
33

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

© M. Grinchenko, M. Rohovyi, 2023

UDC 65.014.12 DOI: https://doi.org/10.30837/ITSSI.2023.26.033

M. GRINCHENKO, M. ROHOVYI

A MODEL FOR IDENTIFYING PROJECT SPRINT TASKS BASED

ON THEIR DESCRIPTION

The subject of research in this article is the identification of project sprint tasks. The purpose of the article is to find

approaches to reducing the risks of not fulfilling sprint tasks. The article solves the following tasks: analyzing research

on the classification and visualization of project tasks, developing an algorithm that can automatically classify text descriptions of

sprint tasks, collecting and preparing a training sample of text descriptions of sprint tasks for training and testing the classification

model, applying natural language processing methods to improve classification and ensure the accuracy of the results, validating

the model on real data to assess the efficiency and accuracy of classification, and analyzing the results. The following methods have

been used: machine learning methods for classification, text vectorization methods, methods for classifying text descriptions, natural

language processing methods, methods for semantic analysis of task description text, methods for processing expert opinions.

The following results were obtained: a comprehensive approach to using machine learning algorithms, including the collection

and processing of textual descriptions of tasks, for classification and involvement of expert opinions to improve the quality

of task perception by the project team. Text expressions were classified based on the Bayesian classifier and neural classifiers.

A visual representation of the data was implemented. Semantic analysis of the text of the description and title of the tasks

was performed. Data markup was obtained to classify the quality of the wording, which was performed by a team of experts.

To measure the reliability of the obtained expert assessments, we calculated Cohen's kappa coefficient for each pair of

markers. According to the experimental results, the accuracy of the Bayesian classifier is 70%. For the classifier based on deep

learning, a neural network for binary classification based on the transformer architecture was selected. The neural network was

trained using the Python programming language and deep learning frameworks. The result is a classifier that gives an accuracy

score of 83% on a test dataset, which is a good result for a small dataset and data with conflicting labels. Conclusions: the analysis

of textual data confirms that the existing data in the tracking system is incomplete and contains abbreviations, conventions,

and slang. The results show that the assessment of the quality of the wording is determined by the level of expert knowledge

of the specifics and context of the project, while increasing the number of experts has almost no effect on the result.

In further research, it is recommended to test the hypothesis that the effectiveness of the classifier depends on the specific project

and the use of unsupervised learning methods for the task of identifying the quality of formulations.

Keywords: project; task description; project task management system; model; classifier; vector representation.

Introduction

Nowadays, flexible or adaptive management

methodologies are widely used to implement IT projects.

The use of these methodologies makes it possible

to respond quickly to changes and risks that arise

during the development of a software product.

The effectiveness of the project team is influenced

by a large number of factors [1], among which

an inaccurate description of the project tasks or their

misunderstanding by developers is significant.

Thus, identifying ambiguities in sprint task descriptions

often becomes critical to successful software

development. This allows you to reformulate unclear

tasks in a timely manner and avoid misunderstandings

between developers.

Tracking systems (also known as task management

systems or project management systems) play a key

role in IT project management by ensuring that work

tasks, resources, deadlines, and communications

are effectively organized and tracked. Tracking systems

allow you to create and assign tasks to team members.

Each task can contain a description, deadlines, attached

files, and other important information. Data collection

and analysis allows you to create reports and analytical

tools to evaluate team performance, identify trends, and

make strategic decisions. Thus, project task management

systems store information about program tasks and

comments that can be useful for predicting the success of

tasks. However, at the moment, there are practically

no studies on this topic and no results that would allow us

to analyze how accurately and clearly the tasks are set.

Assessing the quality and unambiguity of task

descriptions is an important part of software development

project management. High-quality and accurate task

statements allow the project manager and team to better

understand the scope of work, resources required, and

assess the risks for each task or requirement. It also helps

https://doi.org/10.30837/ITSSI.2023.26.033

34

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

in making decisions about priorities, resource allocation,

and balanced project planning.

Text classification plays an important role in the

field of natural language processing (NLP) and is

becoming a key component in the development and

improvement of project tasks. The rapid development

of this field allows us to improve the results in project

activities. This, in turn, helps to avoid possible

misunderstandings, errors, and delays in project

implementation. The text classifier allows you to assess

the quality of task formulation, determining their clarity

and conciseness. The use of classification helps to create

a single standard for interpreting textual descriptions

of tasks, which facilitates common understanding

across the team. In general, the introduction of text

classification into the project management process

can improve the quality of project tasks, ensuring their

more efficient implementation and avoiding possible

difficulties in the development process.

Analysis of last achievements and publications

Fixing tasks and describing them in the training

system is an important element for managing and

controlling project development processes. This practice

helps to avoid misunderstandings, set priorities, and

determine the progress of each task during the sprint.

Brief task notes in natural language allow team members

to quickly grasp the essence of tasks. They can include

keywords and phrases that identify the main aspects

of the tasks.

The project team spends considerable time manually

categorizing incoming tasks. Unfortunately, this process

is difficult, and team members do not have clear

guidelines for best practices based on historical data.

As the amount of data grows, it becomes critical

to implement automated task classification. Typically,

sprint task descriptions are unstructured, making them

difficult to process using natural language. Typos and

abbreviations in the text of tasks are also complicating

factors. Classification of sprint tasks is a critical

process that ensures their proper addressing to

the appropriate performers.

This paper analyzes studies on the classification

and visualization of project tasks. The research can be

divided into two groups.

The first group studies the quality problems of

describing functional and non-functional requirements.

Paper [2] proposes an approach that can be used to

identify patterns that meet well-known standards with

a measure of F1 of 0.90. Also, this approach allows

detecting common syntactic features for non-standard

patterns in more than 73.5% of cases. The evaluation

showed that these results are reliable regardless of the

volume and duration of the processed requirements.

The study of the second group [3] focuses on

the differences between vectorization methods that

transform requirements written in natural language

into numerical vectors for further classification. Through

an empirical experiment using 5 open datasets, it was

found that advanced vectorization methods significantly

improve classification performance. It was also found

that using pre-prepared data for vectorization is

sometimes the most effective method.

First, let's take a closer look at the studies that

belong to the first group.

In [4], the researchers defined the concept of

"Requirement Smells" as an indicator of the quality

of the requirements description for quick analysis during

their formation. The researchers also presented

an approach to identifying requirements, which was

empirically evaluated in the study of many cases.

The paper contains conclusions that relate them to the

available evidence on the detection of natural language

quality defects in requirements artifacts, and analyzes the

impact and limitations of this approach and its evaluation.

Researchers in [5] tried to redefine approaches to

measuring standard IEEE metrics (defines the software

maintenance process) to improvise a quality assessment

of SRS (software requirements specification).

The authors recommended an SRS template and

a strategy for assessing SRS quality metrics. In contrast

to modern methods, this approach brought out the metrics

of the IEEE SRS quality assessment standards as more

modular for collecting requirements.

In [6], the authors proposed a semi-supervised text

categorization approach for the automatic identification

and classification of non-functional requirements (NFRs).

The goal of this approach is to integrate into

a recommender system to help analysts and software

developers in the architectural design process. A small

number of requirements identified during the discovery

process allows learning an initial classifier for NFRs

that can consistently identify further requirements for

the problem statement in an iterative process.

Paper [7] presents an approach to reducing privacy

risks in agile software development by automatically

detecting information related to the privacy of user

history, which is an important notation in agile

requirements engineering (RE). Experimental results

35

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

have shown that deep learning algorithms allow

obtaining better predictions than those achieved using

conventional (shallow) machine learning methods.

The use of Transfer Learning can significantly improve

the accuracy of forecasts by up to 10%.

The authors of [16] presented an ontology-

based approach to supporting requirement tracking.

The developed ontology contains theoretical knowledge

for developing requirements in an agile environment,

which allows a group of developers to effectively manage

the development of requirements for a software product.

This facilitates rapid decision-making on revising project

artifacts related to changes and allows for a more accurate

determination of the scope of these changes.

In the second group of works on the classification

and visualization of project tasks, researchers focus on the

quality problems of describing user stories in a project.

In [10], two experiments were conducted to

investigate the factors that could potentially affect the

derivation of static conceptual models from specifications

written in the form of user stories and use cases.

The analysis of the results showed that the notation

of requirements has a limited impact on the quality

of the resulting conceptual model in terms of both

reliability and completeness. Systematic grammatical

analysis leads to conceptual models with a high level

of completeness and validity in both experiments.

Using a linguistic classification of ambiguity

problems, the authors of [11] offer a new perspective

on current knowledge about understanding, avoiding,

and resolving ambiguity in user stories. The possibilities

of increasing the effectiveness of the user story

technique in supporting requirements engineering (RE)

activities in application system development (ASD)

projects are investigated.

The approach proposed by the researchers [13]

consists of a set of rules that receive scattered information

in user stories and organize it in Lexicon symbols.

The Lexicon provides a consolidated and organized

structure to alleviate the problem of confusing

information that causes a lack of tracking between

different sprints. This approach has advantages for

tracking requirements in agile methodologies, which

is supported by previous evaluation results.

Study [15] defines a classification of developers'

cognitive representation styles and cognitive interaction

patterns in agile RE. The cognitive abilities of developers

based on their statements when separating and defining

user stories were investigated. The conclusions showed

that developers tend to focus on the technology

of cognitive style of representation, even in RE, and

have cognitive difficulties in activating and detailing

user stories.

In [17], the authors investigate the effectiveness

of using word embedding to classify tasks in the IT

help desk. Experimental results indicate that the

traditional Total Frequency Inverse Document Frequency

(TFIDF) method, combined with the Support Vector

Machines (SVM) method, provides competitive results

and is sometimes more effective than static methods

for building vector representations of words, such as

word2vec. The use of TFIDF-SVM allows achieving

good results at a low computational cost.

The authors of [9] propose an instrumental approach

that combines information visualization with two natural

language processing techniques: conceptual model

extraction and semantic similarity. Experiments have

shown that detecting terminological ambiguities requires

considerable time, even with the use of technical

means, and that it is difficult to determine whether

a synonym can interfere with the correct direction

of software system development.

Paper [16] presents a visual analysis method

called DeepNLPVis, which is used to understand and

analyze the model's behavior in text classification

tasks and study the reasons for successful and

unsuccessful cases. Studies have shown that task

descriptions and comments can be used to predict

the success of a task with a high level of accuracy.

In [18], the authors examine the usefulness of

textual task descriptions and comments in predicting

whether problems will be solved successfully.

Experiments have shown that problem descriptions

and comments can be used to predict problem solving

success with more than 85% accuracy, and that

predictions of problem solving success change over time.

In [19], the authors propose a method for classifying

tasks by clustering and visualizing the characteristics of

each category. This method allows experts and

stakeholders to better understand the project and features

of the target software system by reviewing the keywords

of the task categories.

The analysis of the conducted research suggests

that there are approaches to describing tasks and

user stories, but the issue of qualitative description

of project sprint tasks remains less studied. The need for

a high-quality textual description of sprint tasks is

especially relevant, since an incorrectly formulated

or unclear description can lead to misunderstandings

and errors in the execution of tasks.

36

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

Unlike assessing the quality of requirements

and user stories, assessing the quality of sprint tasks

requires taking into account the specifics of this context.

At the stage of creating the sprint backlog, it is important

to determine how clearly and unambiguously each task

is formulated. This will help avoid misunderstandings

and incorrect task performance by project team members.

The process of identifying and classifying sprint

tasks into "clear" and "unclear" is critical at the stage

of backlog formation. This will allow you to identify

tasks that may be a source of misunderstanding and risk

of project delays due to poor textual description.

Classifying tasks will provide the project team with the

opportunity to devote special attention and resources

to clarifying and improving the description of these

tasks, thereby reducing the likelihood of errors

and misunderstandings.

Considering the quality and unambiguity of the

textual description of sprint tasks as a factor influencing

task performance is a key element of effective project

management. This helps ensure that tasks are properly

understood and effectively completed by team members.

Aim and tasks of the study

In the tracking system, tasks are formulated in

such a way as to convey the essence of the work

to be done as clearly and understandably as possible.

It is important to ensure that each team member

understands the task in the same way, to avoid

ambiguities and misunderstandings. Experience

shows that project executors save information about

the task in its title, create descriptions, and add

comments. Recording all this information in the

tracking system provides the team with a convenient

tool for collaboration, simplifies communication, and

helps ensure that all project participants understand

the tasks accurately and completely.

Thus, the purpose of the study is to find approaches

to reduce the risks of failure to complete the tasks of

an IT project sprint by automating the classification

of text descriptions. To achieve this goal, the following

tasks need to be solved:

1. Developing an algorithm that can automatically

classify text descriptions of sprint tasks into "clear" and

"unclear" according to quality and unambiguity criteria.

2. Collect and prepare a training set of textual

descriptions of sprint tasks for training and testing

the classification model.

3. Application of advanced natural language

processing techniques to improve classification and

ensure the accuracy of the results.

4. Validate the model on real data to assess the

efficiency and accuracy of the classification.

5. Analyzing the results, identifying the factors that

affect the quality of task formulation, and drawing

conclusions on the application of the developed model.

Materials and methods

To achieve this goal and develop a model for

identifying tasks with poor formulation in an IT project

sprint, we propose an integrated approach that includes

collecting and processing textual descriptions of tasks,

using machine learning algorithms for classification, and

involving expert opinions to improve the quality of task

perception by the project team.

This study uses a task tracking system as the source

of data on sprint tasks. The dataset includes 1000 tasks

that were exported from the Jira project management

system. Based on data from a real project, this dataset

contains information about various task parameters such

as name, description, unique key, performer, time spent,

time estimate, task status, comments, and others.

The language of the received textual descriptions of tasks

for wording analysis is English, which is typical for

software development projects. The main characteristics

for identifying the task wording are the name and

description. It should be noted that the description

is not a mandatory characteristic of the task, i.e.,

the task formulation can consist of only the name.

In the process of data pre-processing, a number of

cleaning procedures must be performed. In addition to

standard textual data parsing, links, code fragments,

and uninformative symbols such as currency signs and

likes are removed from the dataset. We also replace

abbreviations with their full meanings.

The analysis of the dataset reveals the following

characteristics: the average number of words in the title

is 6.4, and the average number of words in the description

is 37.67. The total number of tasks in the set is 1000,

of which the number of tasks with descriptions is 461.

The number of unique words in the title and

description is 5080. Conjunctions and articles turned

out to be the most popular words, and among those that

carry an independent semantic load, the most popular

are: "add", "image", "inspection", "defect", "object".

These words are relevant to this project.

37

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

Table 1. Statistics of the dataset at different stages of cleaning

Stage Delete hyperlinks
Delete special

characters
Delete word stops

Extension of

abbreviations

Number of unique words (title) 1470 1270 1260 1251

Number of unique words (description) 3293 2610 2601 2596

Number of unique words (description + title) 3943 3069 3061 3051

Maximum number of words (title) 18 18 15 16

Average number of words (title) 6.47 6.42 5.62 5.68

Fig. 1. Statistics of the dataset at different stages of cleaning by the total number of words

Fig. 2. Statistics of the dataset at different stages of cleaning by the number of unique words

Next, at the second stage of the study, the textual

descriptions of the sprint tasks are converted into

vector representations for further use in the

classification model, which involves obtaining

a vector representation of each task. This process

starts with converting each task into a set of tokens

using a tokenizer. A tokenizer, also known as a lexical

analyzer, divides text into small units called tokens [20].

Tokens can be words, symbols, phrases, or even

sentences, depending on the type of task and the

processing language. Tokenization helps to further

represent the text in a format suitable for further

analysis and processing by computer algorithms.

There are a variety of approaches to obtaining

vector representations of text fragments. These vectors

can be generated by using unsupervised learning

algorithms or retrained neural networks. Choosing

a method of text vectorization is an important

research task. The following methods can be used

to obtain vector representations:

– Word2Vec – a method of vector representation

of words [21];

– TF-IDF (Term Frequency-Inverse Document

Frequency) is a statistical method that is widely used

in the field of information retrieval and text data

analysis [22];

38

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

– GloVe (Global Vectors for Word Representation)

is a type of word representation using statistical

properties of words in large text corpora [23];

– FASTTEXT is a type of vector word

representation method based on neural networks and

has several unique features that make it popular

and effective in natural language processing [24].

At the third stage, tasks are marked up using expert

annotations, and two classes are formed. However,

key research questions arise: what number of experts

is sufficient to ensure an independent and reliable

assessment of the quality of task formulation?

Can experts' knowledge of the project context influence

the results of their expert evaluation? An important

aspect is also to determine methods for assessing the

consistency of expert opinions and establishing criteria

for matching certain classes for further use in training

the classification model.

The fourth stage involves training the classifier,

where Bayesian classifier and neural classifiers can be

effective for classifying text fragments. Determining

the optimal classification model that meets the

characteristics of the data of a particular project is

the task of an experimental study. It is important to note

that the classification results will be affected not only

by the chosen classification method but also by the

approach to text vectorization.

The final stage involves validating the model on

the available data and selecting the optimal classifier

for further use in other projects. One of the key criteria

for evaluating the model is the F-measure. The F-measure

is a metric that combines precision and recall into a single

numerical score, allowing you to assess the balance

between these two considerations. The F-measure

provides a trade-off between precision and completeness,

which is especially important when dealing with unsorted

classes or unbalanced datasets. The overall goal is to

achieve the best possible balance between these

two aspects so that the model has high accuracy and,

at the same time, avoids omissions (missed detections)

of a particular class.

This approach to building a classifier allows us

to systematize sprint tasks into categories according to

the quality of their formulations. In addition, this

approach takes into account the project context and

expert opinions, which makes it flexible and adaptive

to the specifics of a particular project and team

characteristics, which is critical for further improving

project management processes.

Study results and their discussion

The study was conducted on real data generated

from the project management system to automate the

identification of poor-quality sprint task formulations

that affect the developers' understanding of them and,

as a result, lead to project risks. The features of the data

collected for the study are semi-structured, incomplete,

textual, and lack of project context. Therefore, the data

set requires special processing and cleaning.

As mentioned above, for classification tasks,

we propose to use textual descriptions of tasks

contained in the tracking system. Thus, each task is

represented by a title and a more detailed description.

In our experiments, we used either only the title or the

title concatenated with the description.

In the process of processing the text of the tasks,

all titles go through several stages:

– replacing all known abbreviations with their

meanings;

– filtering all irrelevant characters (if any);

– normalizing all elements of the task text.

Each task is converted into a set of tokens using

a tokenizer that is used by the model and understood

by it. For all experiments, we use the Python

programming language and deep learning frameworks,

including Transformers. Next, we need to obtain

a vector representation of the task names. At the initial

stage, we used the TF-IDF method, the corpus of which

was all the tasks available in the dataset of a real project.

The dataset of 1000 tasks was first analyzed into

two classes (positive and negative) according to the expert's

opinion on the quality of the wording. Then, using

dimensionality reduction tools (PCA and t-SNE), visual

representations of the data were obtained (Fig. 3, Fig. 4).

Fig. 3. Visual representation of data using t-SNE

in two-dimensional space (yellow – positively

annotated tasks, purple – negatively annotated tasks)

39

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

Fig. 4. Visual representation of data using PCA

in two-dimensional space (yellow – positively annotated

tasks, purple – negatively annotated tasks)

The semantic analysis of the text of the task

description and title revealed that the known methods

cannot be used due to the lack of context in the

description. This is due to the fact that when forming

the name and description of a task, the team has its

own internal context, which is not transferred to the

text of the task. This, in turn, is one of the main reasons

for comprehension problems, which affects the timing

and quality of the project.

Thus, it has been established that the project context

is outside the textual descriptions of tasks, which affects

their understanding by new team members, and also

limits the use of natural language processing methods

to analyze the quality of wording and identify factors

that affect the understanding of the content of tasks.

At the next stage of the experiments, additional

experts were involved in annotating the dataset.

A team of four experts independently labeled the

dataset for binary classification. Positive tasks include

tasks with high quality, which are understandable

to the marker and the time estimate for them is most

likely to be adequate. Tasks that are incomprehensible

to the expert receive negative marks. In Fig. 5 shows

the distribution of positive and negative marks for each

of the markers (experts).

It should be noted that when marking up data,

as the expert's time and the number of tasks processed

increase, the markers become more confident about

the project context and a higher percentage of tasks

receive positive marks. It is concluded that the more

an expert works within the project, the more accurate

the estimates become, that is, the clarity of the tasks

whose descriptions are recorded in the tracking

system significantly depends not only on the wording

of their textual description, but also on understanding

the content of the project itself. It is assumed that

only experts from the middle of the project can

provide adequate markup for the data to classify

the quality of task formulations.

Fig. 5. Distribution of expert markup marks

Thus, we obtained four labeled data sets and

analyzed the correlation of the estimates provided

by different experts. As can be seen from Fig. 6,

the consistency of experts' opinions is low: at best,

the markers overlap in only 76% of the tasks, and

sometimes only in 43%.

Fig. 6. The level of consistency

of the four experts' opinions

Cohen's kappa coefficient is a statistic used to

measure inter-rater reliability (as well as intra-rater

reliability) for qualitative (categorical) items [25].

It is believed to be a more reliable measure than

simply calculating the percentage of agreement,

as kappa also takes into account the possibility of

random agreement.

Cohen's kappa measures the agreement between

two raters, each of whom classifies N items

40

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

into C mutually exclusive categories. The definition

of  is as follows:

0 01
1

1 1

e

e e

p p p

p p


 
  

 
 (1)

where 0p – is the relative observed agreement among

raters, and ep – the hypothetical probability of random

agreement, using the observed data to calculate

the probability that each observer will randomly

see each category.

If the raters are in full agreement, 1  .

If there is no agreement among the raters, other

than what would be expected by chance (as indicated

by ep), 0  . It is possible that the statistics will be

negative, which may occur by chance if there is no

relationship between the estimates of two appraisers,

or it may reflect a real tendency of appraisers to give

different estimates.

For k categories, N observations to be classified,

and kin is the number of times that evaluator i predicted

category k :

1 22

1
e k kp n n

N
  (2)

In machine learning and statistics, to evaluate

binary classifications, the Kappa Cohen formula can be

written as follows:

 

       

2 TP TN FN FP

TP FP FP TN TP FN FN TN


  


      
 (3)

Where TP – true positives;

FP – false positives;

TN – true negatives;

FN – false negatives.

Based on the expert ratings, we calculated Cohen's

kappa coefficient for each pair of markers. The results of

calculating Cohen's kappa coefficient for the experiment

are shown in Fig. 7.

Fig. 7. The Cohen Kappa

Thus, the assumption that task understanding

depends on the availability of information about

the project, involvement in the development team,

etc. was confirmed.

Next, to form the dataset for classification,

we selected only those tasks where at least 3 experts

gave the same answer about the quality of the task.

Thus, we obtained 623 positive and 187 negative

task evaluations.

The analysis of modern approaches to automatic

text data processing has shown that Bayesian classifier

and neural classifiers are well suited for classifying text

expressions. A series of experiments were conducted.

Since one of the experiments is training a neural

network based on a vectorized representation of the text

and, according to the literature, the most representative

are the vectors created by artificial neural networks,

and given the small amount of data and resources,

41

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

the trained BERT (bert-base-uncased) model from the

Python package for transformer class models was chosen

for the experiment. This model was trained on a large

dataset, which was tokenized using an appropriate

tokenizer, which includes 28996 natural language

tokens, 5 of which are the following tokens:

– [PAD] – to add to the sequence to get the

required size;

– [UNK] – to replace unknown characters

(in this case, this token was checked and was not present

in the dataset);

– [CLS] – token to indicate the token in which

the class should be located in the original sequence;

– [SEP] – a separator token;

– [MASK] – a masking token used in training with

Masked Language Modelling. This training methodology

is often used in pre-training natural language models

to obtain representative vectors of input text sequences.

Transformers were first introduced in [26] as

an encoder-decoder architecture, i.e., the input data

is first collapsed to obtain a representation and then

unfolded to perform a specific task. The main idea is to

use a self-attention mechanism, which allows the model

to effectively interact with different parts of the input text

simultaneously. The model consists of several layers,

each of which contains attention mechanisms and

notation (normalization, activation).

The formula for the attention mechanism

in Transformers is as follows:

   , , T

kAttention Q K V softmax QK d V , (4)

where Q , K , V – query, key and value matrices,

respectively;

kd – the dimension of the key vector.

Also, it was found that using only one level of

attention is less efficient than using the attention

mechanism on different linear projections of the query,

key, and learned values, then collecting them all together

and adding another linear projection to the original

representation size. This operation can be described

as follows:

    0

1, , , , ,hMultiHead Q K V Concat head head W (5)

where  , ,Q K V

i i i ihead Attention QW KW VW .

One of the key innovations of the BERT deep

learning model, which uses an encoder model that does

not perform autoregressive prediction, is two-way

contextual encoding, which allows the model to use

information from all directions in the text. During

training, two types of input representations are used:

segmental and positional embeddings.

The formulas for positional and segmental

representations in the BERT neural network look

like this:

   iPositional Embedding w PositionalEncoding i  , (6)

 jSegments Embedding s , (7)

where iw – token on the position i ;

js – segment identifier of the sentence j ;

 PositionalEncoding i – is the vector of the

position designation i in the input sentence.

There are many options for modeling the

position, such as uniformly increasing functions

or periodic functions.

The Bayes classifier was chosen as the first

classification method. It is based on Bayes' theorem,

which determines the probability of an event based

on the probabilities of previous events. In the case of

text classification, the Bayesian classifier uses the

probabilities that a certain word or phrase belongs

to a certain class.

The basic idea of a Bayesian classifier is to

determine the probabilities for each class, given the

occurrence of specific words or phrases in the text.

Mathematically, this is expressed as follows:

 
   

 
x k

x

P X C P C
P C X

P X


 , (8)

where  xP C X – is the probability that document X

belongs to the class kC ;

 xP X C – is the probability of document X

given the class kC ;

 kP C – a priori probability of the class kC ;

 P X – total probability of the document X .

To simplify the calculations, additional assumptions

are often used, for example, the independence of word

occurrences, which allows expressing the probability

of a document given a class as the product of the

probabilities of individual words:

       1 2k k k n kP X C P w C P w C P w C    , (9)

where iw – a single word from a document.

For the Bayesian classifier, vector representations

are obtained from the trained BERT neural network.

These representations are then used as independent

datasets, unrelated to the text, on which the classifier

42

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

is trained. According to the experimental results,

the Bayesian classifier achieved an accuracy of 70%.

For the deep learning-based classifier, we chose a neural

network for binary classification based on the BERT

transformer architecture from the above package.

The same model was chosen as a training model.

For evaluations, the F1 criterion is used – a metric

for measuring the accuracy of models in classification

tasks and is a harmonic mean between precision and

recall. The result is a classifier that gives an accuracy

score of approximately 83% on the test dataset, which is

a good result for a small dataset and data with

conflicting labels.

The training schedule is shown in Fig. 8.

Fig. 8. Graph of F1 metric dependence on the training step

Thus, the experiments have shown that developing a

classification model to identify the quality of textual

descriptions of sprint tasks requires the involvement of

experts who know the project context, determining the

vectorization approach, and choosing a classifier model

that depends on the available data collected from the

project tracking system.

Conclusion and perspectives

of further development

Thus, based on the results of the study, the

following conclusions can be drawn.

This study focuses on solving the problem of

identifying the quality of the textual description

of sprint tasks in the project management system,

which, in turn, determines an important aspect of trying

to reduce the risks of project failure. In solving this

problem, the developed and implemented sprint task

classifier is used, which automatically identifies

poor-quality task formulations. It was found that this

can act as a catalyst for improving the formulated tasks

and adding detailed descriptions, which contributes to the

effective work of the project team as a whole.

The analysis of textual data confirms that the

existing data in the tracking system is incomplete

and contains abbreviations, symbols, and slang.

This undoubtedly makes it difficult to understand.

It should be noted that the team understands the

project context and is able to perceive the information

provided. The results indicate that the quality of the

wording is determined by the level of the expert's

awareness of the specifics and context of the project,

while increasing the number of experts has almost

no effect on the result.

Adding formulation assessments during the

sprint retrospective to train the classifier model and

involve project team members as experts appears to be

advisable. This will facilitate data collection for regular

model training and improve the consistency of ratings

assigned by different experts.

Despite the experiments that did not reveal the

superiority of a particular classifier, it is recommended

to use several classifiers, compare their results by

F-measure, and take into account the choice of vectorizer

to select the best one. Experiments on real data from

a software development project for a Bayesian

classifier and a classifier based on the Transformer

architecture showed an accuracy of 0.7 and 0.83,

respectively, which is quite acceptable given the

training data.

In further research, it is planned to test the

hypothesis that the classifier's effectiveness depends

on a particular project and the use of unsupervised

learning methods for the task of identifying the

quality of formulations.

43

ISSN 2522-9818 (print)

Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26) ISSN 2524-2296 (online)

References

1. Rohovyi, M., Grinchenko, M. (2023), "Project team management model under risk conditions". Vestn. Khar'k. politekhn.

in ta. Ser.: Strategichne upravlinnya, upravlinnya portfelyamy, programamy ta proektamy [Bulletin of the Kharkov

Polytechnic Institute. Series: Strategic Management, Portfolio Management, Programs and Projects], Kharkov: NTU "KhPI",

No. 1 (7), P. 3–11. DOI: https://doi.org/10.20998/2413-3000.2023.7.1

2. Sonbol, R., Rebdawi, G., Ghneim, N. (2022), "Learning software requirements syntax: An unsupervised approach

to recognize templates, Knowledge-Based Systems, Vol. 248, 108933 р. https://doi.org/10.1016/j.knosys.2022.108933

3. Leelaprute, P., Amasaki, S. (2022), "A comparative study on vectorization methods for non-functional requirements

classification", Information and Software Technology, Vol. 150, 106991 р. https://doi.org/10.1016/j.infsof.2022.106991

4. Femmer, H., Fernández, D., Wagner, S., Eder, S. (2017), "Rapid quality assurance with Requirements Smells", Journal

of Systems and Software, Vol. 123, P. 190–213. https://doi.org/10.1016/j.jss.2016.02.047

5. Ramesh, M.R.R., Reddy, C.S. (2021), "Metrics for software requirements specification quality quantification",

Computers & Electrical Engineering, Vol. 96, Part A, 107445 P. 3–11. https://doi.org/10.1016/j.compeleceng.2021.107445

6. Casamayor, A., Godoy, D., Campo, M. (2010), "Identification of non-functional requirements in textual

specifications: A semi-supervised learning approach", Information and Software Technology, Vol. 52, Issue 4, P. 436–445.

https://doi.org/10.1016/j.infsof.2009.10.010

7. Casillo, F., Deufemia, V., Gravino, C. (2022), "Detecting privacy requirements from User Stories with NLP transfer

learning models", Information and Software Technology, Vol. 146, P. 106853. https://doi.org/10.1016/j.infsof.2022.106853

8. Dalpiaz, F., et al. (2019), "Detecting terminological ambiguity in user stories: Tool and experimentation",

Information and Software Technology, Vol. 110, P. 3–16. https://doi.org/10.1016/j.infsof.2018.12.007

9. Dalpiaz, F., Gieske, P., Sturm, A. (2021), " On deriving conceptual models from user requirements: An empirical study",

Information and Software Technology, Vol. 131, 106484 P. 1–13. https://doi.org/10.1016/j.infsof.2020.106484

10. Amna, A.R., Poels, G. (2022), "Ambiguity in user stories: A systematic literature review", Information and Software

Technology, Vol. 145, P. 1–12. https://doi.org/10.1016/j.infsof.2022.106824

11. Urbieta, M., et al. (2020), "The impact of using a domain language for an agile requirements management",

Information and Software Technology, Vol. 145, P. 1–16. https://doi.org/10.1016/j.infsof.2020.106375

12. Jia, J., et al. (2019), "Understanding software developers' cognition in agile requirements engineering", Science of Computer

Programming, Vol. 178, P. 1–19. https://doi.org/10.1016/j.scico.2019.03.005

13. Murtazina, M., Avdeenko, T. (2019), "An Ontology-based Approach to Support for Requirements Traceability

in Agile Development", Procedia Computer Science, Vol. 150, P. 628–635. https://doi.org/10.1016/j.procs.2019.02.044

14. Y. Wahba, Y., Madhavji, N., Steinbacher, J. (2020), "A Hybrid Machine Learning Model for Efficient Classification

of IT Support Tickets in The Presence of Class Overlap", Proceedings of the 32nd Annual International Conference

on Computer Science and Software Engineering, P. 151-156. DOI: 10.1109/ICIT58465.2023.10143149

15. Ramírez-Mora, S., Oktaba, H., Gómez-Adorno, H. (2020), "Descriptions of issues and comments for predicting issue

success in software projects", Journal of Systems and Software, Vol. 168, P. 1–19. https://doi.org/10.1016/j.jss.2020.110663

16. Li, Z., A "Unified Understanding of Deep NLP Models for Text Classification", available at:

https://arxiv.org/abs/2206.09355 (last accessed 08.11.2023).

17. Ishizuka, R., et al. (2022), "Categorization and Visualization of Issue Tickets to Support Understanding of Implemented

Features in Software Development Projects", Applied Sciences. № 12(7):3222. https://doi.org/10.3390/app12073222

18. Devlin, J., et al. (2019), "BERT: Pre-training of deep bidirectional transformers for language understanding", Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Vol. 1, Р. 4171–4186. DOI:10.18653/v1/N19-1423

19. Chawla, P., Hazarika, S., Shen, H.-W. (2020), "Token-wise sentiment decomposition for convnet: Visualizing a sentiment

classifier", Visual Informatics, Vol. 4 Issue 2, Р. 132–141. https://doi.org/10.1016/j.visinf.2020.04.006

20. Bird, S., Klein, E., Loper, E. "Natural Language Processing with Python: Analyzing Text with the Natural Language

Toolkit. O'Reilly Media, Beijing", 2009. 504 р. available at: https://tjzhifei.github.io/resources/NLTK.pdf (last accessed 08.11.2023).

21. "Word2vec", available at: https://www.tensorflow.org/text/tutorials/word2vec (last accessed 08.11.2023).

22. "TF-IDF (Term Frequency-Inverse Document Frequency)", available at: https://www.learndatasci.com/glossary/tf-idf-term-

frequency-inverse-document-frequency/i (last accessed 08.11.2023).

23. Pennington, J., Socher, R., Manning, C. (2014), "GloVe: Global Vectors for Word Representation", In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, Р.1532–1543. http://dx.doi.org/10.3115/v1/D14-1162

24. "Оpen-source FastText", available at: https://fasttext.cc/ (last accessed 08.11.2023)

25. McHugh, Mary L. (2012), "Interrater reliability: the kappa statistic", Biochemia Medica, Vol. 22 Issue 3, Р. 276–282.

https://doi.org/10.11613/BM.2012.031

https://doi.org/10.1016/j.knosys.2022.108933
https://doi.org/10.1016/j.infsof.2022.106991
https://doi.org/10.1016/j.infsof.2022.106991
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software
Journal%20of%20Systems%20and%20Software
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1016/j.jss.2016.02.047
https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/computers-and-electrical-engineering
https://www.sciencedirect.com/journal/computers-and-electrical-engineering/vol/96/part/PA
https://www.sciencedirect.com/journal/computers-and-electrical-engineering/vol/96/part/PA
https://doi.org/10.1016/j.compeleceng.2021.107445
https://doi.org/10.1016/j.compeleceng.2021.107445
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1016/j.infsof.2009.10.010
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/146/suppl/C
https://www.sciencedirect.com/journal/information-and-software-technology/vol/146/suppl/C
https://doi.org/10.1016/j.infsof.2022.106853
https://doi.org/10.1016/j.infsof.2022.106853
https://www.sciencedirect.com/journal/information-and-software-technology
Information%20and%20Software%20Technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://doi.org/10.1016/j.infsof.2018.12.007
https://doi.org/10.1016/j.infsof.2018.12.007
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://doi.org/10.1016/j.infsof.2020.106484
https://doi.org/10.1016/j.infsof.2020.106484
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://doi.org/10.1016/j.infsof.2022.106824
https://doi.org/10.1016/j.infsof.2022.106824
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://www.sciencedirect.com/journal/information-and-software-technology/vol/110/suppl/C
https://doi.org/10.1016/j.infsof.2020.106375
https://doi.org/10.1016/j.infsof.2020.106375
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.sciencedirect.com/journal/science-of-computer-programming/vol/178/suppl/C
https://www.sciencedirect.com/journal/science-of-computer-programming/vol/178/suppl/C
https://doi.org/10.1016/j.scico.2019.03.005
https://doi.org/10.1016/j.scico.2019.03.005
https://www.sciencedirect.com/journal/procedia-computer-science
https://www.sciencedirect.com/journal/procedia-computer-science
https://doi.org/10.1016/j.procs.2019.02.044
https://doi.org/10.1016/j.procs.2019.02.044
https://doi.org/10.1109/ICIT58465.2023.10143149
https://www.sciencedirect.com/journal/journal-of-systems-and-software
https://www.sciencedirect.com/journal/journal-of-systems-and-software/vol/168/suppl/C
https://doi.org/10.1016/j.jss.2020.110663
https://doi.org/10.1016/j.jss.2020.110663
https://arxiv.org/abs/2206.09355
https://arxiv.org/abs/2206.09355
https://arxiv.org/abs/2206.09355
https://doi.org/10.3390/app12073222
https://doi.org/10.3390/app12073222
http://dx.doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.visinf.2020.04.006
https://www.amazon.com.mx/Steven-Bird/e/B001KE1RUM/ref=dp_byline_cont_ebooks_1
https://www.amazon.com.mx/Ewan-Klein/e/B002UT6CWE/ref=dp_byline_cont_ebooks_2
https://www.amazon.com.mx/Ewan-Klein/e/B002UT6CWE/ref=dp_byline_cont_ebooks_2
https://www.amazon.com.mx/s/ref=dp_byline_sr_ebooks_3?ie=UTF8&field-author=Edward+Loper&text=Edward+Loper&sort=relevancerank&search-alias=digital-text
https://www.amazon.com.mx/s/ref=dp_byline_sr_ebooks_3?ie=UTF8&field-author=Edward+Loper&text=Edward+Loper&sort=relevancerank&search-alias=digital-text
https://fasttext.cc/
https://fasttext.cc/
https://www.tensorflow.org/text/tutorials/word2vec
https://www.tensorflow.org/text/tutorials/word2vec
https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/i
https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/i
https://www.learndatasci.com/glossary/tf-idf-term-frequency-inverse-document-frequency/i
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
https://fasttext.cc/
https://fasttext.cc/
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031

44

ISSN 2522-9818 (print)

ISSN 2524-2296 (online) Innovative technologies and scientific solutions for industries. 2023. No. 4 (26)

26. Ashish Vaswani, Noam Shazeer, Niki Parmar et al., (2017), "Attention Is All You Need", 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA, P.1–15. DOI: https://doi.org/10.48550/arXiv.1706.03762

Received 04.12.2023

Відомості про авторів / About the Authors

Гринченко Марина Анатоліївна – кандидат технічних наук, доцент, Національний технічний

університет "Харківський політехнічний інститут", завідувачка кафедри стратегічного управління, Харків, Україна;

e-mail: marinagrunchenko@gmail.com; ORCID ID: https://orcid.org/0000-0002-8383-2675

Роговий Микита Антонович – Національний технічний університет "Харківський політехнічний інститут",

аспірант кафедри стратегічного управління, Харків, Україна; ORCID ID: https://orcid.org/0000-0002-7902-3592;

e-mail: nikrogovoy@gmail.com

Grinchenko Marina – PhD (Engineering Sciences), Associate Professor, National Technical University "Kharkiv

Polytechnic Institute", Head at the Department of Strategic Management, Kharkiv, Ukraine.

Rohovyi Mykyta – National Technical University "Kharkiv Polytechnic Institute", PhD student at the Department of Strategic

Management, Kharkiv, Ukraine.

МОДЕЛЬ ІДЕНТИФІКАЦІЇ ЗАВДАНЬ СПРИНТУ ПРОЄКТУ

НА ОСНОВІ ЇХ ОПИСУ

Предметом дослідження є ідентифікація завдань спринту проєкту. Мета статті – пошук підходів до зниження ризиків

невиконання завдань спринту. У роботі вирішуються такі завдання: аналіз досліджень щодо класифікації та візуалізації

завдань проєкту; розроблення алгоритму, який здатний автоматично класифікувати текстові описи завдань спринту;

збір і підготовка навчальної вибірки текстових описів завдань спринту для навчання та тестування моделі класифікації;

застосування методів оброблення природної мови для вдосконалення класифікації та забезпечення точності результатів,

проведення валідації моделі на реальних показниках для оцінювання ефективності й точності класифікації; проведення

аналізу результатів. Використовуються такі методи: машинне навчання для класифікації, векторизація текстів,

класифікація текстових описів, оброблення природної мови, семантичний аналіз тексту опису завдань та оброблення

експертних оцінок. Досягнуті результати. Запропоновано комплексний підхід використання алгоритмів машинного

навчання, що передбачає збір та оброблення текстових описів завдань, для класифікації та залучення експертних оцінок

з метою вдосконалення якості сприйняття завдань командою проєкту. Проведено класифікацію текстових висловів

на основі класифікатора Баєса та нейронних класифікаторів. Реалізовано візуальну репрезентацію даних. Проведено

семантичний аналіз тексту опису та назви завдання. Отримано розмітку даних для класифікації якості формулювань,

яка була виконана командою експертів. Для вимірювання надійності отриманих оцінок експертів розраховано

коефіцієнт каппа Коена для кожної пари розмітників. За результатами експериментів для класифікатора Баєса отримано

точність 70%. Для класифікатора на основі глибокого навчання обрано нейронну мережу для бінарної класифікації

на основі архітектури transformer. Проведено навчання нейронної мережі за допомогою мови програмування Python

і фреймворків для глибокого навчання. Унаслідок отримано класифікатор, що на тестовому наборі оцінює з точністю 83%,

що є гарним результатом для малого набору даних і даних із суперечливими мітками. Висновки. Аналіз текстової

інформації підтверджує, що наявні в системі трекінгу дані не повні та містять скорочення, умовні познаки та сленг.

Здобуті результати свідчать про те, що оцінка якості формулювань визначається рівнем обізнаності експерта щодо

особливостей і контексту проєкту, водночас збільшення кількості експертів майже не впливає на результат. У подальших

дослідженнях рекомендується перевірити гіпотезу про залежність ефективності класифікатора від конкретного проєкту

та використання методів навчання без учителя для завдання ідентифікації якості формулювань.

Ключові слова: проєкт; опис завдань; система управління завданнями проєктів; модель; класифікатор;

векторна репрезентація.

Бібліографічні описи / Bibliographic descriptions

Гринченко М. А., Роговий M. А. Модель ідентифікації завдань спринту проєкту на основі їх опису. Сучасний стан

наукових досліджень та технологій в промисловості. 2023. № 4 (26). С. 33–44. DOI: https://doi.org/10.30837/ITSSI.2023.26.033

Grinchenko, M., Rohovyi, М. (2023), "A model for identifying project sprint tasks based on their description", Innovative

Technologies and Scientific Solutions for Industries, No. 4 (26), P. 33–44. DOI: https://doi.org/10.30837/ITSSI.2023.26.033

https://arxiv.org/search/cs?searchtype=author&query=Vaswani,+A
https://arxiv.org/search/cs?searchtype=author&query=Shazeer,+N
https://arxiv.org/search/cs?searchtype=author&query=Parmar,+N
mailto:marinagrunchenko@gmail.com
https://orcid.org/0000-0002-8383-2675
https://orcid.org/0000-0002-7902-3592
mailto:nikrogovoy@gmail.com
https://doi.org/10.30837/ITSSI.2023.26.033
https://doi.org/10.30837/ITSSI.2023.26.033

