
78

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

© V. Fedorchenko, O. Shmatko, I. Mykhailenko, V. Tretiak, O. Kolomiitsev, 2023

UDC 040.43 DOI: https://doi.org/10.30837/ITSSI.2023.26.078

V. FEDORCHENKO, O. SHMATKO, I. MYKHAILENKO, V. TRETIAK, O. KOLOMIITSEV

INTEGRATING ANALYTICAL STATISTICAL MODELS,

SEQUENTIAL PATTERN MINING, AND FUZZY SET THEORY

FOR ADVANCED MOBILE APP RELIABILITY ASSESSMENT

The study presents a new method for evaluating the reliability of mobile applications using the Corcoran model. This model includes

several aspects of reliability, including performance, reliability, availability, scalability, security, usability, and testability.

The Corcoran model can be applied to evaluate mobile applications by analysing key reliability metrics. Using the model significantly

improves the reliability assessment of applications compared to traditional methods, which are primarily focused on desktop and

server configurations. The aim of the study is to offer a more optimised approach to evaluating the reliability of mobile applications.

The paper examines the problems faced by mobile app developers. This study represents a new application of the Corcoran model

in evaluating the reliability of mobile applications. This model is characterised by an emphasis on the use of quantitative statistics

and the ability to provide an accurate estimate of the probability of failure without any inaccuracies, which distinguishes this model

from other software reliability models. The paper suggests using a combination of analytical statistical models, data extraction

methods such as sequential pattern analysis, and fuzzy set theory to implement the Corcoran model. The application of the

methodology is demonstrated by studying software error reports and conducting a comprehensive statistical analysis of them.

To improve the results of future research, the paper suggests making more extensive use of the Corcoran model in various

mobile applications and environments. It is recommended to change the model to take into account the constantly changing

characteristics of mobile applications and their increasing complexity. In addition, it is advisable to conduct additional research

to improve the data mining methods used in the model and explore the possibility of integrating artificial intelligence for more

advanced software reliability analysis. Applying the Corcoran model to the mobile app development process to evaluate reliability

can significantly improve the quality of applications, leading to increased customer satisfaction and trust in mobile apps.

This model can serve as a guide for developers and companies to evaluate and improve their applications, driving innovation

and continuous improvement in the competitive mobile app sector.

Keywords: mobile application; software development; reliability assessmen; the Corcoran model.

Introduction

The term "software reliability" refers to the degree

to which the procedures of the software development life

cycle (SDLC) can be managed and controlled to produce

reliable programs. This metric will be used until the

conditions for completing the testing procedure are met.

In addition, software reliability helps to maintain and predict

the correctness of the software [1]. Software reliability

engineering was developed to evaluate and quantify

software quality. It demonstrates the fault-free operation

of a program [2, 3]. Software reliability models are constantly

being improved by both researchers and practitioners.

The following factors make it difficult to assess and

predict the stability of a mobile application. First, mobile

environments differ from traditional desktop computers

and servers. Secondly, new forms of deficiencies are

generated by the introduction of functionality and

characteristics specific to the mobile context, such as

energy, network, incompatibility, modified and restricted

graphical user interface (GUI), interruptions, and

notifications [4]. Third, there is a wide variety of mobile

platforms and hardware capabilities. Fourth, due to

consumer demand, the development of mobile applications

has accelerated, and the functionality of mobile

applications has become more complex [5]. And, of

course, mobile devices break when an app is published.

Software engineers rely primarily on problem reports

submitted by users in addition to testing.

Researchers should spend more time analyzing

software stability to determine its value for mobile apps.

More accurate results and analyses can be obtained if

software reliability testing takes into account the specifics

of mobile applications.

Software engineers, enterprises, and research

institutions are interested in being able to predict failures

in mobile applications. Thus, we propose to evaluate the

reliability of mobile applications based on bug reports

and generate more accurate results.

Literature review

We identified several studies and systematic literature

reviews (SLRs) related to software reliability [4, 5–8].

https://doi.org/10.30837/ITSSI.2023.26.078

79

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4(26) ISSN 2524-2296 (online)

Several studies and literature reviews were

found [9, 10–13] that focused on software dependency.

However, none of these studies specifically addressed

the current state of mobile application reliability; rather,

they all focused on traditional software. In order to

determine what is the most up-to-date research in

software reliability, Singhal [14] conducted a SLR

analysis that included materials released before 2011.

Ten years ago, when the widespread use of mobile

applications was just beginning, this was the case.

The study categorized 141 publications based on the

research question, methodology (e.g., survey, theory),

and environment (e.g., academic, industrial). Since the

information available at the time was not sufficient to

prove industrial validity, the study recommended

additional industrial research. Due to the lack of

standardized usage of words related to software

reliability, the authors emphasized the importance of

manual searching to find relevant material on the topic.

In their analysis of the literature from 1990 to 2010,

Shahrokhni and Feldt [15] focused on software resilience,

which is described as a reliability characteristic in various

standards such as IEEE-STD 610.12-1990. For this study,

the authors analyzed and classified 144 articles according

to the following criteria: type of study (e.g., evaluation,

experience report), contribution (e.g., tool, metrics),

type of evaluation (e.g., academic, industrial), and

development stage (e.g., requirements, design, and

implementation). The lack of research on identifying

and defining software sustainability requirements was

the largest gap identified in the study.

Most studies have mainly focused on one

component of reliability (invalid inputs), while others,

such as unexpected events, timeouts, interruptions, and

stressful execution settings, have been completely

ignored. Febrero et al. [16] analyzed 503 articles

from 2003 to 2014 as part of their modeling of SMS

software reliability. Static and architectural reliability

models, as well as software reliability growth models,

Bayesian approaches, test-based methods, AI-based

methods, and other types of reliability models were

divided into five groups.

Finding that many studies do not meet the

established quality requirements, the study identified

a knowledge gap. To fill this gap, the same authors

conducted a systematic literature review (SLR)

on software reliability assessment using the

ISO/IEC 25000 SQuaRE quality standard for 1991–2014.

According to the results of the latter study,

insufficient attention has been paid to adjusting quality

and reliability standards to take into account the interests

of multiple stakeholders.

They also noted that the complexity of existing

reliability models does not allow them to be used in

routine situations. Lack of agreement and different

definitions of reliability have also hindered the

development of useful models. The authors noted,

for example, that "reliability" and "fault tolerance" are

often used synonymously, despite their differences.

They were more focused on how reliability models

apply reliability requirements (e.g., ISO/IEC-25000

SQuaRE), whereas our work explores the current state of

reliability in mobile applications. In addition, we review

research conducted over the past six years or so.

Alhazzaa and Andrews [17] performed a state-of-

the-art SMS in which they examined reliability growth

patterns that take into account the development of

software systems. They summarized the trends in terms

of year of publication, location, and nature of the study

(academic, industrial). The studies were categorized

based on the proposed approach (analytical and curve

fitting) and research style (empirical or non-empirical),

as well as the scale of the solution (type and number

of changes: one change point, multiple change points).

In addition, they used the criteria of Ali et al. [18] to

assess the reliability of empirical studies. They suggested

that researchers look for higher quality empirical studies

with closer cooperation with industry. In addition, these

authors recommended further research on the following

questions: how far into the future can these models look?

When do professionals need to change the models or

adjust their settings? All of these previous studies

(including Alhazzaa and Andrews) agree that the

solutions lacked industry validation because they were

mostly studied in an academic context without involving

or collaborating with practitioners throughout the study.

The proposed model

Thus, in order to successfully fulfill one of the main

tasks of this work – creating an integrated model for

assessing software reliability – we need to develop an

idea of which model of software reliability analysis is

most suitable for our project and how the statistical data

for this model will be obtained.

Of all the software reliability assessment models

considered, the Corcoran model was chosen as the most

suitable for use in this work. There are several reasons

for this, but the most important is the absence of the need

for additional work (e.g., introduction of artificial errors)

80

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

and the focus of this model on the use of quantitative

statistical data about the project.

Corcoran's model is an example of an analytical

statistical model of software reliability because it does

not use test time parameters and only takes into account

the result of N tests in which Ni errors of the i -th type

are detected. The model uses variable failure probabilities

for different types of errors.

Unlike other methods of this type, the Corcoran

model estimates the probability of fault-free program

execution at the time of evaluation [19].

 The model requires knowledge of the following

indicators;

 The model contains non-static failure

probabilities for different sources of errors and,

accordingly, different probabilities of their correction;

 The model uses only such parameters as the

result of N tests in which iN errors of the i -th type

are observed;

 Detection of errors of the i -th type during N

tests occurs with probability ia .

The reliability level indicator R is calculated

by the formula:

 0

1

1
,

K
i i

i

Y NN
R

N N

 
  (1)

where 0N – is the number of failed (or unsuccessful)

tests performed in a series of N tests;

K – known number of error types;

iY – probability of errors

, 0,

0, 0;

i i

i

i

a if N
Y

if N


 


; (2)

ia – probability of detecting errors of the i -th type

during testing.

In this model, the probability of occurrence of

a certain event is estimated based on a priori information

or statistics for the previous period of software operation.

The number of tests Ni for the Corcoran formula

for an incomplete set of test reports is defined as:

0.6
 ,i t

i

t

R N
N

R

 
 (3)

where iR – number of reports imported to the system;

tR – total number of reports on the Socorro server;

tN – total number of product installations.

The algorithm of sequential pattern mining

was chosen as a method of data mining. This choice

was made under the influence of the availability of

a large number of algorithms for solving similar

problems, the ease of understanding the principles of

these algorithms, and the high adaptability of this

method to the required tasks. Sequential pattern mining is

a data mining activity aimed at finding statistically

significant patterns between data in which values are

presented sequentially. As a rule, the values are

considered discrete, which distinguishes this activity

from data extraction from a time series. Sequential

pattern mining is a special case of structured data

mining [37]. In this paper, we will use algorithms to

find the longest unified sequence. In computer science,

the problem of finding the longest common sequence

is to find the longest sequence (substring) or substrings

that are common to two or more strings. For example,

the longest common sequence of the strings

"ABABC", "BABCA", and "ABCBA" is the string

"ABC", which is three letters long. Other common

sequences include "a", "AB", "B", "BA", and "C".

The problem of finding these sequences can be

formulated as follows: given two lines S of length p

and T of length q , you need to find the longest line

that is common to S and T . Another interpretation of

this problem is the problem of generalizing k -common

sublines: given a set of lines  1, , KS S S  , where

i iS n і , | |i iS n , for every 2 k k  , you need to find

the longest lines that occur inside at least K lines.

In this paper, we will continue to consider and use

only the dynamic programming approach, since the

length of lines in the subject area of this paper usually

does not exceed 20 elements, but the simplicity of

implementation and the visibility of the dynamic

programming algorithm are much higher. To solve

this problem using dynamic programming, you must

first find the longest common suffix for all pairs of

prefixes in the lines. The longest common suffix

is calculated by the following formula:

 
     1.. 1 1.. 1

1.. 1..

, 1,
,

0, ,

p q

p q

LCSuff S T if S p T q
LCSuff S T

otherwise

 
  

 


where line S of length p ;

line T of length q ;

 1.. 1..,p qLCSuff S T – is the longest line that is

common to S and T .

81

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4(26) ISSN 2524-2296 (online)

For example, for the strings "ABAB" and "BABA",

the result of this algorithm is the following table 1.

For example, for the strings "ABAB" and "BABA",

the result of this algorithm is the following table:

Table 1. Example of using the dynamic programming

algorithm

 A B A B

 0 0 0 0 0

B 0 0 1 0 1

A 0 1 0 2 0

B 0 0 2 0 3

A 0 1 0 3 0

The maximum of these common longest suffixes for

possible prefixes must be the longest common sequence

(subline) of lines S and T . These suffixes are

underlined on the diagonals of Table 1. For this example,

the longest common sequences are "BAB" and "ABA".

   1.. 1..
1 ,1

, max ,i j
i m j n

LCSubstr S T LCSuff S T
   

 ,

where  , LCSubstr S T – is the largest common

sequence (subline) of lines S and T .

This formula can be extended for the case of

comparing more than two lines by adding additional

dimensions to the table, but this is not necessary in our

case. To better establish patterns and relationships

between error reports, it is also necessary to consider

algorithms for measuring edit distance. The reason for

this is the discrepancy between data in related reports

and the need to reduce noise between data samples.

In computer science, edit distance is a way to

quantify the similarity of two strings (e.g., two words) to

each other by counting the minimum number of

operations required to transform one string into another.

Editing distance is used in natural language processing

tasks where automatic spelling correction can identify

possible edits for a misspelled word by selecting

those words from the dictionary that have a low

editing distance to that word. In bioinformatics, this

distance can be used to quantify the similarity

of DNA sequences, which can be represented as

strings of letters A , C , G , and T .

Different definitions of edit distance use different

sets of operations on strings. For example, Levenshtein

distance uses deletion, insertion, or replacement of

characters in a string. Since it is the most common metric,

it is the Levenshtein distance that is usually referred

to as "edit distance". The most common algorithm for

finding edit distance uses a standard set of Levenshtein

operations and determines the distance between

1... na a a and 1... mb b b as mnd , which is recursively

calculated by the following formulas:

 0

1

 1
i

i del k

k

d w b for i m


   ,

 0

1

 1
j

j ins k

k

d w a for j n


   ,

 

 

 

1, 1

1,

, 1

1, 1

 1 , 1 ,
min

,

i j j i

i j del i

ij

i j ins i j j

i j sub j i

d for a b

d w b
d for i m j n

d w a for a b

d w a b

 





 




       
 


 

simple recursive method of calculating these formulas

takes exponentially long. Therefore, as a rule, the

calculations are performed using the Wagner and Fisher

dynamic programming algorithm. After completing

the Wagner–Fisher algorithm, the minimal sequence

of editing operations can be read as the Return Path

of the operations (starting with dmn) used during the

dynamic programming algorithm.

Example from the practice

Below is an example of using this method to assess

software reliability using the proposed approach.

The input data are data about 100 tests of the

program. Out of 100 tests, 20 were successful

(without failures), and in other cases, the data shown

in Table 2 was obtained.

When all the necessary data are calculated, the

Corcoran model must be applied to find the probability

of program failure at the time of evaluation.

Thus, this approach requires a tool to analyze

data from similar projects or analyze available statistics

from the current project to establish the ia parameter.

Such a tool would be data mining methods using

sequential pattern mining. Information on the total

number of installations, the number of worlds and

error groups, and the probability of each error

group occurring will be used to calculate the software

reliability index.

82

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Table 2. Example of using the Corcoran model (part 1)

Type of error Probability of error ia
Number of iN errors

that occur during testing
iY    1 **i iY N N

1. calculation errors 0,09 5 0,09 0,0036

2. logical errors 0,26 25 0,26 0,0624

3. input/output errors 0,16 3 0,16 0,0032

4. data manipulation errors 0,18 0 0 0

5. communication errors 0,17 11 0,17 0,017

6. data definition errors 0,08 3 0,08 0,0016

7. database errors 0,06 4 0,06 0,0018

* – value is calculated by the formula (2)

** – value is calculated by the formula (1)

Table 2. Example of using the Corcoran model (part 2)

Initial data

N  100

0N  20

R  0,2896

Mozilla Firefox receives 2.5 million error

messages every day. That is why analyzing and

finding software errors (bugs) is a very difficult task.

Although errors can appear in different system

modules and components or on different pages

of web applications, they can also be the result of

a general program flaw (bug). That is why there is

a need to analyze and automatically search for duplicate

and related reports.

The whole process of grouping reports is as follows:

1) Reports are sent to the server where they are

stored. If it works, the reports will be automatically

imported from the Socorro server, an open source bug

report server for Mozilla products.

2) The server automatically groups reports into

categories according to the cause of the bug.

Each category has at least one or more reports.

3) Developers (in our case, a user from the

moderator group) assign the corresponding software

defect record to the general report categories.

One record can correspond to one or more categories,

and one category can have zero or more defect

records. Programmers (in our case, users of any group)

can also be assigned to defect records to resolve

an existing issue.

A typical bug report for the Fennec Android

mobile browser (Firefox for Android) consists of

two parts, shown in Figures 1–3.

As part of the Mozilla Crash Reports project,

information from the Socorro server is processed and

presented in the form of statistics. For example, you can

view the number of reports per day, the number of

product installations, or statistics on the number of

errors and reports for different versions of the product

at different times. But the most interesting thing is the

ability to view automatically created groups of bug

reports and assigned records of software defects.

The Mozilla algorithm is quite simple and

sometimes inefficient. This algorithm compares only

the error signature from the top form. This leads

to the appearance of double groups of errors shown

in Figures 4–6, which should actually be combined

into one group.

This is the reason for considering the problem

of grouping related reports. Since there is very little

data to analyze this problem, this paper only considers

data obtained from the Socorro server.

Fig. 1. Information from the defective flow

83

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4(26) ISSN 2524-2296 (online)

Fig. 2. General information from the report

Fig. 3. Report ID and signature

Fig. 4. Example of double error groups

84

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Fig. 5. Report of the first group and the corresponding signature

Fig. 6. Report of the second group and the corresponding signature

Due to the imperfection or lack of tools for

automatic categorization of bug reports in common

bug trackers, in this article we use three rules to find

related reports more accurately. These rules were built

based on the analysis of the structure of reports from

the Socorro server and look like this:

1) Comparison of error signatures

Examples of using this rule are the following cases:

– nsDiskCacheStreamIO:FlushBufferToFile()

Strstr | nsDiskCacheStreamIO:FlushBufferToFile()

– nsStyleContext::Release()

nsStyleContext::nsStyleContext

As you can see from the above examples, the

comparison should not be performed carefully, letter

by letter, taking into account the structure and special

notation of the record. Please note that the signature

of the highest form method with fully filled fields will

be used as the signature.

To implement this rule, we will use the method

of measuring the edit distance, namely the Levenshtein

distance, using the Wagner–Fisher algorithm. To use this

algorithm, the signature will be split into a sequence

of components that will act as individual letters.

2) Uppercase comparison

This rule works on the same principle as the

comparison of error signatures, but it compares not the

signatures, but the file path specified in the upper forms.

It's important to remember that in this article, the data

from the highest form that has non-zero attributes in all

its fields will be used to compare top forms and signatures.

3) Comparing frequent, closely spaced subsets

of forms

This rule means that two reports are related

if they have one or more of the same call stack paths

or forms. For example, the reports "ABCDEF", "DEFA",

and "BDEF" have the longest common sequence –

"DEF". In our case, instead of letters, we will use parts

of the call stack.

To determine the length of a common element

sufficient to establish a relationship, a threshold function

will be used that takes the total length of the stack, the

length of the common sequence, and its distance from

the highest form. To determine the longest common

sequences, a sequential pattern extraction algorithm

will be used, namely the dynamic programming

algorithm discussed above.

The previously mentioned mathematical methods

and functions related to fuzzy sets will be used to

evaluate the performance of these rules.

To calculate the degree of similarity between

two reports, two fuzzy models were used: a model

for analyzing the similarity of forms available in the

reports and a model for analyzing the similarity of

the reports themselves.

Conclusions

In summary, the Corcoran model offers a valuable

and comprehensive approach to assessing the reliability

of mobile applications, taking into account various

dimensions such as performance, reliability, availability,

scalability, security, usability, maintainability, and

testability. By implementing this model, developers

and organizations can gain valuable insights into the

strengths and weaknesses of their applications,

allowing them to make informed decisions and

prioritize improvements.

Implementing the Corcoran model in the software

development process can lead to higher quality mobile

apps, increased end-user satisfaction, and increased

85

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4(26) ISSN 2524-2296 (online)

trust in the mobile app ecosystem. In addition, this

model can serve as a benchmark for developers and

organizations to compare their apps to industry

standards and competitors, promoting innovation and

continuous improvement of mobile apps.

In summary, the Corcoran model for assessing

mobile application reliability represents a significant

advancement in mobile application assessment, enabling

organizations to better meet user needs and expectations

while ensuring a high level of reliability in the

increasingly competitive mobile application market.

In the future, it is planned to expand the use of the

proposed approach based on the Corcoran model for

various mobile applications and environments. In the

future, it is proposed to modify the model to take

into account the ever-changing characteristics

of mobile applications and their growing complexity.

In addition, it is desirable to conduct additional

research to improve the data mining methods used

in the proposed approach and to explore the possibility

of integrating artificial intelligence for more advanced

software reliability analysis.

References

1. Mangla, M., Sharma, N., Mohanty, S. N. (2021), "A sequential ensemble model for software fault prediction", Innovations

in Systems and Software Engineering, P. 1–8. DOI: https://doi.org/10.1007/s11334-021-00390-x

2. Khuat, T. T., Le, M. H. (2019), "Ensemble learning for software fault prediction problem with imbalanced data",

International Journal of Electrical & Computer Engineering (2088–8708), Vol. 9, No 4. DOI: 10.11591/ijece.v9i4.pp3241-3246

3. Sales, A. M. A. et al. (2023), "Proposal of fault detection and diagnosis system architecture for residential air conditioners

based on the Internet of Things", 2023 IEEE International Conference on Consumer Electronics (ICCE), P. 1–5. DOI:

10.1109/ICCE56470.2023.10043408

4. Joorabchi, M. E., Mesbah, A., Kruchten, P. (2013), "Real challenges in mobile app development", 2013 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, P. 15–24. DOI: 10.1109/ESEM.2013.9

5. Heitkötter, H., Hanschke, S., Majchrzak, T. A. (2012), "Evaluating cross-platform development approaches for mobile

applications", Web Information Systems and Technologies: 8th International Conference, WEBIST 2012, Revised Selected Papers 8,

P. 120–138. DOI: https://doi.org/10.1007/978-3-642-36608-6_8

6. Zhang, H., Babar, M. A. (2013), "Systematic reviews in software engineering: An empirical investigation", Information and

Software Technology, Vol. 55, No 7, P. 1341–1354. DOI: https://doi.org/10.1016/j.infsof.2012.09.008

7. Garousi, V., Mäntylä, M. V. (2016), "A systematic literature review of literature reviews in software testing", Information

and Software Technology, Vol. 80, P. 195–216. DOI: https://doi.org/10.1016/j.infsof.2016.09.002

8. Felizardo, K. R. et al. (2017), "Defining protocols of systematic literature reviews in software engineering: a survey",

43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA), P. 202–209. DOI: 10.1109/SEAA.2017.17

9. Pachouly, J. et al. (2022), "A systematic literature review on software defect prediction using artificial intelligence:

Datasets, Data Validation Methods, Approaches, and Tools", Engineering Applications of Artificial Intelligence, Vol. 111, 104773 р.

DOI: https://doi.org/10.1016/j.engappai.2022.104773

10. Son, L. H., Pritam, N., Khari, M., Kumar, R., Phuong, P. T. M., & Thong, P. H. (2019), "Empirical study of software defect

prediction: a systematic mapping", Symmetry, 11(2), 212 р. DOI: https://doi.org/10.3390/sym11020212

11. Li, Z., Jing, X. Y., Zhu, X. (2018), "Progress on approaches to software defect prediction", Iet Software, Vol. 12, No 3,

P. 161–175. DOI: https://doi.org/10.1049/iet-sen.2017.0148

12. Zhou, T. et al. (2019), "Improving defect prediction with deep forest", Information and Software Technology, Vol. 114,

P. 204–216. DOI: https://doi.org/10.1016/j.infsof.2019.07.003

13. Thota, M. K., Shajin, F. H., & Rajesh, P. (2020), "Survey on software defect prediction techniques", International Journal

of Applied Science and Engineering, 17(4), P. 331–344. DOI: https://doi.org/10.6703/IJASE.202012_17(4).331

14. Singhal, S. et al. (2021), "Systematic literature review on test case selection and prioritization: A tertiary study", Applied

Sciences, Vol. 11, No 24, P. 12121. DOI: https://doi.org/10.3390/app112412121

15. Shahrokni, A., Feldt R. (2013), "A systematic review of software robustness", Information and Software Technology,

Vol. 55, No 1, P. 1–17. DOI: https://doi.org/10.1016/j.infsof.2012.06.002

16. Febrero, F., Calero, C., Moraga, M. Á. (2016), "Software reliability modeling based on ISO/IEC SQuaRE", Information and

Software Technology, Vol. 70, P. 18–29. DOI: https://doi.org/10.1016/j.infsof.2015.09.006

17. Ali, S. et al. (2009), "A systematic review of the application and empirical investigation of search-based test case

generation", IEEE Transactions on Software Engineering, Vol. 36, No 6, P. 742–762. DOI: 10.1109/TSE.2009.52

18. Rathi, G., Tiwari, U. K., Singh, N. (2022), "Software Reliability: Elements, Approaches and Challenges",

International Conference on Advances in Computing, Communication and Materials (ICACCM). P. 1–5. DOI:

10.1109/ICACCM56405.2022.10009422

Received 28.11.2023

86

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Відомості про авторів / About the Authors

Шматко Олександр Віталійович – PhD, доцент, Національний технічний університет "Харківський

політехнічний інститут", доцент кафедри програмної інженерії та інтелектуальних технологій управління, Харків, Україна;

е-mail: oleksandr.shmatko@khpi.edu.ua; ORCID ID: http://orcid.org/0000-0002-2426-900X

Коломійцев Олексій Володимирович – доктор технічних наук, професор, Національний технічний

університет "Харківський політехнічний інститут", професор кафедри комп'ютерної інженерії та програмування,

Харків, Україна; е-mail: alexus_k@ukr.net; ORCID ID: http://orcid.org/0000-0001-8228-8404

Федорченко Володимир Миколайович – PhD, доцент, Харківський національний університет радіоелектроніки,

доцент кафедри електронних обчислювальних машин, Харків, Україна; е-mail: volodymyr.fedorchenko@nure.ua;

ORCID ID: http://orcid.org/0000-0001-7359-1460

Михайленко Ірина Володимирівна – PhD, доцент, Харківський національний автомобільно-дорожній університет,

доцент кафедри вищої математики, Харків, Україна; е-mail: irinaamih@gmail.com; ORCID ID: http://orcid.org/0000-0002-5961-3616

Третяк Вячеслав Федорович – кандидат технічних наук, доцент, Харківський національний університет

Повітряних Сил імені Івана Кожедуба, науковий співробітник наукового центру Повітряних Сил, Харків, Україна;

е-mail: slava_tr@ukr.net; ORCID ID: http://orcid.org/0000-0003-2599-8834

Shmatko Oleksandr – PhD, Associate Professor, National Technical University "Kharkiv Polytechnic Institute", Associate

Professor at the Department of Software Engineering and Intelligent Management Technologies, Kharkiv, Ukraine.

Kolomiitsev Oleksii – Doctor of Sciences (Engineering), Professor, National Technical University "Kharkiv Polytechnic

Institute", Professor at the Department of Computer Engineering and Programming, Kharkiv, Ukraine.

Fedorchenko Volodymyr – PhD, Associate Professor, Kharkiv National University of Radio Electronics, Associate

Professor at the Department of Electronic Computers, Kharkiv, Ukraine.

Mykhailenko Iryna – PhD, Associate Professor, National Automobile and Road University, Associate Professor at the

Department of Higher Mathematics, Kharkiv, Ukraine.

Tretiak Viacheslav – PhD, Associate Professor, Ivan Kozhedub Kharkiv National Air Force University, Senior Researcher,

Kharkiv, Ukraine.

ІНТЕГРАЦІЯ АНАЛІТИЧНИХ СТАТИСТИЧНИХ МОДЕЛЕЙ,

ПОСЛІДОВНОГО АНАЛІЗУ ЗАКОНОМІРНОСТЕЙ ТА ТЕОРІЇ НЕЧІТКИХ МНОЖИН

ДЛЯ РОЗШИРЕНОГО ОЦІНЮВАННЯ НАДІЙНОСТІ МОБІЛЬНИХ ЗАСТОСУНКІВ

Дослідження є новим методом оцінки надійності мобільних додатків за допомогою моделі Коркорана. Ця модель включає

в себе кілька аспектів надійності, включаючи продуктивність, надійність, доступність, масштабованість, безпеку, зручність

використання і тестованість. Модель Коркорана може бути застосована для оцінки мобільних додатків шляхом аналізу

основних показників надійності. Використання моделі значно поліпшує оцінку надійності застосунків в порівнянні

з традиційними методами, які в першу чергу орієнтовані на конфігурації настільних комп'ютерів і серверів.

Мета дослідження-запропонувати більш оптимізований підхід до оцінки надійності мобільних додатків. В роботі розглянуто

проблеми з якими стикаються розробники мобільних застосунків. Це дослідження представляє нове застосування моделі

Коркорана в області оцінки надійності мобільних додатків. Ця модель відрізняється акцентом на використання кількісної

статистики та здатністю надавати точну оцінку ймовірності збою без будь-яких неточностей, що відрізняє цю модель

від інших моделей надійності програмного забезпечення. В роботі пропонується використання комбінації аналітичних

статистичних моделей, методів видобутку даних, таких як послідовний аналіз шаблонів, і теорію нечітких множин

для реалізації моделі Коркорана. Застосування методології продемонстровано на прикладі дослідження звітів про помилки

програмного забезпечення та проведення їх всебічного статистичного аналізу. Щоб покращити результати майбутніх

досліджень, в роботі пропонується більш широко використовувати модель Коркорана у різних мобільних додатках

та середовищах. Рекомендується змінити модель, щоб врахувати постійно мінливі характеристики мобільних додатків

і їх зростаючу складність. Крім того, бажано провести додаткові дослідження для вдосконалення методів видобутку даних,

що використовуються в моделі, та вивчити можливість інтеграції штучного інтелекту для більш просунутого аналізу

надійності програмного забезпечення. Застосування моделі Коркорана у процесі розробки мобільних додатків для оцінки

надійності може значно підвищити якість додатків, що призведе до підвищення рівня задоволеності клієнтів та довіри

до мобільних додатків. Ця модель може слугувати орієнтиром для розробників та компаній при оцінці та вдосконаленні

своїх додатків, сприяючи інноваціям та постійному вдосконаленню в конкурентному секторі мобільних додатків.

Ключові слова: мобільний застосунок; розробка програмного забезпечення; оцінювання надійності;

модель Коркорана.

Бібліографічні описи / Bibliographic descriptions

Федорченко В. М., Шматко О. В., Михайленко І. В., Третяк В. Ф., Коломійцев О. В. Інтеграція аналітичних

статистичних моделей, послідовного аналізу закономірностей та теорії нечітких множин для розширеного оцінювання

надійності мобільних застосунків. Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26).

С. 78–86. DOI: https://doi.org/10.30837/ITSSI.2023.26.078

Fedorchenko, V., Shmatko, O., Mykhailenko, I., Tretiak, V., Kolomiitsev, O. (2023), "Integrating analytical statistical models,

sequential pattern mining, and fuzzy set theory for advanced mobile app reliability assessment", Innovative Technologies and

Scientific Solutions for Industries, No. 4 (26), P. 78–86. DOI: https://doi.org/10.30837/ITSSI.2023.26.078

mailto:oleksandr.shmatko@khpi.edu.ua
http://orcid.org/0000-0002-2426-900X
http://orcid.org/0000-0001-8228-8404
mailto:volodymyr.fedorchenko@nure.ua
http://orcid.org/0000-0001-7359-1460
mailto:irinaamih@gmail.com
http://orcid.org/0000-0002-5961-3616
http://orcid.org/0000-0003-2599-8834
https://doi.org/10.30837/ITSSI.2023.26.078
https://doi.org/10.30837/ITSSI.2023.26.078

