIHI'Y HABOPIB TAHUX
TA IX 3BACTOCOBHOCTI JJIsI TPOBJIEMUA KATET OPA3AIII

IIpeameTom jocimipkeHHs € mnuTaHHA Kiacudikanii B MalIMHHOMY HaBYaHHI 3a HAsBHOCTI He30alaHCOBAaHOCTI KJaciB
y Habopax naHux. MeTa po6oTH — aHaNi3 HasBHUX PIlIeHb 1 AITOPUTMIB PO3B’s3aHHA NpoliieMn He30alaHCOBaHOCTI B Habopax
JAaHWX PI3HUX THUIMIB 1 PI3HUX ramy3eld Ta eKCIepUMEHTAIbHE MOPIBHSHHA aJTOPHTMIB. Y CTaTTi BHKOHYIOTbCS TaKi 3aBIAaHHA:
aHami3 MiAXOMIB 10 BHPINICHHA MNPOOJEMH — METOAM TOMEPEIHBOT0 OOpPOOJICHHS, METOAM HaBYaHHS, TiOpUAHI METOAM
I QJTOPUTMIYHI IiIXOAN; BU3HAUEHHS Ta OINC aITOPUTMIB OBEPCEMILIIHTY, [0 HaifyacTille BUKOPHCTOBYIOTHCS AT OalaHCyBaHHS
HaOOpiB JaHMX; BHOIp anroputMmiB kiacudikauii, ski OyXyTb CIyryBaTH IiHCTPYMEHTOM YCTAaHOBIICHHS SIKOCTi OallaHCyBaHHS,
NepeBipSI0YN 3aCTOCOBHICTh OTPUMAHHX ITICJISl OBEPCEMILTIHTY HAOOpPIB JaHUX; BU3HAYECHHS METPUK OLIHKH SIKOCTI Kiacudikarii 1yt
MOPIBHSIHHS; TPOBEICHHA EKCIIEPUMEHTIB 3a 3alPOIIOHOBAHOI0 METOAMKOIO IJISI BUOKPEMJICHHS ONTHMANBHHUX 1 HEONTHMATbHHX
anroputMiB. [IIsi HAOYHOCTI PO3IIISIIAIMCs HaOOpH TaHUX i3 PI3HUM CTYINIEHEM He30allaHCOBAaHOCTI (KUIBKICTh €K3eMIUIIPIB Kilacy
MeHIIOoCTi fopiBHIoBana 15, 30, 45 Ta 60% Bix KUTBKOCTI 3pa3KiB Kiacy OUTBIIOCTI). BHKOPHCTOBYIOTECS Taki MeTOAM: aHATITHIHHN
Ta IHAYKTUBHHH — 3 METOI0 BH3HA4YeHHS HEOOXiZHOro HaOOpy EKCHEepHMEHTIB i MOOyJOBH TimoTe3 MIOA0 iX pe3ylbTaTiB;
eKCIIepUMEHTAIBHNIH Ta rpadiqHmi — UIT HA0YHOI MOPIBHSUIBHOI XapaKTEePHCTHKU OOPAHUX aJITOPUTMIB. 3100yTO Taki pe3yJbTaTH:
3a JIOTIOMOTOI0 METPHK SIKOCTI JOCIHIIKEHO BCI aJlTOPUTMH HA JBOX PI3HMX JaTaceTax — macaxupiB "TuraHiky" Ta 3 BUSBICHHA
HIaxpaiChKUX TpaH3akLiii y OaHKIBCHKMX paxyHKax; IOBEJEHO Haikpamly 3actocoBHicTh anroputMmiB SMOTE ta SVM SMOTE
i BusBIEeHO Hairipmi nokasuuku y Borderline-SMOTE ta k-means-SMOTE; onucaHo pe3yjibTaTH KOKHOIO 3 alrOpUTMiB
i moTeHIiand iX BHUKOPHCTaHHA. BHCHOBKH. 3acTOCYBaHHS aHANITHYHOTO Ta EKCIICPHMEHTAIBHOIO METOJY HaJalo BHYEPIHY
MOPIBHAIIBHY XapaKTePHCTHKY alrOpUTMIB OamaHcyBaHHS. J[OBEIEHO IepeBary aJrOPHTMIB OBEPCEMIUTIHTY HAJ alrOpUTMaMu
aHzepceMIUTiHTy. BOHM mopiBHIOBaMMCS 3a JONOMOTOI0 DIi3HHX alropuTMiB Kiacudikamii. PesympTatm momaHo B rpadikax
i TaONUIAX, a TAKOXX MPOJIEMOHCTPOBAHO 3 JOMOMOTIO0 TeIIoBHX KapT. CHopMyIb0BaHO BUCHOBKH, IIO MOXKYTh OYTH BHKOPHCTaHI
y BHOOP1 ONTUMAJIBHOTO aJITOPUTMY OallaHCYyBaHHS y chepi MAITMHHOTO HaBYaHHS.

KiiouoBi cioBa: kateropusallis; MallMHHE HaBYaHHI, METOXM OallaHCYBaHHS, METOAM TeHepauil JaHuX; Halip AaHHX;
He30araHcOBaHI HAOOPH JaHUX.

bionioepaghiuni onucu / Bibliographic descriptions

Tecnenko [I. M., Copokina A. C., Xospar A. B., I'ynieB H. B. ornmy, Kupiit B. B. TTopiBHSHHS aJIrOPUTMIB OBEPCEMILTIHTY
HabOpiB JaHMX Ta iX 3acTOCOBHOCTI [yl mpoGiiemn Kkarteropumsauii. Cyyacuuii cman HAyKosux OO0CHiOJNCeHb ma MeXHONO02ll
6 npomucnosocmi. 2023. Ne 2 (24). C. 161-171. DOI: https://doi.org/10.30837/ITSSI.2023.24.161

Teslenko, D., Sorokina, A., Khovrat, A., Huliiev, N., Kyriy, V. (2023), "Comparison of dataset oversampling algorithms
and their applicability to the categorization problem”, Innovative Technologies and Scientific Solutions for Industries, No. 2 (24),
P. 161-171. DOI: https://doi.org/10.30837/ITSSI.2023.24.161



https://doi.org/10.30837/ITSSI.2023.24.161
https://doi.org/10.30837/ITSSI.2023.24.161

