Analysis of passenger transportation and the public transportation impact on the reduction in a smart city

Authors

DOI:

https://doi.org/10.30837/ITSSI.2024.27.109

Keywords:

passenger carriage; smart city; low-carbon emissions; system analysis; analysis methods.

Abstract

The state of atmospheric pollution is determined by the growth of the population, the amount of transport and the generated volumes of emissions. The object is the process of analyzing passenger transportation in the city. The subject is passenger transport analysis methods. Purpose: analysis of passenger transportation and approaches to optimization of public transport based on the concept of a smart city. Tasks: analysis of passenger transportation, classification of existing conceptual approaches to optimization of public transport with low carbon emissions, systematization of existing methods, means and types of neural networks in smart cities, analysis of successful implementation projects. Methods of statistical analysis, linear and non-linear interpolation, logical generalization, comparison, grouping, analysis and synthesis. Results: the analysis of passenger transportation in the city revealed that statistical data sets indicate a decrease in the main indicators of passenger traffic and an increase in the volume of emissions of carbon-containing compounds. The classification of existing approaches to the optimization of public transport is carried out according to the priority of public transport, hybridization and electrification of vehicles and the implementation of IT monitoring. During the systematization of methods and means in smart cities, the following are highlighted: smart transport systems; electric vehicles; transport sharing networks; smart applications and information systems; innovative payment systems; unmanned vehicles; information boards and announcement systems; networks of bicycle paths and equipped sidewalks; environmental monitoring systems. Among neural networks, recurrent, convolutional, and deep neural networks have been proposed as those that contribute to route optimization and traffic prediction. Conclusions: the statistical analysis of passenger transportation established that reducing carbon dioxide emissions is an unresolved task for both public transport and the transportation system. It is proposed to include methods and means that optimize public transport, reducing the carbon footprint of the initiatives of implementing the concept of a smart city, which are successful all over the world. It is proposed to use recurrent, convolutional and deep neural networks to optimize passenger transportation in smart cities.

Author Biographies

Yurii Matseliukh, Lviv Polytechnic National University

PhD Student of Information Systems and Networks Department

Vasyl Lytvyn, Lviv Polytechnic National University

Doctor of Sciences (Engineering), Professor, Head of Information Systems and Networks Department

References

Список літератури

Boreiko O., Teslyuk V. Structural model of passenger counting and public transport tracking system of smart city. Perspective Technologies and Methods in MEMS Design, Proceedings of International Conference. 2016. P. 124–126. DOI: https://doi.org/10.1109/MEMSTECH.2016.7507533

Boreiko O., Teslyuk V. Model of data collection controller of automated processing systems for passenger traffic public transport smart city based on petri nets. 2nd International Conference on Advanced Information and Communication Technologies. 2017. P. 62–65. DOI: https://doi.org/10.1109/AIACT.2017.8020066

Boz Y., Cay T. How smart and sustainable are the cities in Turkiye? – National policies and the enthusiasm level of the local governments. Heliyon. 2024. Vol. 10. No 4. 26002 р. DOI: https://doi.org/10.1016/j.heliyon.2024.e26002

Bublyk M., Udovychenko T., Medvid R. Concept of smart specialization in the context of the development of Ukraines economy. Economics. Ecology. Socium. 2019. Vol. 3. No 2. P. 55–61. DOI: https://doi.org/10.31520/2616-7107/2019.3.2-6

Bublyk M., Kowalska-Styczeń A., Lytvyn V., Vysotska V. The Ukrainian economy transformation into the circular based on fuzzy-logic cluster analysis. Energies. 2021. Vol. 14. No 18. 5951 р. DOI: https://doi.org/10.3390/en14185951

Bushuyev S., Inna L., Alla B., Alexander L., Khusainova M. Creating urban transportation networks grounded in the principles of the smart port-city paradigm. Procedia Computer Science. 2023. Vol. 231. P. 323–328. DOI: https://doi.org/10.1016/j.procs.2023.12.211

Wang H., Wang Y. Smart Cities Net Zero Planning considering renewable energy landscape design in Digital Twin. Sustainable Energy Technologies and Assessments. 2024. Vol. 63. 103629 р. DOI: https://doi.org/10.1016/j.seta.2024.103629

Vanli T., Akan T. Mapping synergies and trade-offs between smart city dimensions: A network analysis. Cities. 2023. Vol. 142. 104527 р. DOI: https://doi.org/10.1016/j.cities.2023.104527

Wolniak R., Jonek-Kowalska I. The level of the quality of life in the city and its monitoring. Innovation: The European Journal of Social Science Research. 2021. Vol. 34. No 3. P. 376–398. DOI: https://doi.org/10.1080/13511610.2020.1828049

Guenduez A., Mergel I., Schedler K., Fuchs S., Douillet C. Institutional work in smart cities: Interviews with smart city managers. Urban Governance. 2024. Vol. 2. No 1. P. 104-122. DOI: https://doi.org/10.1016/j.ugj.2024.01.003

Dai Y., Hasanefendic S., Bossink B. A systematic literature review of the smart city transformation process: The role and interaction of stakeholders and technology. Sustainable Cities and Society. 2024. Vol. 101, 105112 р. DOI: https://doi.org/10.1016/j.scs.2023.105112

Jonek-Kowalska I. Towards the reduction of CO2 emissions. paths of pro-ecological transformation of energy mixes in european countries with an above-average share of coal in energy consumption. Resources Policy. 2022. Vol. 77. No 1. 102701 р. DOI: https://10.1016/j.resourpol.2022.102701.

Kim J., Feng Y. Understanding complex viewpoints in smart sustainable cities: The experience of Suzhou, China. Cities. 2024. Vol. 147, 104832 р. DOI: https://doi.org/10.1016/j.cities.2024.104832

Koshtura D., Bublyk M., Matseliukh Y., Dosyn D., Chyrun L., Lozynska O., Karpov I., Peleshchak I., Maslak M., Sachenko O. Analysis of the demand for bicycle use in a smart city based on machine learning. CEUR workshop proceedings. 2020. Vol. 2631, P. 172–183. URL: https://ceur-ws.org/Vol-2631/paper13.pdf (дата звернення: 01.02.2024).

Литвин В., Бублик М., Висоцька В., Мацелюх Ю. Технологія візуальної симуляції пасажиропотоків у сфері громадського транспорту Smart City. Радіоелектроніка, iнформатика, управління. 2022. №4. С. 106–121. DOI: https://doi.org/10.15588/1607-3274-2021-4-10

Lim Y., Edelenbos J., Gianoli A. What is the impact of smart city development? Empirical evidence from a Smart City Impact Index. Urban Governance. 2023.Vol. 4, P. 104-122. DOI: https://doi.org/10.1016/j.ugj.2023.11.003

Lin H., Wang W., Zou Y., Chen H. An evaluation model for smart grids in support of smart cities based on the Hierarchy of Needs Theory. Global Energy Interconnection. 2023. Vol. 6. No 5. P. 634–644. DOI: https://doi.org/10.1016/j.gloei.2023.10.009

Matseliukh Y., Vysotska V., Bublyk M. Intelligent system of visual simulation of passenger flows. CEUR Workshop Proceedings. 2020. Vol. 2604. P. 906–920. URL: https://ceur-ws.org/Vol-2604/paper60.pdf (дата звернення: 01.02.2024).

Nath N., Nitanai R., Manabe R., Murayama A. A global-scale review of smart city practice and research focusing on residential neighbourhoods. Habitat International. 2023. Vol. 142, 102963 р. DOI: https://doi.org/10.1016/j.habitatint.2023.102963

Nguyen H., Nawara D., Kashef R. Connecting the Indispensable Roles of IoT and Artificial Intelligence in Smart Cities: A Survey. Journal of Information and Intelligence. 2024. DOI: https://doi.org/10.1016/j.jiixd.2024.01.003

Podlesna L., Bublyk M., Grybyk I., Matseliukh Y., Burov Y., Kravets P., Lozynska O., Karpov I., Peleshchak I., Peleshchak R. Optimization model of the buses number on the route based on queueing theory in a Smart City. CEUR Workshop Proceedings. 2020. Vol. 2631, P. 502 – 515. URL: https://ceur-ws.org/Vol-2631/paper37.pdf (дата звернення: 01.02.2024).

Sharifi A., Allam Z., Bibri S., Khavarian-Garmsir A. Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs. Cities. 2024. Vol. 146. 104659 р. DOI: https://doi.org/10.1016/j.cities.2023.104659

Shiu S. Ageing in a smart city poses concerns on sustainability from a model perspective. Aging and Health Research. 2024. Vol. 4. No 1. 100179 р. DOI: https://doi.org/10.1016/j.ahr.2023.100179

Spicer Z., Goodman N., Wolfe D. How "smart" are smart cities? Resident attitudes towards smart city design. Cities, 2023. Vol. 141. 104442 р. DOI: https://doi.org/10.1016/j.cities.2023.104442

Tang J., Li Y. Study on the impact of smart energy on carbon emissions in smart cities from single and holistic perspectives – Empirical evidence from China. Sustainable Cities and Society. 2024. Vol. 101, 105145 р. DOI: https://doi.org/10.1016/j.scs.2023.105145

Chen Y., Chen S., Miao J. Does smart city pilot improve urban green economic efficiency: Accelerator or inhibitor. Environmental Impact Assessment Review. 2023. Vol. 104, 107328 р. DOI: https://doi.org/10.1016/j.eiar.2023.107328

Chen Z., Gan W., Wu J., Lin H., Chen C. Metaverse for smart cities: A survey. Internet of Things and Cyber-Physical Systems. 2023. Vol. 4. P. 203–216. DOI: https://doi.org/10.1016/j.iotcps.2023.12.002

Chen C., Li S., Wang L. Can smart cities reduce labor misallocation? Evidence from China. Technological Forecasting and Social Change. 2024. Vol. 201, 123264 р. DOI: https://doi.org/10.1016/j.techfore.2024.123264

Резолюція Генеральної Асамблеї Організації Об’єднаних Націй "Глобальні цілі сталого розвитку до 2030 року", від 25 вересня 2015 року № 70/1 (Sustainable Development Goals (SDGs), United Nations General Assembly, 2015). URL: https://zakon.rada.gov.ua/go/722/2019 (дата звернення 01.02.2024).

Указ Президента України "Стратегія сталого розвитку «Україна – 2020»" (ухвалена від 12 січня 2015 р. № 5/2015) URL: https://www.president.gov.ua/documents/7222019-29825 (дата звернення 01.02.2024).

Постанова КМ України "Державна стратегія регіонального розвитку до 2020 року" (затверджена від 6 серпня 2014 р. №385) URL: https://zakon.rada.gov.ua/laws/show/686-2019-%D1%80#Text (дата звернення 01.02.2024).

Про засади державної регіональної політики (док. 156-VIII від 05.02.2015 р.)

Указ Президента України "Про цілі сталого розвитку України на період до 2030 року" № 722/2019, від 30.09.2019

Національна доповідь "Цілі сталого розвитку: Україна"

Bublyk M., Vysotska V., Matseliukh Y., Mayik V., Nashkerska M. Assessing Losses of Human Capital Due to Man-Made Pollution Caused by Emergencies. CEUR Workshop Proceedings. 2020. Vol. 2805. P. 74–86. URL: https://ceur-ws.org/Vol-2805/paper6.pdf (дата звернення: 01.02.2024).

Бублик М. Механізм регулювання техногенних збитків промислових підприємств: логістика рециклювання як інструмент його застосування. Вісник Національного університету "Львівська політехніка". "Логістика". 2012. № 749, C. 530–537. URL: https://vlp.com.ua/taxonomy/term/3273 (дата звернення: 01.02.2024).

Bublyk M. Economic evaluation of technogenic losses of business entities on fuzzy logic based opportunities. Zarzadzanie organizacja w warunkach niepewnosci teoria i praktyka. 2013. P. 19–29. URL: https://www.ibuk.pl/fiszka/76/zarzadzanie-w-warunkach-niepewnosci.html (дата звернення: 01.02.2024).

Jonek-Kowalska I. Housing infrastructure as a determinant of quality of life in selected polish smart cities. Smart Cities. 2022. Vol. 5. No 3. P. 924–946. DOI: https://doi.org/10.3390/smartcities5030046

Головне управління статистики у Львівській області. URL: https://ukrstat.gov.ua/csr_prezent/2.htm (дата звернення 01.02.2024).

Портал "Панель міста". URL: https://dashboard.city-adm.lviv.ua/perevezennya_pasazhyriv_miskym_transportom (дата звернення 01.02.2024).

Дія. Відкриті дані Центр компетенцій в сфері відкритих даних. URL: https://data.gov.ua/organization/4218ee10-9c89-4e12-8df5-1734bdb4790e (дата звернення 01.02.2024).

Показники роботи громадського транспорту. Набір даних. URL: https://data.gov.ua/dataset/pokaznyky-roboty-hromadskoho-transportu (дата звернення 01.02.2024).

Acosta F. Bogotá biarticulado de TransMilenio por la av. Caracas, 29 December 2023. URL: https://commons.wikimedia.org/wiki/File:BogotA1_biarticulado_de_TransMilenio_por_la_av._Caracas.JPG (дата звернення: 01.02.2024).

Transdev Australasia finalist in Global Sustainability Award, Carbon footprint. 2023. available at: https://www.transdev.com/en/electro-mobility/ (дата звернення: 01.02.2024).

Murphy J. Truck Carbon Footprint Calculator: Choose Your Pickup’s Year, Make, Model Carbon Ecological Footprint Calculators. 2023. URL: https://8billiontrees.com/carbon-offsets-credits/carbon-ecological-footprint-calculators/truck-calculator/index.html (дата звернення: 01.02.2024).

Dave P., Sahu L., Tripathi N., Bajaj S., Yadav R., Patel K. Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: Impact on local air quality. Heliyon. 2020. Vol. 6. No 7. 4537 р. DOI: https://doi.org/10.1016/j.heliyon.2020.e04537

Tiseo I. U.S. light-duty vehicle GHG emissions 1990-2019. Statista. 2021. Vol. 31. URL: https://www.statista.com/statistics/1235094/us-light-duty-trucks-vehicle-ghg-emissions/ (дата звернення: 01.02.2024).

MotorTrend Staff. These are the most fuel-efficient Pickups you can buy. MotorTrend. 2021. Vol. 3. URL: https://www.motortrend.com/features/most-fuel-efficient-pickup-trucks/ (дата звернення: 01.02.2024).

Wagner I. Light trucks in the U.S. – best-selling models 2020. Statista. 2021. Vol. 1. URL: https://www.statista.com/statistics/204473/best-selling-trucks-in-the-united-states-from-january-to-october-2021/ (дата звернення: 01.02.2024).

Tiseo I. U.S. heavy-duty vehicle GHG emissions 1990-2019. Statista. 2021. Vol. 2. URL: https://www.statista.com/statistics/1120519/us-med-heavy-trucks-vehicle-ghg-emissions/ (дата звернення: 01.02.2024).

Leung J. Federal Vehicle Standards, Center for Climate and Energy Solutions. 2021. Vol. 21. URL: https://www.c2es.org/content/regulating-transportation-sector-carbon-emissions/ (дата звернення: 01.02.2024).

Zalzal P. The introduction of Ford’s electric F-150 pickup truck is a big milestone in the race to zero-emission vehicles. Climate. 2021. Vol. 411. 202 р. URL: https://blogs.edf.org/climate411/2021/05/17/the-introduction-of-fords-electric-f-150-pickup-truck-is-a-big-milestone-in-the-race-to-zero-emission-vehicles/ (дата звернення: 01.02.2024).

Taotao, D., John, D. Recent developments in bus rapid transit: a review of the literature. Transport Reviews. 2011. Vol. 31. No 1. P.69–96. DOI: https://doi.org/10.1080/01441647.2010.492455

Volvo Trucks USA. NFI begins piloting Volvo VNR electric heavy-duty trucks in Southern California. 2020. URL: https://www.volvotrucks.us/news-and-stories/press-releases/2020/september/nfi-begins-piloting-volvo-vnr-electric-heavy-duty-trucks-in-southern-california/ (дата звернення: 01.02.2024).

The International Council on Clean Transportation. Fact sheet: Europe. 2019. URL: https://theicct.org/sites/default/files/Gas_v_Diesel_CO2_emissions_EN_Fact_Sheet2019_05_07_0.pdf (дата звернення: 01.02.2024).

Schildgen B. Do diesel engines produce less CO2 than regular engines? Sierra Club. 2018. URL: https://www.sierraclub.org/sierra/ask-mr-green/do-diesel-engines-produce-less-co2-regular-engines (дата звернення: 01.02.2024).

Majumder H., Mahmudul K., Tao H., Wei X. Road crack avoidance: a convolutional neural network-based smart transportation system for intelligent vehicles. Journal of Intelligent Transportation Systems. 2023. Vol. 2. No 1. P.122–132. DOI: https://doi.org/10.1080/15472450.2023.2175613

Asha A., Arunachalam R., Poonguzhali I., Urooj S., Alelyani S. Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm. Measurement, 2023. Vol. 210, 112505 р. DOI: https://doi.org/10.1016/j.measurement.2023.112505

Jingqiu G., Yangzexi L., Qingyan Y., Yibing W., Shouen F. GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model. Transportmetrica A Transport Science. 2021. Vol. 17. No 2. P. 190–211. DOI: https://doi.org/10.1080/23249935.2020.1745927

Kong J., Huang J., Yu H., Deng H., Gong J., Chen H. RNN-based default logic for route planning in urban environments. Neurocomputing. 2019. Vol. 338. P. 307–320. DOI: https://doi.org/10.1016/j.neucom.2019.02.012

Badu-Marfo G., Farooq B., Mensah D., Al Mallah R. An ensemble federated learning framework for privacy-by-design mobility behaviour inference in smart cities. Sustainable Cities and Society. 2023. Vol. 97. 104703 р. DOI: https://doi.org/10.1016/j.scs.2023.104703

Herath H., Mittal M. Adoption of artificial intelligence in smart cities: A comprehensive review. International Journal of Information Management Data Insights. 2022. Vol. 2. No 1. 100076 р. DOI: https://doi.org/10.1016/j.jjimei.2022.100076

References

Boreiko, O., Teslyuk, V. (2016), "Structural model of passenger counting and public transport tracking system of smart city", Perspective Technologies and Methods in MEMS Design, Proceedings of International Conference, P. 124–126, DOI: https://doi.org/10.1109/MEMSTECH.2016.7507533

Boreiko, O., Teslyuk, V. (2017), "Model of data collection controller of automated processing systems for passenger traffic public transport smart city based on petri nets", 2nd International Conference on Advanced Information and Communication Technologies, P. 62–65. DOI: https://doi.org/10.1109/AIACT.2017.8020066

Boz, Y., Cay, T. (2024), "How smart and sustainable are the cities in Turkiye? - National policies and the enthusiasm level of the local governments", Heliyon, 10(4), 26002 р. DOI: https://doi.org/10.1016/j.heliyon.2024.e26002

Bublyk, M., Udovychenko T., Medvid R. (2019), "Concept of smart specialization in the context of the development of Ukraines economy". Economics. Ecology. Socium, 3 (2), P. 55–61. DOI: https://doi.org/10.31520/2616-7107/2019.3.2-6

Bublyk, M., Kowalska-Styczeń, A., Lytvyn, V., Vysotska, V. (2021), "The Ukrainian economy transformation into the circular based on fuzzy-logic cluster analysis", Energies, 14(18), 5951 р. DOI: https://doi.org/10.3390/en14185951

Bushuyev, S., Inna, L., Alla, B., Alexander, L., Khusainova, M. (2023), "Creating urban transportation networks grounded in the principles of the smart port-city paradigm", Procedia Computer Science, 231, P. 323–328. DOI: https://doi.org/10.1016/j.procs.2023.12.211

Wang, H., Wang, Y. (2024), "Smart Cities Net Zero Planning considering renewable energy landscape design in Digital Twin". Sustainable Energy Technologies and Assessments, 63, 103629 р. DOI: https://doi.org/10.1016/j.seta.2024.103629

Vanli, T., Akan, T. (2023), "Mapping synergies and trade-offs between smart city dimensions: A network analysis". Cities, 142, 104527 р. DOI: https://doi.org/10.1016/j.cities.2023.104527

Wolniak, R., Jonek-Kowalska, I., (2021), "The level of the quality of life in the city and its monitoring", Innovation: The European Journal of Social Science Research, 34(3), P. 376–398. DOI: https://doi.org/10.1080/13511610.2020.1828049

Guenduez, A., Mergel, I., Schedler, K., Fuchs, S., Douillet, C. (2024), "Institutional work in smart cities: Interviews with smart city managers". Urban Governance. 2 (1), P. 104–122. DOI: https://doi.org/10.1016/j.ugj.2024.01.003

Dai, Y., Hasanefendic, S., Bossink, B. (2024), "A systematic literature review of the smart city transformation process: The role and interaction of stakeholders and technology", Sustainable Cities and Society, 101, 105112 р. DOI: https://doi.org/10.1016/j.scs.2023.105112

Jonek-Kowalska, I. (2022), "Towards the reduction of CO2 emissions. paths of pro-ecological transformation of energy mixes in european countries with an above-average share of coal in energy consumption", Resources Policy, 77, 102701 р. DOI: https://10.1016/j.resourpol.2022.102701.

Kim, J. S., Feng, Y. (2024), "Understanding complex viewpoints in smart sustainable cities: The experience of Suzhou, China". Cities, 147, 04832 р. DOI: https://doi.org/10.1016/j.cities.2024.104832

Koshtura, D., Bublyk, M., Matseliukh, Y., Dosyn, D., Chyrun, L., Lozynska, O., Karpov, I., Peleshchak, I., Maslak, M., Sachenko, O. (2020), "Analysis of the demand for bicycle use in a smart city based on machine learning", CEUR workshop proceedings, 2631, P. 172–183, available at: https://ceur-ws.org/Vol-2631/paper13.pdf (last accessed 01.02.2024).

Lytvyn, V., Bublyk, M., Vysotska, V., Matseliukh, Y. (2022), "Visual simulation technology for passenger flows in the public transport field at smart сity", Radio Electronics, Computer Science, Control, 4, P. 106–121. DOI: https://doi.org/10.15588/1607-3274-2021-4-10

Lim, Y., Edelenbos, J., Gianoli, A. (2023), "What is the impact of smart city development? Empirical evidence from a Smart City Impact Index", Urban Governance, 4, P. 104–122. DOI: https://doi.org/10.1016/j.ugj.2023.11.003

Lin, H., Wang, W., Zou, Y., Chen, H. (2023), "An evaluation model for smart grids in support of smart cities based on the Hierarchy of Needs Theory", Global Energy Interconnection, 6(5), P. 634–644. DOI: https://doi.org/10.1016/j.gloei.2023.10.009

Matseliukh, Y., Vysotska, V., Bublyk, M. (2020), "Intelligent system of visual simulation of passenger flows". CEUR Workshop Proceedings, 2604, Р. 906–920, available at: https://ceur-ws.org/Vol-2604/paper60.pdf (last accessed 01.02.2024).

Nath, N., Nitanai, R., Manabe, R., Murayama, A. (2023), "A global-scale review of smart city practice and research focusing on residential neighbourhoods, Habitat International, 142, P. 102963. DOI: https://doi.org/10.1016/j.habitatint.2023.102963

Nguyen, H., Nawara, D., Kashef, R. (2024), "Connecting the indispensable roles of iot and artificial intelligence in smart cities: a survey", Journal of Information and Intelligence. DOI: https://doi.org/10.1016/j.jiixd.2024.01.003

Podlesna, L., Bublyk, M., Grybyk, I., Matseliukh, Y., Burov, Y., Kravets, P., Lozynska, O., Karpov, I., Peleshchak, I., Peleshchak, R. (2020), "Optimization model of the buses number on the route based on queueing theory in a Smart City", CEUR Workshop Proceedings, 2631, Р. 502–515 available at: https://ceur-ws.org/Vol-2631/paper37.pdf (last accessed 01.02.2024).

Sharifi, A., Allam, Z., Bibri, S., Khavarian-Garmsir, A. (2024), "Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs", Cities, 146, 104659 р. DOI: https://doi.org/10.1016/j.cities.2023.104659

Shiu, S. (2024), "Ageing in a smart city poses concerns on sustainability from a model perspective", Aging and Health Research, 4(1), 100179 р. DOI: https://doi.org/10.1016/j.ahr.2023.100179

Spicer, Z., Goodman, N., Wolfe, D. A. (2023), "How "smart" are smart cities? Resident attitudes towards smart city design". Cities, 141, 104442 р. DOI: https://doi.org/10.1016/j.cities.2023.104442

Tang, J., Li, Y. (2024), "Study on the impact of smart energy on carbon emissions in smart cities from single and holistic perspectives – Empirical evidence from China", Sustainable Cities and Society, 101, 105145 р. DOI: https://doi.org/10.1016/j.scs.2023.105145

Chen, Y., Chen, S., Miao, J. (2023), "Does smart city pilot improve urban green economic efficiency: Accelerator or inhibitor", Environmental Impact Assessment Review, 104, 107328 р. DOI: https://doi.org/10.1016/j.eiar.2023.107328

Chen, Z., Gan, W., Wu, J., Lin, H., Chen, C. (2023), "Metaverse for smart cities: A survey", Internet of Things and Cyber-Physical Systems, 4, P. 203–216. DOI: https://doi.org/10.1016/j.iotcps.2023.12.002

Chen, C., Li, S., Wang, L. (2024), "Can smart cities reduce labor misallocation? Evidence from China", Technological Forecasting and Social Change, 201, 123264 р. DOI: https://doi.org/10.1016/j.techfore.2024.123264

Resolution of the United Nations General Assembly "Transforming our world: the 2030 Agenda for Sustainable Development", dated September 25, 2015 No. 70/1 (Sustainable Development Goals (SDGs), United Nations General Assembly, 2015), available at: https://sdgs.un.org/2030agenda (last accessed 01.02.2024).

Decree of the President of Ukraine "Sustainable Development Strategy "Ukraine – 2020" (approved on January 12, 2015 No. 5/2015), available at: https://www.president.gov.ua/documents/7222019-29825 (last accessed 01.02.2024).

Resolution (Order) of the Cabinet of Ministers of Ukraine "State strategy for regional development until 2020" (approved on August 6, 2014 No. 385), available at: https://zakon.rada.gov.ua/laws/show/686-2019-%D1%80#Text (last accessed 01.02.2024).

"On the principles of state regional policy" (doc. 156-VIII dated February 5, 2015), available at: https://ukrstat.gov.ua/csr_prezent/2.htm (last accessed 01.02.2024).

Decree of the President of Ukraine "On the Sustainable Development Goals of Ukraine for the period until 2030" No. 722/2019, dated September 30, 2019, available at: https://www.undp.org/ukraine/publications/sustainable-development-strategy-ukraine-2030 (last accessed 01.02.2024).

National report "Goals of Sustainable Development: Ukraine", available at: https://www.undp.org/ukraine/publications/sustainable-development-goals-2017-baseline-national-report (last accessed 01.02.2024).

Bublyk, M., Vysotska, V., Matseliukh, Yu., Mayik, V., & Nashkerska M. (2020), "Assessing Losses of Human Capital Due to Man-Made Pollution Caused by Emergencies", CEUR Workshop Proceedings, 2805, P. 74–86, available at: https://ceur-ws.org/Vol-2805/paper6.pdf (last accessed 01.02.2024).

Bublyk, M. (2012), "Mechanism to regulate the technogenic damage of industrial enterprises: recycling logistics as an instrument of its application", Bulletin of Lviv Polytechnic National University, Logistics, 749, P. 530–537, available at: https://vlp.com.ua/taxonomy/term/3273 (last accessed 01.02.2024).

Bublyk, M. (2013), "Economic evaluation of technogenic losses of business entities on fuzzy logic based opportunities". Zarzadzanie organizacja w warunkach niepewnosci teoria i praktyka. P. 19 – 29, available at: https://www.ibuk.pl/fiszka/76/zarzadzanie-w-warunkach-niepewnosci.html (last accessed 01.02.2024).

Jonek-Kowalska, I. (2022), "Housing Infrastructure as a Determinant of Quality of Life in Selected Polish Smart Cities". Smart Cities, 5(3), P. 924–946. DOI: https://doi.org/10.3390/smartcities5030046

Main Department of Statistics in Lviv Region, available at: https://www.lv.ukrstat.gov.ua/ (last accessed 01.02.2024).

"City Panel" portal, available at: https://dashboard.city-adm.lviv.ua/perevezennya_pasazhyriv_miskym_transportom (last accessed 01.02.2024).

Action. Open data Competence center in the field of open data, available at: https://data.gov.ua/organization/4218ee10-9c89-4e12-8df5-1734bdb4790e (last accessed 01.02.2024).

Performance indicators of public transport. Data set, available at: https://data.gov.ua/dataset/pokaznyky-roboty-hromadskoho-transportu (last accessed 01.02.2024).

Acosta, F., (2023), "Bogotá biarticulado de TransMilenio por la av. Caracas, 29 December 2013", available at: https://commons.wikimedia.org/wiki/File:BogotA1_biarticulado_de_TransMilenio_por_la_av._Caracas.JPG

Transdev Australasia finalist in Global Sustainability Award, (2023), Carbon footprint. available at: https://www.transdev.com/en/electro-mobility/ (last accessed 01.02.2024).

Murphy J. (2023), "Truck Carbon Footprint Calculator: Choose Your Pickup’s Year, Make", Model Carbon Ecological Footprint Calculators, available at: https://8billiontrees.com/carbon-offsets-credits/carbon-ecological-footprint-calculators/truck-calculator/index.html (last accessed 01.02.2024).

Dave, P., Sahu, L., Tripathi, N., Bajaj, S., Yadav, R., Patel, K. (2020), "Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: Impact on local air quality", Heliyon, 6(7), P. e04537. DOI: https://doi.org/10.1016/j.heliyon.2020.e04537

Tiseo, I. (2021), "U.S. light-duty vehicle GHG emissions 1990-2019", Statista, 31, available at: https://www.statista.com/statistics/1235094/us-light-duty-trucks-vehicle-ghg-emissions/ (last accessed 01.02.2024).

MotorTrend Staff. (2021), "These are the most fuel-efficient Pickups you can buy", MotorTrend, 3, available at: https://www.motortrend.com/features/most-fuel-efficient-pickup-trucks/ (last accessed 01.02.2024).

Wagner, I. (2021), "Light trucks in the U.S. – best-selling models 2020", Statista, 1, available at: https://www.statista.com/statistics/204473/best-selling-trucks-in-the-united-states-from-january-to-october-2021/ (last accessed 01.02.2024).

Tiseo, I. (2021), "U.S. heavy-duty vehicle GHG emissions 1990-2019", Statista, 2, available at: https://www.statista.com/statistics/1120519/us-med-heavy-trucks-vehicle-ghg-emissions/ (last accessed 01.02.2024).

Leung, J. (2021), "Federal Vehicle Standards", Center for Climate and Energy Solutions, 21, available at: https://www.c2es.org/content/regulating-transportation-sector-carbon-emissions/ (last accessed 01.02.2024).

Zalzal, P. (2021), "The introduction of Ford’s electric F-150 pickup truck is a big milestone in the race to zero-emission vehicles", Climate, 411, 202 р. available at: https://blogs.edf.org/climate411/2021/05/17/the-introduction-of-fords-electric-f-150-pickup-truck-is-a-big-milestone-in-the-race-to-zero-emission-vehicles/ (last accessed 01.02.2024).

Taotao, D., John, D., (2011), "Recent developments in bus rapid transit: a review of the literature", Transport Reviews, 31 (1), P.69–96. DOI: 10.1080/01441647.2010.492455

Volvo Trucks USA. (2020), NFI begins piloting Volvo VNR electric heavy-duty trucks in Southern California, available at: https://www.volvotrucks.us/news-and-stories/press-releases/2020/september/nfi-begins-piloting-volvo-vnr-electric-heavy-duty-trucks-in-southern-california/ (last accessed 01.02.2024).

The International Council on Clean Transportation. (2019), Fact sheet: Europe, available at: https://theicct.org/sites/default/files/Gas_v_Diesel_CO2_emissions_EN_Fact_Sheet2019_05_07_0.pdf (last accessed 01.02.2024).

Schildgen, B. (2018). "Do diesel engines produce less CO2 than regular engines?" Sierra Club, available at: https://www.sierraclub.org/sierra/ask-mr-green/do-diesel-engines-produce-less-co2-regular-engines (last accessed 01.02.2024).

Majumder, H., Mahmudul, K., Tao, H., Wei, X., (2023), "Road crack avoidance: a convolutional neural network-based smart transportation system for intelligent vehicles", Journal of Intelligent Transportation Systems, 2(1), P.122–132. DOI: https://doi.org/10.1080/15472450.2023.2175613

Asha, A., Arunachalam, R., Poonguzhali, I., Urooj, S., Alelyani, S. (2023), "Optimized RNN-based performance prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm", Measurement, 210, 112505 р. DOI: https://doi.org/10.1016/j.measurement.2023.112505

Jingqiu, G., Yangzexi, L., Qingyan, Y., Yibing, W., Shouen, F., (2021), "GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model", Transportmetrica A Transport Science, 17 (2), P. 190–211. DOI: https://doi.org/10.1080/23249935.2020.1745927.

Kong, J., Huang, J., Yu, H., Deng, H., Gong, J., Chen, H. (2019), "RNN-based default logic for route planning in urban environments", Neurocomputing, 338, P. 307–320. DOI: https://doi.org/10.1016/j.neucom.2019.02.012

Badu-Marfo, G., Farooq, B., Mensah, D. O., Al Mallah, R. (2023), "An ensemble federated learning framework for privacy-by-design mobility behaviour inference in smart cities", Sustainable Cities and Society, 97, 104703 р. DOI: https://doi.org/10.1016/j.scs.2023.104703

Herath, H., Mittal, M. (2022), "Adoption of artificial intelligence in smart cities: A comprehensive review", International Journal of Information Management Data Insights, 2(1), 100076 р. DOI: https://doi.org/10.1016/j.jjimei.2022.100076

Published

2024-07-02

How to Cite

Matseliukh, Y., & Lytvyn, V. (2024). Analysis of passenger transportation and the public transportation impact on the reduction in a smart city. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1 (27), 109–127. https://doi.org/10.30837/ITSSI.2024.27.109