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A MODEL FOR IDENTIFYING PROJECT SPRINT TASKS BASED
ON THEIR DESCRIPTION

The subject of research in this article is the identification of project sprint tasks. The purpose of the article is to find
approaches to reducing the risks of not fulfilling sprint tasks. The article solves the following tasks: analyzing research
on the classification and visualization of project tasks, developing an algorithm that can automatically classify text descriptions of
sprint tasks, collecting and preparing a training sample of text descriptions of sprint tasks for training and testing the classification
model, applying natural language processing methods to improve classification and ensure the accuracy of the results, validating
the model on real data to assess the efficiency and accuracy of classification, and analyzing the results. The following methods have
been used: machine learning methods for classification, text vectorization methods, methods for classifying text descriptions, natural
language processing methods, methods for semantic analysis of task description text, methods for processing expert opinions.
The following results were obtained: a comprehensive approach to using machine learning algorithms, including the collection
and processing of textual descriptions of tasks, for classification and involvement of expert opinions to improve the quality
of task perception by the project team. Text expressions were classified based on the Bayesian classifier and neural classifiers.
A visual representation of the data was implemented. Semantic analysis of the text of the description and title of the tasks
was performed. Data markup was obtained to classify the quality of the wording, which was performed by a team of experts.
To measure the reliability of the obtained expert assessments, we calculated Cohen's kappa coefficient for each pair of
markers. According to the experimental results, the accuracy of the Bayesian classifier is 70%. For the classifier based on deep
learning, a neural network for binary classification based on the transformer architecture was selected. The neural network was
trained using the Python programming language and deep learning frameworks. The result is a classifier that gives an accuracy
score of 83% on a test dataset, which is a good result for a small dataset and data with conflicting labels. Conclusions: the analysis
of textual data confirms that the existing data in the tracking system is incomplete and contains abbreviations, conventions,
and slang. The results show that the assessment of the quality of the wording is determined by the level of expert knowledge
of the specifics and context of the project, while increasing the number of experts has almost no effect on the result.
In further research, it is recommended to test the hypothesis that the effectiveness of the classifier depends on the specific project
and the use of unsupervised learning methods for the task of identifying the quality of formulations.
Keywords: project; task description; project task management system; model; classifier; vector representation.

Introduction tasks, resources, deadlines, and communications

are effectively organized and tracked. Tracking systems

Nowadays, flexible or adaptive management
methodologies are widely used to implement IT projects.
The use of these methodologies makes it possible
to respond quickly to changes and risks that arise
during the development of a software product.
The effectiveness of the project team is influenced
by a large number of factors [1], among which
an inaccurate description of the project tasks or their
misunderstanding by  developers is  significant.
Thus, identifying ambiguities in sprint task descriptions
often becomes critical to successful software
development. This allows you to reformulate unclear
tasks in a timely manner and avoid misunderstandings
between developers.

Tracking systems (also known as task management
systems or project management systems) play a key
role in IT project management by ensuring that work

allow you to create and assign tasks to team members.
Each task can contain a description, deadlines, attached
files, and other important information. Data collection
and analysis allows you to create reports and analytical
tools to evaluate team performance, identify trends, and
make strategic decisions. Thus, project task management
systems store information about program tasks and
comments that can be useful for predicting the success of
tasks. However, at the moment, there are practically
no studies on this topic and no results that would allow us
to analyze how accurately and clearly the tasks are set.
Assessing the quality and unambiguity of task
descriptions is an important part of software development
project management. High-quality and accurate task
statements allow the project manager and team to better
understand the scope of work, resources required, and
assess the risks for each task or requirement. It also helps
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in making decisions about priorities, resource allocation,
and balanced project planning.

Text classification plays an important role in the
field of natural language processing (NLP) and is
becoming a key component in the development and
improvement of project tasks. The rapid development
of this field allows us to improve the results in project
activities. This, in turn, helps to avoid possible
misunderstandings, errors, and delays in project
implementation. The text classifier allows you to assess
the quality of task formulation, determining their clarity
and conciseness. The use of classification helps to create
a single standard for interpreting textual descriptions
of tasks, which facilitates common understanding
across the team. In general, the introduction of text
classification into the project management process
can improve the quality of project tasks, ensuring their
more efficient implementation and avoiding possible
difficulties in the development process.

Analysis of last achievements and publications

Fixing tasks and describing them in the training
system is an important element for managing and
controlling project development processes. This practice
helps to avoid misunderstandings, set priorities, and
determine the progress of each task during the sprint.
Brief task notes in natural language allow team members
to quickly grasp the essence of tasks. They can include
keywords and phrases that identify the main aspects
of the tasks.

The project team spends considerable time manually
categorizing incoming tasks. Unfortunately, this process
is difficult, and team members do not have clear
guidelines for best practices based on historical data.
As the amount of data grows, it becomes critical
to implement automated task classification. Typically,
sprint task descriptions are unstructured, making them
difficult to process using natural language. Typos and
abbreviations in the text of tasks are also complicating
factors. Classification of sprint tasks is a critical
process that ensures their proper addressing to
the appropriate performers.

This paper analyzes studies on the classification
and visualization of project tasks. The research can be
divided into two groups.

The first group studies the quality problems of
describing functional and non-functional requirements.
Paper [2] proposes an approach that can be used to
identify patterns that meet well-known standards with

a measure of F1 of 0.90. Also, this approach allows
detecting common syntactic features for non-standard
patterns in more than 73.5% of cases. The evaluation
showed that these results are reliable regardless of the
volume and duration of the processed requirements.

The study of the second group [3] focuses on
the differences between vectorization methods that
transform requirements written in natural language
into numerical vectors for further classification. Through
an empirical experiment using 5 open datasets, it was
found that advanced vectorization methods significantly
improve classification performance. It was also found
that using pre-prepared data for vectorization is
sometimes the most effective method.

First, let's take a closer look at the studies that
belong to the first group.

In [4], the researchers defined the concept of
"Requirement Smells” as an indicator of the quality
of the requirements description for quick analysis during
their formation. The researchers also presented
an approach to identifying requirements, which was
empirically evaluated in the study of many cases.
The paper contains conclusions that relate them to the
available evidence on the detection of natural language
quality defects in requirements artifacts, and analyzes the
impact and limitations of this approach and its evaluation.

Researchers in [5] tried to redefine approaches to
measuring standard IEEE metrics (defines the software
maintenance process) to improvise a quality assessment
of SRS (software requirements  specification).
The authors recommended an SRS template and
a strategy for assessing SRS quality metrics. In contrast
to modern methods, this approach brought out the metrics
of the IEEE SRS quality assessment standards as more
modular for collecting requirements.

In [6], the authors proposed a semi-supervised text
categorization approach for the automatic identification
and classification of non-functional requirements (NFRs).
The goal of this approach is to integrate into
a recommender system to help analysts and software
developers in the architectural design process. A small
number of requirements identified during the discovery
process allows learning an initial classifier for NFRs
that can consistently identify further requirements for
the problem statement in an iterative process.

Paper [7] presents an approach to reducing privacy
risks in agile software development by automatically
detecting information related to the privacy of user
history, which is an important notation in agile
requirements engineering (RE). Experimental results
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have shown that deep learning algorithms allow
obtaining better predictions than those achieved using
conventional (shallow) machine learning methods.
The use of Transfer Learning can significantly improve
the accuracy of forecasts by up to 10%.

The authors of [16] presented an ontology-
based approach to supporting requirement tracking.
The developed ontology contains theoretical knowledge
for developing requirements in an agile environment,
which allows a group of developers to effectively manage
the development of requirements for a software product.
This facilitates rapid decision-making on revising project
artifacts related to changes and allows for a more accurate
determination of the scope of these changes.

In the second group of works on the classification
and visualization of project tasks, researchers focus on the
quality problems of describing user stories in a project.

In [10], two experiments were conducted to
investigate the factors that could potentially affect the
derivation of static conceptual models from specifications
written in the form of user stories and use cases.
The analysis of the results showed that the notation
of requirements has a limited impact on the quality
of the resulting conceptual model in terms of both
reliability and completeness. Systematic grammatical
analysis leads to conceptual models with a high level
of completeness and validity in both experiments.

Using a linguistic classification of ambiguity
problems, the authors of [11] offer a new perspective
on current knowledge about understanding, avoiding,
and resolving ambiguity in user stories. The possibilities
of increasing the effectiveness of the user story
technique in supporting requirements engineering (RE)
activities in application system development (ASD)
projects are investigated.

The approach proposed by the researchers [13]
consists of a set of rules that receive scattered information
in user stories and organize it in Lexicon symbols.
The Lexicon provides a consolidated and organized
structure to alleviate the problem of confusing
information that causes a lack of tracking between
different sprints. This approach has advantages for
tracking requirements in agile methodologies, which
is supported by previous evaluation results.

Study [15] defines a classification of developers'
cognitive representation styles and cognitive interaction
patterns in agile RE. The cognitive abilities of developers
based on their statements when separating and defining
user stories were investigated. The conclusions showed
that developers tend to focus on the technology

of cognitive style of representation, even in RE, and
have cognitive difficulties in activating and detailing
user stories.

In [17], the authors investigate the effectiveness
of using word embedding to classify tasks in the IT
help desk. Experimental results indicate that the
traditional Total Frequency Inverse Document Frequency
(TFIDF) method, combined with the Support Vector
Machines (SVM) method, provides competitive results
and is sometimes more effective than static methods
for building vector representations of words, such as
word2vec. The use of TFIDF-SVM allows achieving
good results at a low computational cost.

The authors of [9] propose an instrumental approach
that combines information visualization with two natural
language processing techniques: conceptual model
extraction and semantic similarity. Experiments have
shown that detecting terminological ambiguities requires
considerable time, even with the use of technical
means, and that it is difficult to determine whether
a synonym can interfere with the correct direction
of software system development.

Paper [16] presents a visual analysis method
called DeepNLPVis, which is used to understand and
analyze the model's behavior in text classification
tasks and study the reasons for successful and
unsuccessful cases. Studies have shown that task
descriptions and comments can be used to predict
the success of a task with a high level of accuracy.

In [18], the authors examine the usefulness of
textual task descriptions and comments in predicting
whether problems will be solved successfully.
Experiments have shown that problem descriptions
and comments can be used to predict problem solving
success with more than 85% accuracy, and that
predictions of problem solving success change over time.

In [19], the authors propose a method for classifying
tasks by clustering and visualizing the characteristics of
each category. This method allows experts and
stakeholders to better understand the project and features
of the target software system by reviewing the keywords
of the task categories.

The analysis of the conducted research suggests
that there are approaches to describing tasks and
user stories, but the issue of qualitative description
of project sprint tasks remains less studied. The need for
a high-quality textual description of sprint tasks is
especially relevant, since an incorrectly formulated
or unclear description can lead to misunderstandings
and errors in the execution of tasks.
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Unlike assessing the quality of requirements
and user stories, assessing the quality of sprint tasks
requires taking into account the specifics of this context.
At the stage of creating the sprint backlog, it is important
to determine how clearly and unambiguously each task
is formulated. This will help avoid misunderstandings
and incorrect task performance by project team members.

The process of identifying and classifying sprint
tasks into “clear" and "unclear” is critical at the stage
of backlog formation. This will allow you to identify
tasks that may be a source of misunderstanding and risk
of project delays due to poor textual description.
Classifying tasks will provide the project team with the
opportunity to devote special attention and resources
to clarifying and improving the description of these
tasks, thereby reducing the likelihood of errors
and misunderstandings.

Considering the quality and unambiguity of the
textual description of sprint tasks as a factor influencing
task performance is a key element of effective project
management. This helps ensure that tasks are properly
understood and effectively completed by team members.

Aim and tasks of the study

3. Application of advanced natural language
processing techniques to improve classification and
ensure the accuracy of the results.

4. Validate the model on real data to assess the
efficiency and accuracy of the classification.

5. Analyzing the results, identifying the factors that
affect the quality of task formulation, and drawing
conclusions on the application of the developed model.

Materials and methods

In the tracking system, tasks are formulated in
such a way as to convey the essence of the work
to be done as clearly and understandably as possible.
It is important to ensure that each team member
understands the task in the same way, to avoid
ambiguities and  misunderstandings.  Experience
shows that project executors save information about
the task in its title, create descriptions, and add
comments. Recording all this information in the
tracking system provides the team with a convenient
tool for collaboration, simplifies communication, and
helps ensure that all project participants understand
the tasks accurately and completely.

Thus, the purpose of the study is to find approaches
to reduce the risks of failure to complete the tasks of
an IT project sprint by automating the classification
of text descriptions. To achieve this goal, the following
tasks need to be solved:

1. Developing an algorithm that can automatically
classify text descriptions of sprint tasks into "clear” and
"unclear" according to quality and unambiguity criteria.

2. Collect and prepare a training set of textual
descriptions of sprint tasks for training and testing
the classification model.

To achieve this goal and develop a model for
identifying tasks with poor formulation in an IT project
sprint, we propose an integrated approach that includes
collecting and processing textual descriptions of tasks,
using machine learning algorithms for classification, and
involving expert opinions to improve the quality of task
perception by the project team.

This study uses a task tracking system as the source
of data on sprint tasks. The dataset includes 1000 tasks
that were exported from the Jira project management
system. Based on data from a real project, this dataset
contains information about various task parameters such
as name, description, unique key, performer, time spent,
time estimate, task status, comments, and others.
The language of the received textual descriptions of tasks
for wording analysis is English, which is typical for
software development projects. The main characteristics
for identifying the task wording are the name and
description. It should be noted that the description
iS not a mandatory characteristic of the task, i.e,
the task formulation can consist of only the name.

In the process of data pre-processing, a number of
cleaning procedures must be performed. In addition to
standard textual data parsing, links, code fragments,
and uninformative symbols such as currency signs and
likes are removed from the dataset. We also replace
abbreviations with their full meanings.

The analysis of the dataset reveals the following
characteristics: the average number of words in the title
is 6.4, and the average number of words in the description
is 37.67. The total number of tasks in the set is 1000,
of which the number of tasks with descriptions is 461.

The number of unique words in the title and
description is 5080. Conjunctions and articles turned
out to be the most popular words, and among those that
carry an independent semantic load, the most popular
are: "add", "image", "inspection”, "defect", "object".
These words are relevant to this project.
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Table 1. Statistics of the dataset at different stages of cleaning

. Delete special Extension of
Stage Delete hyperlinks characﬁers Delete word stops abbreviations
Number of unique words (title) 1470 1270 1260 1251
Number of unique words (description) 3293 2610 2601 2596
Number of unique words (description + title) 3943 3069 3061 3051
Maximum number of words (title) 18 18 15 16
Average number of words (title) 6.47 6.42 5.62 5.68

Stage 4. Expanding the abbreviations _

Stage 3. Removing word stops _ I
Step 2: Removing special characters _
st arong st I

0

B Maximum number of words ( name)

Average number of words ( name)
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10 15 20 25 30

# Minimum number of words ( name)

Fig. 1. Statistics of the dataset at different stages of cleaning by the total number of words

Stage 4. Expanding the abbreviations —i

Stage 3. Removing word stops

Step 2: Removing special characters

Step 1: Removing hyperlinks
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A number of unique words ( description and title) ® A number of unique words ( description)

¥ A number of unique words ( name)

Fig. 2. Statistics of the dataset at different stages of cleaning by the number of unique words

Next, at the second stage of the study, the textual
descriptions of the sprint tasks are converted into
vector representations for further wuse in the
classification  model, which involves obtaining
a vector representation of each task. This process
starts with converting each task into a set of tokens
using a tokenizer. A tokenizer, also known as a lexical
analyzer, divides text into small units called tokens [20].
Tokens can be words, symbols, phrases, or even
sentences, depending on the type of task and the
processing language. Tokenization helps to further
represent the text in a format suitable for further
analysis and processing by computer algorithms.

There are a variety of approaches to obtaining
vector representations of text fragments. These vectors

can be generated by using unsupervised learning
algorithms or retrained neural networks. Choosing
a method of text vectorization is an important

research task. The following methods can be used
to obtain vector representations:

— Word2Vec — a method of vector representation
of words [21];

— TF-IDF (Term Frequency-Inverse Document
Frequency) is a statistical method that is widely used
in the field of information retrieval and text data
analysis [22];
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— GloVe (Global Vectors for Word Representation)
is a type of word representation using statistical
properties of words in large text corpora [23];

— FASTTEXT is a type of vector word
representation method based on neural networks and
has several unique features that make it popular
and effective in natural language processing [24].

At the third stage, tasks are marked up using expert
annotations, and two classes are formed. However,
key research questions arise: what number of experts
is sufficient to ensure an independent and reliable
assessment of the quality of task formulation?
Can experts' knowledge of the project context influence
the results of their expert evaluation? An important
aspect is also to determine methods for assessing the
consistency of expert opinions and establishing criteria
for matching certain classes for further use in training
the classification model.

The fourth stage involves training the classifier,
where Bayesian classifier and neural classifiers can be
effective for classifying text fragments. Determining
the optimal classification model that meets the
characteristics of the data of a particular project is
the task of an experimental study. It is important to note
that the classification results will be affected not only
by the chosen classification method but also by the
approach to text vectorization.

The final stage involves validating the model on
the available data and selecting the optimal classifier
for further use in other projects. One of the key criteria
for evaluating the model is the F-measure. The F-measure
is a metric that combines precision and recall into a single
numerical score, allowing you to assess the balance
between these two considerations. The F-measure
provides a trade-off between precision and completeness,
which is especially important when dealing with unsorted
classes or unbalanced datasets. The overall goal is to
achieve the best possible balance between these
two aspects so that the model has high accuracy and,
at the same time, avoids omissions (missed detections)
of a particular class.

This approach to building a classifier allows us
to systematize sprint tasks into categories according to
the quality of their formulations. In addition, this
approach takes into account the project context and
expert opinions, which makes it flexible and adaptive
to the specifics of a particular project and team
characteristics, which is critical for further improving
project management processes.

Study results and their discussion

The study was conducted on real data generated
from the project management system to automate the
identification of poor-quality sprint task formulations
that affect the developers' understanding of them and,
as a result, lead to project risks. The features of the data
collected for the study are semi-structured, incomplete,
textual, and lack of project context. Therefore, the data
set requires special processing and cleaning.

As mentioned above, for classification tasks,
we propose to use textual descriptions of tasks
contained in the tracking system. Thus, each task is
represented by a title and a more detailed description.
In our experiments, we used either only the title or the
title concatenated with the description.

In the process of processing the text of the tasks,
all titles go through several stages:

— replacing all known abbreviations with their
meanings;

— filtering all irrelevant characters (if any);

—normalizing all elements of the task text.

Each task is converted into a set of tokens using
a tokenizer that is used by the model and understood
by it. For all experiments, we use the Python
programming language and deep learning frameworks,
including Transformers. Next, we need to obtain
a vector representation of the task names. At the initial
stage, we used the TF-IDF method, the corpus of which
was all the tasks available in the dataset of a real project.

The dataset of 1000 tasks was first analyzed into
two classes (positive and negative) according to the expert's
opinion on the quality of the wording. Then, using
dimensionality reduction tools (PCA and t-SNE), visual
representations of the data were obtained (Fig. 3, Fig. 4).

Fig. 3. Visual representation of data using t-SNE
in two-dimensional space (yellow — positively
annotated tasks, purple — negatively annotated tasks)
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Fig. 4. Visual representation of data using PCA
in two-dimensional space (yellow — positively annotated
tasks, purple — negatively annotated tasks)

The semantic analysis of the text of the task
description and title revealed that the known methods
cannot be used due to the lack of context in the
description. This is due to the fact that when forming
the name and description of a task, the team has its
own internal context, which is not transferred to the
text of the task. This, in turn, is one of the main reasons
for comprehension problems, which affects the timing
and quality of the project.

Thus, it has been established that the project context
is outside the textual descriptions of tasks, which affects
their understanding by new team members, and also
limits the use of natural language processing methods
to analyze the quality of wording and identify factors
that affect the understanding of the content of tasks.

At the next stage of the experiments, additional
experts were involved in annotating the dataset.
A team of four experts independently labeled the
dataset for binary classification. Positive tasks include
tasks with high quality, which are understandable
to the marker and the time estimate for them is most
likely to be adequate. Tasks that are incomprehensible
to the expert receive negative marks. In Fig. 5 shows
the distribution of positive and negative marks for each
of the markers (experts).

It should be noted that when marking up data,
as the expert's time and the number of tasks processed
increase, the markers become more confident about
the project context and a higher percentage of tasks
receive positive marks. It is concluded that the more
an expert works within the project, the more accurate
the estimates become, that is, the clarity of the tasks
whose descriptions are recorded in the tracking
system significantly depends not only on the wording

of their textual description, but also on understanding
the content of the project itself. It is assumed that
only experts from the middle of the project can
provide adequate markup for the data to classify
the quality of task formulations.

Dataset distribution

B ozt [ nogatve

0

50
250
0 alme
Expett

Fig. 5. Distribution of expert markup marks

Expori2 Expactd Experd

Thus, we obtained four labeled data sets and
analyzed the correlation of the estimates provided
by different experts. As can be seen from Fig. 6,
the consistency of experts' opinions is low: at best,
the markers overlap in only 76% of the tasks, and
sometimes only in 43%.

Copot mprwrew

Fig. 6. The level of consistency

of the four experts' opinions

Cohen's kappa coefficient is a statistic used to
measure inter-rater reliability (as well as intra-rater
reliability) for qualitative (categorical) items [25].
It is believed to be a more reliable measure than
simply calculating the percentage of agreement,
as kappa also takes into account the possibility of
random agreement.

Cohen's kappa measures the agreement between
two raters, each of whom classifies N items
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into C mutually exclusive categories. The definition
of « is as follows:

= po_ pe _1_1_ pO

1- P. 1- P,

where p, — is the relative observed agreement among

@

raters, and p, — the hypothetical probability of random

agreement, using the observed data to calculate
the probability that each observer will randomly
see each category.

If the raters are in full agreement, x=1.

If there is no agreement among the raters, other
than what would be expected by chance (as indicated
by p.), x=0. It is possible that the statistics will be

negative, which may occur by chance if there is no
relationship between the estimates of two appraisers,
or it may reflect a real tendency of appraisers to give
different estimates.

Cohen Kappa score

expert 1

expert 2

expert 3

expert 4

expert 1 expert 2

Fig. 7. The Cohen Kappa

Thus, the assumption that task understanding
depends on the availability of information about
the project, involvement in the development team,
etc. was confirmed.

Next, to form the dataset for classification,
we selected only those tasks where at least 3 experts
gave the same answer about the quality of the task.
Thus, we obtained 623 positive and 187 negative
task evaluations.

For k categories, N observations to be classified,
and n,; is the number of times that evaluator i predicted

category K :

1
P. = N Z NNy, 2

In machine learning and statistics, to evaluate
binary classifications, the Kappa Cohen formula can be
written as follows:

2(TPxTN-FN x FP)

o (TP+ FP)X(FP+TN)+(TP+ FN)X(FN +TN) 3)

Where TP — true positives;
FP — false positives;
TN - true negatives;
FN - false negatives.

Based on the expert ratings, we calculated Cohen's
kappa coefficient for each pair of markers. The results of
calculating Cohen's kappa coefficient for the experiment
are shown in Fig. 7.

08

expert 3 expert 4

The analysis of modern approaches to automatic
text data processing has shown that Bayesian classifier
and neural classifiers are well suited for classifying text
expressions. A series of experiments were conducted.

Since one of the experiments is training a neural
network based on a vectorized representation of the text
and, according to the literature, the most representative
are the vectors created by artificial neural networks,
and given the small amount of data and resources,
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the trained BERT (bert-base-uncased) model from the
Python package for transformer class models was chosen
for the experiment. This model was trained on a large
dataset, which was tokenized using an appropriate
tokenizer, which includes 28996 natural language
tokens, 5 of which are the following tokens:

— [PAD] - to add to the sequence to get the
required size;

— [UNK] - to replace unknown characters
(in this case, this token was checked and was not present
in the dataset);

— [CLS] - token to indicate the token in which
the class should be located in the original sequence;

— [SEP] — a separator token;

— [MASK] - a masking token used in training with
Masked Language Modelling. This training methodology
is often used in pre-training natural language models
to obtain representative vectors of input text sequences.

Transformers were first introduced in [26] as
an encoder-decoder architecture, i.e., the input data
is first collapsed to obtain a representation and then
unfolded to perform a specific task. The main idea is to
use a self-attention mechanism, which allows the model
to effectively interact with different parts of the input text
simultaneously. The model consists of several layers,
each of which contains attention mechanisms and
notation (normalization, activation).

The formula for the attention
in Transformers is as follows:

Attention(Q,K,V ) = sof’tmax(QKT /\/E)v , 4

where Q, K, V — query, key and value matrices,

mechanism

respectively;
d, —the dimension of the key vector.

Also, it was found that using only one level of
attention is less efficient than using the attention
mechanism on different linear projections of the query,
key, and learned values, then collecting them all together
and adding another linear projection to the original
representation size. This operation can be described
as follows:

MultiHead (Q, K,V ) = Concat (head,, ..., head, )W°, (5)
where head, = Attention(QW,2, KW,*,vW;" .

One of the key innovations of the BERT deep
learning model, which uses an encoder model that does
not perform autoregressive prediction, is two-way
contextual encoding, which allows the model to use
information from all directions in the text. During

training, two types of input representations are used:
segmental and positional embeddings.

The formulas for positional and segmental
representations in the BERT neural network look
like this:

Positional = Embedding (w; ) + PositionalEncoding (i), (6)
Segments = Embedding(s, ), @)
where w, — token on the position i ;
s; —segment identifier of the sentence j ;

PositionalEncoding (i) — is the vector of the

position designation i in the input sentence.

There are many options for modeling the
position, such as uniformly increasing functions
or periodic functions.

The Bayes classifier was chosen as the first
classification method. It is based on Bayes' theorem,
which determines the probability of an event based
on the probabilities of previous events. In the case of
text classification, the Bayesian classifier uses the
probabilities that a certain word or phrase belongs
to a certain class.

The basic idea of a Bayesian classifier is to
determine the probabilities for each class, given the
occurrence of specific words or phrases in the text.
Mathematically, this is expressed as follows:

P(X|C,)xP(C,)
P(X)

P(C,|X)= , ®)

where P(C,|X) — is the probability that document X
belongs to the class C, ;

P(X|C,) — is the probability of document X
given the class C, ;

P(C,) —apriori probability of the class C, ;

P(X) - total probability of the document X .

To simplify the calculations, additional assumptions
are often used, for example, the independence of word
occurrences, which allows expressing the probability
of a document given a class as the product of the
probabilities of individual words:

P(X|C.)=P(w[C,)xP(w,|C,)x...xP(w,[C,), (9)
where w, —a single word from a document.

For the Bayesian classifier, vector representations
are obtained from the trained BERT neural network.
These representations are then used as independent
datasets, unrelated to the text, on which the classifier
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is trained. According to the experimental results,
the Bayesian classifier achieved an accuracy of 70%.
For the deep learning-based classifier, we chose a neural
network for binary classification based on the BERT
transformer architecture from the above package.
The same model was chosen as a training model.
For evaluations, the F1 criterion is used — a metric

for measuring the accuracy of models in classification
tasks and is a harmonic mean between precision and
recall. The result is a classifier that gives an accuracy
score of approximately 83% on the test dataset, which is
a good result for a small dataset and data with
conflicting labels.

The training schedule is shown in Fig. 8.

Fig. 8. Graph of F1 metric dependence on the training step

Thus, the experiments have shown that developing a
classification model to identify the quality of textual
descriptions of sprint tasks requires the involvement of
experts who know the project context, determining the
vectorization approach, and choosing a classifier model
that depends on the available data collected from the
project tracking system.

Conclusion and perspectives
of further development

Thus, based on the results of the study, the
following conclusions can be drawn.

This study focuses on solving the problem of
identifying the quality of the textual description
of sprint tasks in the project management system,
which, in turn, determines an important aspect of trying
to reduce the risks of project failure. In solving this
problem, the developed and implemented sprint task
classifier is used, which automatically identifies
poor-quality task formulations. It was found that this
can act as a catalyst for improving the formulated tasks
and adding detailed descriptions, which contributes to the
effective work of the project team as a whole.

The analysis of textual data confirms that the
existing data in the tracking system is incomplete
and contains abbreviations, symbols, and slang.
This undoubtedly makes it difficult to understand.

It should be noted that the team understands the
project context and is able to perceive the information
provided. The results indicate that the quality of the
wording is determined by the level of the expert's
awareness of the specifics and context of the project,
while increasing the number of experts has almost
no effect on the result.

Adding formulation assessments during the
sprint retrospective to train the classifier model and
involve project team members as experts appears to be
advisable. This will facilitate data collection for regular
model training and improve the consistency of ratings
assigned by different experts.

Despite the experiments that did not reveal the
superiority of a particular classifier, it is recommended
to use several classifiers, compare their results by
F-measure, and take into account the choice of vectorizer
to select the best one. Experiments on real data from
a software development project for a Bayesian
classifier and a classifier based on the Transformer
architecture showed an accuracy of 0.7 and 0.83,
respectively, which is quite acceptable given the
training data.

In further research, it is planned to test the
hypothesis that the classifier's effectiveness depends
on a particular project and the use of unsupervised
learning methods for the task of identifying the
quality of formulations.
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MOJIEJIb IIEHTUH®IKAIIII BABJAHDb CIPUHTY ITPOEKTY
HA OCHOBI iX OITUCY

Ipeamerom pocaitkeHHs € imeHTHdiKalis 3aBIaHb COPUHTY MPOEKTy. MeTa €TATTi — MOIIYK MiAXOMIB 10 3HM)KEHHS PU3UKIB
HEBHKOHAHHSA 3aBJaHb CHOPUHTY. Y poOOTI BUPINIYIOThCS TaKi 3aBJAHHSM: aHATI3 JOCTIKEHb MO0 Kiacudikamii Ta Bizyamizamii
3aBIaHb IIPOEKTY; PO3POOJIEHHS aNroOpUTMy, SKHH 3JaTHHH aBTOMAaTHYHO KJIACH(IKyBaTH TEKCTOBI ONNCH 3aBAAHb CIIPUHTY,
30ip 1 mMAroToBKa HaBUANBHOI BHOIPKH TEKCTOBHX OIKCIB 3aBJaHb CIPUHTY Ul HaBYaHHS Ta TECTYBaHHS MOJENI KiacHQikarii;
3aCTOCYBaHHS METOMiB OOpOOJIEeHHS MPUPOAHOI MOBH Ul BIOCKOHAJICHHS Kiachdikamii Ta 3a0e3NeYeHHs] TOYHOCTI pe3ysIbTaTiB,
NPOBEJCHHS BasiAallii MOJETi Ha pealbHUX IMOKAa3HWKAX VIS OILIHIOBAaHHA €(EKTHBHOCTI W TOYHOCTI KiacHdikailii; MpoBeaeHHS
aHa;i3y pe3yNbTaTiB. BUKOPHCTOBYIOTBCS Taki MeETOAM: MAIlWHHE HABYaHHS Ui Kiacudikaiii, BEKTOpH3allis TEKCTIB,
knacu(ikais TEKCTOBUX OIHUCIB, OOpPOOJICHHS NPUPOTHOI MOBH, CEMAaHTHYHHUI aHalli3 TEKCTy OMKCY 3aBJaHb Ta OOpOOIEHHS
eKCHEepPTHUX OIIHOK. JlocArHyTi pe3yabTaTH. 3amponoOHOBAaHO KOMIUIEKCHHH MiOXiZi BHKOPHUCTAHHS AalTOPUTMIB MAIIMHHOTO
HaBYaHHs, 110 Tependavae 30ip Ta 0OpoOIEHHST TEKCTOBUX OIKUCIB 3aBHaHb, /Ul KiacHikalii Ta 3alydeHHs €KCHePTHHX OLIHOK
3 METOI0 BJIOCKOHAJICHHS SKOCTI CIPUIHATTS 3aBJaHb KOMAaHJOI NpOeKTy. IIpoBeneHo Kiachdikalilo TEeKCTOBUX BHCIIOBIB
Ha OCHOBI Kiacudikaropa baeca Ta HelipoHHHX KiacudikaropiB. PeanizoBaHO Bi3yallbHy pernpe3eHTamilo aaHux. [IpoBeneHO
CEMAaHTHYHHMI aHali3 TEKCTy OMHCY Ta Ha3BU 3aBHaHHA. OTpHMaHO PO3MITKY HaHUX M Kiacu(ikamii sKocTi (HopMyIIOBaHb,
ska OyJa BHKOHaHa KOMAaHIOK ekchepTiB. [l BHUMIpIOBaHHS HaAiffHOCTI OTPUMAaHHX OIIHOK EKCIIEPTiB pO3paxoBaHO
koedimient kxarma KoeHa st koxHOT mapu po3MITHHKIB. 3a pe3ysbTaTaMH eKCIIEpUMEHTIB Juisl KiacudikaTopa baeca orpumano
touHicTe 70%. nst ximacudikaropa Ha OCHOBI INIMOOKOro HaBYaHHA oOpaHO HEHpPOHHY Mepexy il OiHapHOI Kiacugikamii
Ha OCHOBI apxirtextypu transformer. IlpoBeleHO HaBYaHHS HEHPOHHOI Mepexi 3a JOMOMOrol MOBH TporpamyBanHs Python
i ppeliMBOpKIB 1J1st TIMOOKOro HaBYAaHHS. YHACIIIOK OTpHMaHO KiacugikaTop, 0 Ha TECTOBOMY Habopi oIiHIoe 3 TouHicTIO 83%),
IO € TapHUM pe3yJbTaToM JUIi Majoro Habopy IaHUX 1 JaHHX i3 CyNepewIMBUMH MiTKaMH. BHCHOBKH. AHai3 TEKCTOBOI
iHpopMaIii MiATBEpPIUKYE, MO HAsABHI B CHUCTEMI TPEKIHTY NOaHi HE TMOBHI Ta MICTATh CKOPOUYCHHS, YMOBHI IO3HAKH Ta CIICHT.
3100yTi pe3ynbTaTH CBiT4aTh MpPO Te, IO OLiHKAa SKOCTI (POpMYJIOBaHb BH3HAYAETHCA piBHEM OOI3HAHOCTI eKCHepTa IIO0J0
0COOJIMBOCTEH | KOHTEKCTY MPOEKTY, BOJHOUYAC 301MbIICHHS KiJbKOCTI €KCIEpTiB Maike He BIUIMBAE Ha pe3yibTaT. Y MOAANBIINX
JOCITI/DKEHHSAX PEKOMEHIYEThCS TEPEBIPUTH TINOTE3y PO 3aSKHICTh e()eKTHBHOCTI KiacudikaTopa BiJi KOHKPETHOTO IPOEKTY
Ta BUKOPUCTAHHS METO/IB HAaBUAHHS 0€3 YUHUTEIN JJIs 3aBJaHHs 11eHTUIKAI] IKOCTI (OPMYITIOBAHb.

KiouoBi cioBa: TPOEKT; OMHWC 3aBOaHb; CHUCTEMa YNPABIiHHA 3aBOAHHSAMH TIPOEKTIB; MOJENb, KiIacHU(iKaTop;
BEKTOPHA PEMPE3CHTAIIis.
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