ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

UDC 040.43 DOI: https://doi.org/10.30837/1TSS1.2023.26.078

V. FEDORCHENKO, O. SHMATKO, |. MYKHAILENKO, V. TRETIAK, O. KOLOMIITSEV

INTEGRATING ANALYTICAL STATISTICAL MODELS,
SEQUENTIAL PATTERN MINING, AND FUZZY SET THEORY
FOR ADVANCED MOBILE APP RELIABILITY ASSESSMENT

The study presents a new method for evaluating the reliability of mobile applications using the Corcoran model. This model includes
several aspects of reliability, including performance, reliability, availability, scalability, security, usability, and testability.
The Corcoran model can be applied to evaluate mobile applications by analysing key reliability metrics. Using the model significantly
improves the reliability assessment of applications compared to traditional methods, which are primarily focused on desktop and
server configurations. The aim of the study is to offer a more optimised approach to evaluating the reliability of mobile applications.
The paper examines the problems faced by mobile app developers. This study represents a new application of the Corcoran model
in evaluating the reliability of mobile applications. This model is characterised by an emphasis on the use of quantitative statistics
and the ability to provide an accurate estimate of the probability of failure without any inaccuracies, which distinguishes this model
from other software reliability models. The paper suggests using a combination of analytical statistical models, data extraction
methods such as sequential pattern analysis, and fuzzy set theory to implement the Corcoran model. The application of the
methodology is demonstrated by studying software error reports and conducting a comprehensive statistical analysis of them.
To improve the results of future research, the paper suggests making more extensive use of the Corcoran model in various
mobile applications and environments. It is recommended to change the model to take into account the constantly changing
characteristics of mobile applications and their increasing complexity. In addition, it is advisable to conduct additional research
to improve the data mining methods used in the model and explore the possibility of integrating artificial intelligence for more
advanced software reliability analysis. Applying the Corcoran model to the mobile app development process to evaluate reliability
can significantly improve the quality of applications, leading to increased customer satisfaction and trust in mobile apps.
This model can serve as a guide for developers and companies to evaluate and improve their applications, driving innovation
and continuous improvement in the competitive mobile app sector.
Keywords: mobile application; software development; reliability assessmen; the Corcoran model.

Introduction platforms and hardware capabilities. Fourth, due to

consumer demand, the development of mobile applications

The term "software reliability" refers to the degree has accelerated, and the functionality of mobile

to which the procedures of the software development life
cycle (SDLC) can be managed and controlled to produce
reliable programs. This metric will be used until the
conditions for completing the testing procedure are met.
In addition, software reliability helps to maintain and predict
the correctness of the software [1]. Software reliability
engineering was developed to evaluate and quantify
software quality. It demonstrates the fault-free operation
of a program [2, 3]. Software reliability models are constantly
being improved by both researchers and practitioners.
The following factors make it difficult to assess and
predict the stability of a mobile application. First, mobile
environments differ from traditional desktop computers
and servers. Secondly, new forms of deficiencies are
generated by the introduction of functionality and
characteristics specific to the mobile context, such as
energy, network, incompatibility, modified and restricted
graphical user interface (GUI), interruptions, and
notifications [4]. Third, there is a wide variety of mobile

applications has become more complex [5]. And, of
course, mobile devices break when an app is published.
Software engineers rely primarily on problem reports
submitted by users in addition to testing.

Researchers should spend more time analyzing
software stability to determine its value for mobile apps.
More accurate results and analyses can be obtained if
software reliability testing takes into account the specifics
of mobile applications.

Software engineers, enterprises, and research
institutions are interested in being able to predict failures
in mobile applications. Thus, we propose to evaluate the
reliability of mobile applications based on bug reports
and generate more accurate results.

Literature review

We identified several studies and systematic literature
reviews (SLRs) related to software reliability [4, 5-8].

© V. Fedorchenko, O. Shmatko, I. Mykhailenko, V. Tretiak, O. Kolomiitsev, 2023

https://doi.org/10.30837/ITSSI.2023.26.078

Cyuachuii cman HayKogux 00CIONCeHb ma MmexHono2itl 8 npomuciogocmi. 2023. Ne 4(26)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Several studies and literature reviews were
found [9, 10-13] that focused on software dependency.

However, none of these studies specifically addressed
the current state of mobile application reliability; rather,
they all focused on traditional software. In order to
determine what is the most up-to-date research in
software reliability, Singhal [14] conducted a SLR
analysis that included materials released before 2011.
Ten years ago, when the widespread use of mobile
applications was just beginning, this was the case.
The study categorized 141 publications based on the
research question, methodology (e.g., survey, theory),
and environment (e.g., academic, industrial). Since the
information available at the time was not sufficient to
prove industrial validity, the study recommended
additional industrial research. Due to the lack of
standardized usage of words related to software
reliability, the authors emphasized the importance of
manual searching to find relevant material on the topic.

In their analysis of the literature from 1990 to 2010,
Shahrokhni and Feldt [15] focused on software resilience,
which is described as a reliability characteristic in various
standards such as IEEE-STD 610.12-1990. For this study,
the authors analyzed and classified 144 articles according
to the following criteria: type of study (e.g., evaluation,
experience report), contribution (e.g., tool, metrics),
type of evaluation (e.g., academic, industrial), and
development stage (e.g., requirements, design, and
implementation). The lack of research on identifying
and defining software sustainability requirements was
the largest gap identified in the study.

Most studies have mainly focused on one
component of reliability (invalid inputs), while others,
such as unexpected events, timeouts, interruptions, and
stressful execution settings, have been completely
ignored. Febrero et al. [16] analyzed 503 articles
from 2003 to 2014 as part of their modeling of SMS
software reliability. Static and architectural reliability
models, as well as software reliability growth models,
Bayesian approaches, test-based methods, Al-based
methods, and other types of reliability models were
divided into five groups.

Finding that many studies do not meet the
established quality requirements, the study identified
a knowledge gap. To fill this gap, the same authors
conducted a systematic literature review (SLR)
on software reliability assessment using the
ISO/IEC 25000 SQuaRE quality standard for 1991-2014.

According to the results of the Ilatter study,
insufficient attention has been paid to adjusting quality

and reliability standards to take into account the interests
of multiple stakeholders.

They also noted that the complexity of existing
reliability models does not allow them to be used in
routine situations. Lack of agreement and different
definitions of reliability have also hindered the
development of useful models. The authors noted,
for example, that “"reliability" and "fault tolerance" are
often used synonymously, despite their differences.

They were more focused on how reliability models
apply reliability requirements (e.g., 1SO/IEC-25000
SQuaRE), whereas our work explores the current state of
reliability in mobile applications. In addition, we review
research conducted over the past six years or so.

Alhazzaa and Andrews [17] performed a state-of-
the-art SMS in which they examined reliability growth
patterns that take into account the development of
software systems. They summarized the trends in terms
of year of publication, location, and nature of the study
(academic, industrial). The studies were categorized
based on the proposed approach (analytical and curve
fitting) and research style (empirical or non-empirical),
as well as the scale of the solution (type and number
of changes: one change point, multiple change points).
In addition, they used the criteria of Ali et al. [18] to
assess the reliability of empirical studies. They suggested
that researchers look for higher quality empirical studies
with closer cooperation with industry. In addition, these
authors recommended further research on the following
questions: how far into the future can these models look?
When do professionals need to change the models or
adjust their settings? All of these previous studies
(including Alhazzaa and Andrews) agree that the
solutions lacked industry validation because they were
mostly studied in an academic context without involving
or collaborating with practitioners throughout the study.

The proposed model

Thus, in order to successfully fulfill one of the main
tasks of this work — creating an integrated model for
assessing software reliability — we need to develop an
idea of which model of software reliability analysis is
most suitable for our project and how the statistical data
for this model will be obtained.

Of all the software reliability assessment models
considered, the Corcoran model was chosen as the most
suitable for use in this work. There are several reasons
for this, but the most important is the absence of the need
for additional work (e.g., introduction of artificial errors)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

and the focus of this model on the use of quantitative
statistical data about the project.

Corcoran's model is an example of an analytical
statistical model of software reliability because it does
not use test time parameters and only takes into account
the result of N tests in which Ni errors of the i-th type
are detected. The model uses variable failure probabilities
for different types of errors.

Unlike other methods of this type, the Corcoran
model estimates the probability of fault-free program
execution at the time of evaluation [19].

— The model requires knowledge of the following
indicators;

— The model contains non-static failure
probabilities for different sources of errors and,
accordingly, different probabilities of their correction;

— The model uses only such parameters as the
result of N tests in which N, errors of the i-th type

are observed,
— Detection of errors of the i-th type during N
tests occurs with probability a; .

The reliability level indicator R is calculated

by the formula:

N, &Yx(N,-1)

_0 S O S B A 1
N + N @

i=1

R =

where N, — is the number of failed (or unsuccessful)

tests performed in a series of N tests;
K — known number of error types;
Y, — probability of errors

{ai, if N,>0,
Y, = :
01

if N,=0;"
a, — probability of detecting errors of the i-th type

@

during testing.

In this model, the probability of occurrence of
a certain event is estimated based on a priori information
or statistics for the previous period of software operation.

The number of tests N; for the Corcoran formula
for an incomplete set of test reports is defined as:
R xN, x0.6

R)

where R, —number of reports imported to the system;

N; = (3)

1.p? '1.q

LCSuff (S, ,.T,)={0

where line S of length p;
line T of length q;

R, — total number of reports on the Socorro server;
N, — total number of product installations.

The algorithm of sequential pattern mining
was chosen as a method of data mining. This choice
was made under the influence of the availability of
a large number of algorithms for solving similar
problems, the ease of understanding the principles of
these algorithms, and the high adaptability of this
method to the required tasks. Sequential pattern mining is
a data mining activity aimed at finding statistically
significant patterns between data in which values are
presented sequentially. As a rule, the values are
considered discrete, which distinguishes this activity
from data extraction from a time series. Sequential
pattern mining is a special case of structured data
mining [37]. In this paper, we will use algorithms to
find the longest unified sequence. In computer science,
the problem of finding the longest common sequence
is to find the longest sequence (substring) or substrings
that are common to two or more strings. For example,
the longest common sequence of the strings
"ABABC", "BABCA", and "ABCBA" is the string
"ABC", which is three letters long. Other common
sequences include "a", "AB", "B", "BA", and "C".

The problem of finding these sequences can be
formulated as follows: given two lines S of length p

and T of length g, you need to find the longest line
that is common to S and T . Another interpretation of
this problem is the problem of generalizing k -common

sublines: given a set of lines S={S,, ..., S}, where

S| =ni, S, [=n;, for every 2<k <k, you need to find

the longest lines that occur inside at least K lines.

In this paper, we will continue to consider and use
only the dynamic programming approach, since the
length of lines in the subject area of this paper usually
does not exceed 20 elements, but the simplicity of
implementation and the visibility of the dynamic
programming algorithm are much higher. To solve
this problem using dynamic programming, you must
first find the longest common suffix for all pairs of
prefixes in the lines. The longest common suffix
is calculated by the following formula:

LCSUff (S, ,1.T, 44)+L if S[p]=T[q]

otherwise ,

LCSuff (S, ,.T,

1p 1__q) — is the longest line that is

commonto S and T.

Cyuachuii cman HayKogux 00CIONCeHb ma MmexHono2itl 8 npomuciogocmi. 2023. Ne 4(26)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

For example, for the strings "ABAB" and "BABA",
the result of this algorithm is the following table 1.

For example, for the strings "ABAB" and "BABA",
the result of this algorithm is the following table:

Table 1. Example of using the dynamic programming
algorithm

Rlolikr|lo|lo|>

oflNv(o|—|Oo |

wlo|violo|>
ollw|o|~r|o|wm

> m|> W
OoO|O|lO|O|O

The maximum of these common longest suffixes for
possible prefixes must be the longest common sequence
(subline) of lines S and T. These suffixes are
underlined on the diagonals of Table 1. For this example,
the longest common sequences are "BAB" and "ABA".

LCSubstr(S,T)=_max_LCSuff (S, T,),

1<i<mI<j<n

where LCSubstr(S,T) - is the

sequence (subline) of lines S and T .

This formula can be extended for the case of
comparing more than two lines by adding additional
dimensions to the table, but this is not necessary in our
case. To better establish patterns and relationships
between error reports, it is also necessary to consider
algorithms for measuring edit distance. The reason for

largest common

di,;, fora; =b
di—l,j + Wie (bi)
" | min d . +w,(a)

Ay js+ Wy (1)
simple recursive method of calculating these formulas
takes exponentially long. Therefore, as a rule, the
calculations are performed using the Wagner and Fisher
dynamic programming algorithm. After completing
the Wagner—Fisher algorithm, the minimal sequence
of editing operations can be read as the Return Path
of the operations (starting with dmn) used during the
dynamic programming algorithm.

Example from the practice

Below is an example of using this method to assess
software reliability using the proposed approach.

The input data are data about 100 tests of the
program. Out of 100 tests, 20 were successful

this is the discrepancy between data in related reports
and the need to reduce noise between data samples.

In computer science, edit distance is a way to
quantify the similarity of two strings (e.g., two words) to
each other by counting the minimum number of
operations required to transform one string into another.
Editing distance is used in natural language processing
tasks where automatic spelling correction can identify
possible edits for a misspelled word by selecting
those words from the dictionary that have a low
editing distance to that word. In bioinformatics, this
distance can be wused to quantify the similarity
of DNA sequences, which can be represented as
strings of letters A, C, G,and T .

Different definitions of edit distance use different
sets of operations on strings. For example, Levenshtein
distance uses deletion, insertion, or replacement of
characters in a string. Since it is the most common metric,
it is the Levenshtein distance that is usually referred
to as "edit distance”. The most common algorithm for
finding edit distance uses a standard set of Levenshtein
operations and determines the distance between
a=a..a, and b=b..b, as d , which is recursively

mn 1

calculated by the following formulas:

do =D Wy (b) fori<i<m,
k=1

i
do; =D Wi (3) forl<j<n,
k=1

for 1<i<m,1<j<n,

for a; # bj

(without failures), and in other cases, the data shown
in Table 2 was obtained.

When all the necessary data are calculated, the
Corcoran model must be applied to find the probability
of program failure at the time of evaluation.

Thus, this approach requires a tool to analyze
data from similar projects or analyze available statistics
from the current project to establish the a; parameter.

Such a tool would be data mining methods using
sequential pattern mining. Information on the total
number of installations, the number of worlds and
error groups, and the probability of each error
group occurring will be used to calculate the software
reliability index.

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Table 2. Example of using the Corcoran model (part 1)

Type of error Probability of error @, Number of ’_li errors Y, * (Yi *(N, —1))/N *%x
that occur during testing

1. calculation errors 0,09 5 0,09 0,0036
2. logical errors 0,26 25 0,26 0,0624
3. input/output errors 0,16 3 0,16 0,0032
4. data manipulation errors 0,18 0 0

5. communication errors 0,17 11 0,17 0,017
6. data definition errors 0,08 0,08 0,0016
7. database errors 0,06 0,06 0,0018

* —value is calculated by the formula (2)
** _value is calculated by the formula (1)

Table 2. Example of using the Corcoran model (part 2)

Initial data
N = 100
N, = 20
R= 0,2896
Mozilla Firefox receives 2.5 million error

messages every day. That is why analyzing and
finding software errors (bugs) is a very difficult task.
Although errors can appear in different system
modules and components or on different pages
of web applications, they can also be the result of
a general program flaw (bug). That is why there is
a need to analyze and automatically search for duplicate
and related reports.

The whole process of grouping reports is as follows:

1) Reports are sent to the server where they are
stored. If it works, the reports will be automatically
imported from the Socorro server, an open source bug
report server for Mozilla products.

2) The server automatically groups reports into
categories according to the cause of the bug.
Each category has at least one or more reports.

3) Developers (in our case, a user from the
moderator group) assign the corresponding software
defect record to the general report categories.
One record can correspond to one or more categories,
and one category can have zero or more defect
records. Programmers (in our case, users of any group)
can also be assigned to defect records to resolve
an existing issue.

A typical bug report for the Fennec Android
mobile browser (Firefox for Android) consists of
two parts, shown in Figures 1-3.

As part of the Mozilla Crash Reports project,
information from the Socorro server is processed and
presented in the form of statistics. For example, you can
view the number of reports per day, the number of
product installations, or statistics on the number of
errors and reports for different versions of the product
at different times. But the most interesting thing is the
ability to view automatically created groups of bug
reports and assigned records of software defects.

The Mozilla algorithm is quite simple and
sometimes inefficient. This algorithm compares only
the error signature from the top form. This leads
to the appearance of double groups of errors shown
in Figures 4-6, which should actually be combined
into one group.

This is the reason for considering the problem
of grouping related reports. Since there is very little
data to analyze this problem, this paper only considers
data obtained from the Socorro server.

e

Related Bugs

[Top element/form

SRS Error signature

Crashing Thread (39) A 3 Method name

- - " wp— P

| - L

Fig. 1. Information from the defective flow

Cyuachuii cman HayKogux 00CAIONCeHb ma mexHono2itl 8 npomuciogocmi. 2023. Ne 4(26)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

o | e L s | rorinrs | e
S

uuio

Date Processed

Uptime

Last Crash

Install Age

Install ime

OS Version

Bulld Architecture

Build Architecture

Crash Reason

Crash Aadress

User Comments

Android Manufacturer

Androld Model

Android Version

moziita gi-C orWindow £ More £ Search
7b376646-402¢.4356-8501-cAdDC2160518

2016-05-18722 03 50 12268440000

7

16 seconds before submission

14440 since version was first installed

2016-05-18.18.03.01

FennecAndroid

49.0a1

2016051803024

nighty

Andcold

0,00 Linux 3 4. 0-pert-afcced? #1 SMP PREEMPT Thu Aug 27 17.06.58 2015 amw71

arm

ARMYT Qualcomm Krait features. swp half thumd fastmult vipv2 easp necn vipy3. tis vipvd ioiva idivt | 4

SGSEGV

00

EGL? EGLr GL Context? GL Comtext+ AdspterDescription: ‘Model: S0L23, Product: 30123 3p_kdi,
Mapufecturer: Sony, Hardware: goom, Opendl: Qualccsm -- Adreno (TM) 330 -- OpenGL ES 3.0 V@6€.0 avd
(cue*

¥ (D0O0-L19100-W00000000-70100)

Sony 30L23

EDOI/S0L23 Sp kdi/S012314.4.2/14.3.C.0,300/035 jgruser/release-keys

processor_prod-processor-1-8e74b743_17927; MozillaProcessoriAlgorithm2015; skunk classifier: reject = mot

a plugin hang
True

None

Qualcoam
Adrens (TM) 330
arseski-vTa
Sony

30123

15 (R2L)

Fig. 2. General information from the report

FennecAndroid 49.0a1 Crash Report [@

ID: 7Th376646-492e-4a56-8501-cddbc2160518

Signature: mozilla:-gl--CreateSurfaceForwindow

Fig. 3. Report ID and signature

mozilla::gl::CreateSurfaceForWindow]

-
Lad LA e b - ' C-— LA LR LR LS . .“. 0 D
' " ‘e [e L A ’ ' =3iam. 'f‘:
- e "
- bl - e e Ce Lad Riun
.
' - " - Al - . » . »)
-
= " Tt e o o= maem it

- - arwoamaaad

Fig. 4. Example of double error groups

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Crashing Thread (34)

o .

b

[

[

Fig. 5. Report of the first group and the corresponding signature

Crashing Thvead (38)

e

Fig. 6. Report of the second group and the corresponding signatu

Due to the imperfection or lack of tools for
automatic categorization of bug reports in common
bug trackers, in this article we use three rules to find
related reports more accurately. These rules were built
based on the analysis of the structure of reports from
the Socorro server and look like this:

1) Comparison of error signatures

Examples of using this rule are the following cases:
— nsDiskCacheStreamlO:FlushBufferToFile()

Strstr | nsDiskCacheStreamlO:FlushBufferToFile()
— nsStyleContext::Release()
nsStyleContext::nsStyleContext

As you can see from the above examples, the
comparison should not be performed carefully, letter
by letter, taking into account the structure and special
notation of the record. Please note that the signature
of the highest form method with fully filled fields will
be used as the signature.

To implement this rule, we will use the method
of measuring the edit distance, namely the Levenshtein
distance, using the Wagner—Fisher algorithm. To use this
algorithm, the signature will be split into a sequence
of components that will act as individual letters.

2) Uppercase comparison

This rule works on the same principle as the
comparison of error signatures, but it compares not the
signatures, but the file path specified in the upper forms.
It's important to remember that in this article, the data
from the highest form that has non-zero attributes in all
its fields will be used to compare top forms and signatures.

3) Comparing frequent, closely spaced subsets
of forms

This rule means that two reports are related
if they have one or more of the same call stack paths
or forms. For example, the reports "ABCDEF", "DEFA",

re

and "BDEF" have the longest common sequence —
"DEF". In our case, instead of letters, we will use parts
of the call stack.

To determine the length of a common element
sufficient to establish a relationship, a threshold function
will be used that takes the total length of the stack, the
length of the common sequence, and its distance from
the highest form. To determine the longest common
sequences, a sequential pattern extraction algorithm
will be wused, namely the dynamic programming
algorithm discussed above.

The previously mentioned mathematical methods
and functions related to fuzzy sets will be used to
evaluate the performance of these rules.

To calculate the degree of similarity between
two reports, two fuzzy models were used: a model
for analyzing the similarity of forms available in the
reports and a model for analyzing the similarity of
the reports themselves.

Conclusions

In summary, the Corcoran model offers a valuable
and comprehensive approach to assessing the reliability
of mobile applications, taking into account various
dimensions such as performance, reliability, availability,
scalability, security, usability, maintainability, and
testability. By implementing this model, developers
and organizations can gain valuable insights into the
strengths and weaknesses of their applications,
allowing them to make informed decisions and
prioritize improvements.

Implementing the Corcoran model in the software
development process can lead to higher quality mobile
apps, increased end-user satisfaction, and increased

Cyuachuii cman HayKogux 00CIONCeHb ma MmexHono2itl 8 npomuciogocmi. 2023. Ne 4(26)

ISSN 2522-9818 (print)
ISSN 2524-2296 (online)

trust in the mobile app ecosystem. In addition, this
model can serve as a benchmark for developers and
organizations to compare their apps to industry
standards and competitors, promoting innovation and
continuous improvement of mobile apps.

In summary, the Corcoran model for assessing
mobile application reliability represents a significant
advancement in mobile application assessment, enabling
organizations to better meet user needs and expectations
while ensuring a high level of reliability in the
increasingly competitive mobile application market.

References

In the future, it is planned to expand the use of the
proposed approach based on the Corcoran model for
various mobile applications and environments. In the
future, it is proposed to modify the model to take
into account the ever-changing characteristics
of mobile applications and their growing complexity.
In addition, it is desirable to conduct additional
research to improve the data mining methods used
in the proposed approach and to explore the possibility
of integrating artificial intelligence for more advanced
software reliability analysis.

1. Mangla, M., Sharma, N., Mohanty, S. N. (2021), "A sequential ensemble model for software fault prediction”, Innovations
in Systems and Software Engineering, P. 1-8. DOI: https://doi.org/10.1007/s11334-021-00390-x

2. Khuat, T. T., Le, M. H. (2019), "Ensemble learning for software fault prediction problem with imbalanced data",
International Journal of Electrical & Computer Engineering (2088-8708), Vol. 9, No 4. DOI: 10.11591/ijece.v9i4.pp3241-3246

3. Sales, A. M. A. et al. (2023), "Proposal of fault detection and diagnosis system architecture for residential air conditioners
based on the Internet of Things”, 2023 IEEE International Conference on Consumer Electronics (ICCE), P. 1-5. DOI:

10.1109/ICCE56470.2023.10043408

4. Joorabchi, M. E., Mesbhah, A., Kruchten, P. (2013), "Real challenges in mobile app development”, 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, P. 15-24. DOI: 10.1109/ESEM.2013.9

5. Heitkotter, H., Hanschke, S., Majchrzak, T. A. (2012), "Evaluating cross-platform development approaches for mobile
applications”, Web Information Systems and Technologies: 8th International Conference, WEBIST 2012, Revised Selected Papers 8,

P. 120-138. DOI: https://doi.org/10.1007/978-3-642-36608-6_8

6. Zhang, H., Babar, M. A. (2013), "Systematic reviews in software engineering: An empirical investigation", Information and
Software Technology, Vol. 55, No 7, P. 1341-1354. DOI: https://doi.org/10.1016/j.infsof.2012.09.008

7. Garousi, V., Méntyld, M. V. (2016), "A systematic literature review of literature reviews in software testing", Information
and Software Technology, Vol. 80, P. 195-216. DOI: https://doi.org/10.1016/j.infsof.2016.09.002

8. Felizardo, K. R. et al. (2017), "Defining protocols of systematic literature reviews in software engineering: a survey",
43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), P. 202-209. DOI: 10.1109/SEAA.2017.17

9. Pachouly, J. et al. (2022), "A systematic literature review on software defect prediction using artificial intelligence:
Datasets, Data Validation Methods, Approaches, and Tools", Engineering Applications of Artificial Intelligence, Vol. 111, 104773 p.

DOI: https://doi.org/10.1016/j.engappai.2022.104773

10. Son, L. H., Pritam, N., Khari, M., Kumar, R., Phuong, P. T. M., & Thong, P. H. (2019), "Empirical study of software defect
prediction: a systematic mapping", Symmetry, 11(2), 212 p. DOI: https://doi.org/10.3390/sym11020212
11. Li, Z., Jing, X. Y., Zhu, X. (2018), "Progress on approaches to software defect prediction”, let Software, Vol. 12, No 3,

P. 161-175. DOI: https://doi.org/10.1049/iet-sen.2017.0148

12. Zhou, T. et al. (2019), "Improving defect prediction with deep forest", Information and Software Technology, Vol. 114,

P. 204-216. DOI: https://doi.org/10.1016/j.infsof.2019.07.003

13. Thota, M. K., Shajin, F. H., & Rajesh, P. (2020), "Survey on software defect prediction techniques", International Journal
of Applied Science and Engineering, 17(4), P. 331-344. DOI: https://doi.org/10.6703/1JASE.202012_17(4).331

14. Singhal, S. et al. (2021), "Systematic literature review on test case selection and prioritization: A tertiary study", Applied
Sciences, Vol. 11, No 24, P. 12121. DOI: https://doi.org/10.3390/app112412121

15. Shahrokni, A., Feldt R. (2013), "A systematic review of software robustness”, Information and Software Technology,
Vol. 55, No 1, P. 1-17. DOI: https://doi.org/10.1016/j.infsof.2012.06.002

16. Febrero, F., Calero, C., Moraga, M. A. (2016), "Software reliability modeling based on ISO/IEC SQuaRE", Information and
Software Technology, Vol. 70, P. 18-29. DOI: https://doi.org/10.1016/j.infsof.2015.09.006

17. Ali, S. et al. (2009), "A systematic review of the application and empirical investigation of search-based test case
generation", IEEE Transactions on Software Engineering, Vol. 36, No 6, P. 742-762. DOI: 10.1109/TSE.2009.52

18. Rathi, G., Tiwari, U. K. Singh, N. (2022), "Software Reliability: Elements, Approaches and Challenges",

International Conference on Advances in
10.1109/ICACCM56405.2022.10009422

Computing,

Communication

and Materials (ICACCM). P. 1-5. DOL:

Received 28.11.2023

ISSN 2522-9818 (print)
ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Bioomocmi npo aemopis / About the Authors

MImatko Ouaexcanap BiraaiiioBuu — PhD, gonent, HamionansHuwid TexHIYHWE yHiBepcHTeT "XapKiBCHKUH
MOJITEXHIYHNHN IHCTHTYT'", TOLEHT KadeapHu MporpaMHOi iHKeHepil Ta IHTelIeKTyalbHIX TEXHOJOTIH yrpaBiiHHSA, XapkiB, YKpaiHa;
e-mail: oleksandr.shmatko@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-2426-900X

KosomiiimeB Ouekciii BononuMupoBHY — JOKTOp TEXHIYHMX Hayk, mpodecop, HamioHanpHHH TexXHIYHMIT
yHiBepcuTeT "XapKiBCBKWI MONITEXHIYHUH IHCTUTYT', mpodecop Kadeapu KOMIIOTEPHOI iHXeHepil Ta IporpamyBaHHS,
Xapkis, Ykpaina; e-mail: alexus_k@ukr.net; ORCID ID: http://orcid.org/0000-0001-8228-8404

®enopuenko Bosonumup MukonaiioBuy — PhD, noment, XapkiBChbKuil HalliOHaJbHHUN YHIBEPCUTET PaIiOCNIEKTPOHIKH,
JOIEHT Kadeapu eJeKTPOHHHX OOYHCIIOBANBHAX MalIWH, XapkiB, VYkpaina, e-mail: volodymyr.fedorchenko@nure.ua;
ORCID ID: http://orcid.org/0000-0001-7359-1460

Mmuxaiinenko Ipuna BosogummupiBua — PhD, mouent, XapkiBcbkuil HaIliOHAJbHUN aBTOMOOLTBEHO-IOPOXHINA YHIBEpCHTET,
JOLICHT KadeApu BUIIOT MaTeMaTHKH, XapkiB, Ykpaina; e-mail: irinaamih@gmail.com; ORCID ID: http://orcid.org/0000-0002-5961-3616

Tpersik Bsiyeciap @egopoBm4 — KaHIWIAT TEXHIYHUX HayK, JOLEHT, XapKIBCBKUH HaliOHAJbHUH YHIBEPCHTET
IoBitpstanx Cun imeni IBama KoxkemyGa, HaykoBuil crmiBpoOiTHHK HaykoBoro ueHtpy IloBitpsaux Cun, Xapkis, YkpaiHa;

e-mail: slava_tr@ukr.net; ORCID ID: http://orcid.org/0000-0003-2599-8834

Shmatko Oleksandr — PhD, Associate Professor, National Technical University "Kharkiv Polytechnic Institute”, Associate
Professor at the Department of Software Engineering and Intelligent Management Technologies, Kharkiv, Ukraine.

Kolomiitsev Oleksii — Doctor of Sciences (Engineering), Professor, National Technical University "Kharkiv Polytechnic
Institute”, Professor at the Department of Computer Engineering and Programming, Kharkiv, Ukraine.

Fedorchenko Volodymyr — PhD, Associate Professor, Kharkiv National University of Radio Electronics, Associate
Professor at the Department of Electronic Computers, Kharkiv, Ukraine.

Mykhailenko Iryna — PhD, Associate Professor, National Automobile and Road University, Associate Professor at the
Department of Higher Mathematics, Kharkiv, Ukraine.

Tretiak Viacheslav — PhD, Associate Professor, Ivan Kozhedub Kharkiv National Air Force University, Senior Researcher,
Kharkiv, Ukraine.

IHTETPAIISA AHAJITAYHUX CTATUCTUYHUX MOJIEJIEH,
MOCJIIOBHOI'O AHAJII3Y 3AKOHOMIPHOCTEM TA TEOPII HEUITKUX MHOXKWH
JIJIA PO3IIUPEHOTI'O OIIHIOBAHHSA HAJIMHOCTI MOBLJIBHUX 3ACTOCYHKIB

JlocmipkeHHS € HOBHM METOJIOM OIIIHKH HaiHOCTI MOOITPHHX MOJATKIB 3a Jormomoror Moneni Kopkopana. s Mozens Bkirodae
B cebe KiJIbKa acIeKTiB HaJiifHOCTi, BKIIOYal0YX MPOIYKTHBHICT, HALIHHICTh, JOCTYNHICTh, MAacIITab0BaHICTh, OE3MEKy, 3pYUHICTh
BUKOPUCTaHHS 1 TectoBaHicTb. Mozens Kopkopana moke OyTH 3acTocoBaHa Ul OLIHKM MOOUIBHHMX JOAATKIB HIISIXOM aHANi3y
OCHOBHMX IIOKAa3HMKIB HaJiiHOCTI. BuKOpHCTaHHS Mozeni 3Ha4YHO MOJIMIIYe OLIHKY HAJiHHOCTI 3aCTOCYHKIB B IOpPiBHSHHI
3 TpamuUiHHUMHM METOAaMH, SKi B MepIly uepry OpieHTOBaHi Ha KOH}Irypamii HacTIIBHUX KOMIT'IOTEPiB 1 CepBepiB.
Merta gociiKeHHI-3aPOIOHYBaTH O1TBII ONTHMI30BaHHUHN MiJIXiJ 10 OMIHKK HaAiHHOCTI MOOUIPHHX J0AAaTKIiB. B poOOTI po3risiHyTO
mpoOIeMH 3 SIKHMH CTHUKAIOThCA PO3POOHMKH MOOUTBHUX 3aCTOCYHKIB. Lle mocmimpkeHHS MpencTaBisie HOBE 3aCTOCYBaHHS MOJEINI
Kopkopana B obnacTi omiHKM HagiifHOCTI MOOUTPHHX AOAATKiB. LIst Momenb BiApi3HAETHCS aKIEHTOM Ha BUKOPHCTaHHS KiIBbKICHOL
CTaTUCTHKU Ta 3JATHICTIO HaJaBaTH TOYHY OIIIHKY WMOBIpHOCTI 30010 0e3 OyIb-sIKMX HETOYHOCTEH, MO BIApI3HSIE IO MOJENb
BiJ IHIIMX MOJeNel HaIiifHOCTI mporpaMHOro 3abe3medeHHs. B poOoTi MPOMOHYeThCS BUKOPHCTAHHS KOMOIHAINT aHANITHIYHUX
CTaTUCTUYHUX MOJIENeH, METONIB BHIOOYTKY JNaHWX, TaKMX SK TOCHIIOBHHU aHaNi3 IA0JOHIB, i TEOPIF0 HEYITKMX MHOMXHH
Juis peaizaiiii moneni Kopkopana. 3acTocyBaHHs METOIOJIOTIT MPOIEMOHCTPOBAHO HA TPHUKIIAIL JOCHIPKSHHS 3BITiB MPO MOMUIKH
IpOrpaMHOro 3abe3nedeHHs Ta IMPOBEACHHs iX BceOiYyHOro craTucTHyHOro aHamisy. II[o6 mokpammTH pesyibpratd MailOyTHiX
JOCITi/KEHb, B POOOTI MPOMOHYEThCS OLNBII LIMPOKO BHKOPHUCTOBYBAaTH Mojenb KopkopaHa y pi3HHX MOOUIBHHX J0JaTKax
Ta cepeloBUINAX. PeKOMEHIyeThCS 3MIHUTH MOJENb, MO0 BpaxyBaTH IOCTIHHO MIiHJIMBI XapaKTEPUCTUKH MOOLTBHUX IOIATKiB
1 IX 3pocTarouy CkJIaaHICTh. KpiM Toro, 6a)xaHO MPOBECTH JOJATKOBI TOCITIHKEHHS JJIsl BIOCKOHAJICHHS METOIB BUAOOYTKY JaHUX,
10 BHUKOPHUCTOBYIOTHCSI B MOJETI, Ta BHBYHTH MOJJIMBICTH IHTETpAIlil IITYYHOTO IHTENEKTY sl OUTBII MPOCYHYTOTO aHAJI3y
HaJiHOCTI mporpaMHoro 3abe3neueHHs. 3acTocyBaHHS Mojeni Kopkopana y mporeci po3poOkn MOOITBHHX JOJATKIB IJISI OIIHKH
HAJIIHHOCTI MOXXE€ 3HAYHO MiJBUIIUTH SIKICTh JOAATKIB, IO MPH3BEJC O MiJBHUINCHHS PIiBHSA 3aJ0BOJICHOCTI KIEHTIB Ta JIOBIpH
10 MOOITBHUX monatkiB. Ll Monens Moke CIyryBaTH OpPiEHTHPOM Uil pO3pOOHMKIB Ta KOMMAaHiil IpH OLIHII Ta BIOCKOHAJICHHI
CBOIX JI0JaTKIB, CIIPHUSAIOUH iIHHOBAL[ISIM Ta MOCTIHHOMY BJJOCKOHAJICHHIO B KOHKYPEHTHOMY CEKTOPi MOOITBHUX JIOIATKIB.

KirouoBi cinoBa: MoOUIBbHMI 3aCTOCYHOK; po3poOKa NPOrpaMHOrO 3a0e3MEYCHHs; OLIHIOBaHHS HamilHOCTI;
Mozens Kopkopana.

bionioepaghiuni onucu / Bibliographic descriptions

Oenopuenko B. M., IlImatko O. B., Muxaiinenko 1. B., Tpersk B. ®., Konowmiitues O. B. Iuterpamis aHamiTHIHHX
CTaTUCTUYHUX MO,I[CIIeﬁ, HOCIIiZ[OBHOFO aHaﬂi3y 3aKOHOMipHOCTeﬁ Ta TeOpﬁ He‘liTKI/IX MHOXHWH JId PO3UIMPEHOTO OL[iHIOBaHHS[
HaIIMHOCTI MOOUIBHUX 3aCTOCYHKIB. Cywachuil cman HAyKoux O0CAIOdceHb ma mexnonozii 6 npomucinosocmi. 2023. Ne 4 (26).
C. 78-86. DOI: https://doi.org/10.30837/ITSSI.2023.26.078

Fedorchenko, V., Shmatko, O., Mykhailenko, I., Tretiak, V., Kolomiitsev, O. (2023), "Integrating analytical statistical models,
sequential pattern mining, and fuzzy set theory for advanced mobile app reliability assessment”, Innovative Technologies and
Scientific Solutions for Industries, No. 4 (26), P. 78-86. DOI: https://doi.org/10.30837/ITSSI.2023.26.078

mailto:oleksandr.shmatko@khpi.edu.ua
http://orcid.org/0000-0002-2426-900X
http://orcid.org/0000-0001-8228-8404
mailto:volodymyr.fedorchenko@nure.ua
http://orcid.org/0000-0001-7359-1460
mailto:irinaamih@gmail.com
http://orcid.org/0000-0002-5961-3616
http://orcid.org/0000-0003-2599-8834
https://doi.org/10.30837/ITSSI.2023.26.078
https://doi.org/10.30837/ITSSI.2023.26.078

