Ontological model of structure and parameters of components in high-tech product modernization projects

Authors

DOI:

https://doi.org/10.30837/ITSSI.2024.27.179

Keywords:

modernization projects; high-tech products; components; decomposition; construction modeling; technical documentation; structure; parameters; ontology; semantic network.

Abstract

The subject of the article is models representing the structure and parameters of components in high-tech products based on the analysis of technical documentation in modernization projects. The purpose of the proposed research is to enhance the quality of modernization processes of high-tech products by forming an ontological model of the product with innovative components, considering the diversity of information support. The article addresses the following tasks: studying the main methods and technologies of system representation of complex product structure; forming a model of structural-functional decomposition of a high-tech product, creating an ontological model of the structure and parameters of a high-tech product based on technical documentation. The following methods are applied: systemic approach, methods of functional-structural decomposition, set theory, ontology construction methods, semantic models. The following results were obtained: The main methods of system representation of complex product structure were investigated, based on the following principles: decomposition of complex product architecture, layering of complex product representation, multivariate synthesis of component architecture. The main directions and advantages of using 3D technologies for solving design tasks in modernization projects of high-tech product components are considered. The decomposition of a high-tech product into component parts and partial parameters is proposed, taking into account functional, structural, and parametric characteristics. An ontological model of the structure and parameters of a high-tech product is formed based on a set of technical documentation and considering additional heterogeneous sources of information. Innovative elements are identified, the description of which may be fuzzy. Conclusions. The proposed ontological model can serve as a basis for finding similar solutions regarding the design of innovative components in the precedent database, which is properly structured. In the absence of similar design solutions, innovative component design can be carried out using 3D technologies based on supplementing fuzzy information in the semantic model.

Author Biographies

Oleg Fedorovych, National Aerospace University "Kharkiv Aviation Institute"

Doctor of Sciences (Engineering), Professor, Head at the Department of Computer science and information technologies

Leonid Malieiev, National Aerospace University "Kharkiv Aviation Institute"

PhD Student at the Department of Computer Science and Information Technologies

References

Список літератури

Федорович О. Є., Прончаков Ю. Л. Системне моделювання стратегічних цілей підприємства, що розвивається в умовах обмежених можливостей. Авіаційно-космічна техніка і технологія. 2020. № 2. С. 53–60. DOI: 10.32620/aktt.2020.2.08

Lindgren M., Bandhold H. Scenario Planning: The link between future and strategy. Palgrave Macmillan UK, 2002. 180 p. DOI: 10.1057/9780230511620

Федорович О. Є., Яшина О. С., Белецький І. В. Компонентне проектування аерокосмічної техніки. Харків: Національний аерокосмічний університет «ХАІ». 2012. 180 с.

Узунов О. В. Системне представлення складних технічних об’єктів в задачах аналізу та синтезу. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування. 2016. № 1. С. 126–132. DOI: 10.20535/2305‐9001.2016.76.68755

Артюшин Л., Кононов О., Єрко В. Визначення результуючої множини варіантів при багатоеритерійному виборі складу бортового обладнання бойових літаків для їх модернізації. Збірник наукових праць Державного науково-дослідного інституту авіації. 2021. № 17 (24). С. 20–26. DOI: 10.54858/dndia.2021-17-3

Яблонський П. М. Деякі питання узагальнення засобів геометричного моделювання для проектування технічних об’єктів. Сучасні проблеми моделювання. 2019. № 13. С. 192–198. URL: http://magazine.mdpu.org.ua/index.php/spm/article/view/2662/3179

Konotop D. I., Zinchenko V. P. 3D-models design concept of complex technical objects using knowledge-based technology. Механіка гіроскопічних систем. Вип. 34. 2017. С. 5–13. DOI: 10.20535/0203-3771342017130222

Сікора Л.С., Лиса Н.К., Міюшкович Ю.Г., Марцишин Р.С. та ін. Інформаційні технології ідентифікації структури ієрархічних систем для підтримки рішень в конфліктних ситуаціях. Комп’ютерні технології друкарства. 2020. № 2 (44). С. 8–38.

Xiao X., Joshi S. Decomposition and sequencing for a 5-axis hybrid manufacturing process. International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. Vol. 84256. DOI: 10.1115/MSEC2020-8385

Abdulsamad H., Peters J. Hierarchical decomposition of nonlinear dynamics and control for system identification and policy distillation. Proceedings of the 2nd Conference on Learning for Dynamics and Control. In: Proceedings of Machine Learning Research. 2020. Vol. 120. P. 904-914. URL: https://proceedings.mlr.press/v120/abdulsamad20a.html

Kirchhoffer H. et al. Overview of the neural network compression and representation (NNR) standard. IEEE Transactions on Circuits and Systems for Video Technology. 2021. Vol. 32. No. 5. P. 3203–3216. DOI:10.1109/TCSVT.2021.3095970

Чернишов Д., Ситніков Д. Бінарна класифікація на основі поєднання теорії приблизних множин і дерев рішень. Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 4 (26), C. 87–94. DOI: 10.30837/ITSSI.2023.26.087

Коваленко О. Онтологія та модель трансформації інформації в ситуаційних агентних системах. Електронне моделювання. 2020. Т. 42. № 5. С. 5–23. DOI:10.15407/emodel.42.05.005

Kulvatunyou B., Wallace E.K., Kiritsis D., Smith B., Will C. The Industrial Ontologies Foundry Proof-of-Concept Project. International Conference Advances in Production Management Systems (APMS 2018). In: Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. 2018. DOI: 10.1007/978-3-319-99707-0_50

Karray M. H., Ameri F., Hodkiewicz M., Louge T. ROMAIN: Towards a BFO compliant Reference Ontology for Industrial Maintenance. Applied Ontology. 2019. No. 14 (2). P. 1–24. DOI: 10.3233/AO-190208

Tebes G. et al. Analyzing and documenting the systematic review results of software testing ontologies. Information and Software Technology. 2020. Vol. 123. P. 1–23. DOI: 10.1016/j.infsof.2020.106298

Beskorovainyi V., Kolesnyk L., Mgbere D. C. Mathematical models for daterming the pareto front for building technological processes options under the conditions of interval presentation of local criteria. Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 2(24), С. 16–26. DOI: 10.30837/ITSSI.2023.24.016

UTC Aerospace Systems. URL: https://www.linkedin.com/company/utc_aerospace_systems/?trk=public_profile_profile-section-card_subtitle-click&originalSubdomain=ua (дата звернення: 05.02.2024)

Конотоп Д. І. Знання-орієнтована система при проектуванні літальних апаратів. Механіка гіроскопічних систем. 2022. Вип. 44. C. 133–142. DOI: 10.20535/0203-3771442022284641

Adisorn T., Tholen L., Götz T. Towards a digital product passport fit for contributing to a circular economy. Energies. 2021. Vol. 14. No. 8, art. 2289. DOI: 10.3390/en14082289

ДСТУ 3974-2000. Система розроблення та поставлення продукції на виробництво. Правила виконання дослідно-конструкторських робіт. Загальні положення. URL: https://www.dnu.dp.ua/docs/ndc/standarts/DSTU_3974-2000.pdf (дата звернення: 06.04.2024)

Malyeyeva O., Nosova N., Fedorovych O., Kosenko V. The semantic network creation for an innovative project scope as a part of project knowledge ontology. CEUR Workshop Proceedings. 2019. Vol. 2362. P. 301–311. URL: https://www.semanticscholar.org/paper/The-Semantic-Network-Creation-for-an-Innovative-as-Malyeyeva-Nosova/40932bf666b79ae2d6d0e808364beabe0e05519b

A free, open-source ontology editor and framework for building intelligent systems. URL: https://protege.stanford.edu (дата звернення: 13.02.2024)

References

Fedorovych, O. Ye. & Pronchakov, Yu. L. (2020), "System modeling of strategic goals of an enterprise that develops in conditions of limited opportunities" ["Systemne modelyuvannya stra-tehichnykh tsiley pidpryyemstva, shcho rozvyvayetʹsya v umovakh obmezhenykh mozhlyvostey"], Aerospace Technic and Technology, No. 2, P. 53–60. DOI: 10.32620/aktt.2020.2.08

Lindgren, M., Bandhold, H. (2002), "Scenario Planning The link between future and strategy", Palgrave Macmillan UK, 180 p. DOI: 10.1057/9780230511620

Fedorovych, O.E., Yashina, O.S., Beletskyi, I.V. (2012), "Component design of aerospace equipment" ["Komponentne proektuvannya aerokosmichnoyi tekhniky"], Kharkiv: National Aerospace University "KhAI", 180 р.

Uzunov, O. V. (2016), "System representation of complex technical objects in the tasks of analysis and synthesis" ["Systemne predstavlennya skladnykh tekhnichnykh obʺyektiv v zadachakh analizu ta syntezu"], Bulletin of the National Technical University of Ukraine Kyiv Polytechnic Institute, Series: Mechanical engineering, No. 1, P. 126–132. DOI: 10.20535/2305‐9001.2016.76.68755

Artyushin, L., Kononov, O., Yerko, V. (2021), "Determination of the resulting set of options in the multi-item selection of the composition of on-board equipment of combat aircraft for their modernization" ["Vyznachennya rezulʹtuyuchoyi mnozhyny variantiv pry bahatoeryteriynomu vybori skladu bortovoho obladnannya boyovykh litakiv dlya yikh modernizatsiyi"], Collection of scientific works of the State Research Institute of Aviation, No. 17 (24), P. 20–26. DOI: 10.54858/dndia.2021-17-3

Yablonsky, P.M. (2019), "Some issues of generalization of geometric modeling tools for the design of technical objects" ["Deyaki pytannya uzahalʹnennya zasobiv heometrychnoho modelyuvannya dlya proektuvannya tekhnichnykh obʺyektiv"], Modern modeling problems, No. 13, P. 192–198. available at: http://magazine.mdpu.org.ua/index.php/spm/article/view/2662/3179

Konotop, D. I., Zinchenko, V. P. (2017), "3D-models design concept of complex technical objects using knowledge-based technology", Mechanics of gyroscopic systems, Vol. 34, P. 5–13. DOI: 10.20535/0203-3771342017130222

Sikora, L.S., Lysa, N.K., Miyushkovich, Y.G., Martsyshyn, R.S. et al. (2020), "Information technologies for identifying the structure of hierarchical systems to support decisions in conflict situations" ["Informatsiyni tekhnolohiyi identyfikatsiyi struktury iyerarkhichnykh system dlya pidtrymky rishenʹ v konfliktnykh sytuatsiyakh"], Computer technologies of printing, No. 2 (44), P. 8–38.

Xiao, X., Joshi, S. (2020), "Decomposition and sequencing for a 5-axis hybrid manufacturing process". International Manufacturing Science and Engineering Conference, Vol. 84256. DOI: 10.1115/MSEC2020-8385

Abdulsamad, H. Peters, J. (2020), "Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation", Proceedings of the 2nd Conference on Learning for Dynamics and Control. In: Proceedings of Machine Learning Research, Vol. 120, P. 904–914. available at:https://proceedings.mlr.press/v120/abdulsamad20a.html

Kirchhoffer, H. et al. (2021), "Overview of the neural network compression and representation (NNR) standard", IEEE Transactions on Circuits and Systems for Video Technology, Vol. 32, No. 5, P. 3203–3216. DOI:10.1109/TCSVT.2021.3095970

Chernyshov, D., Sytnikov, D. (2023), "Binary classification based on a combination of approximate set theory and decision trees" ["Binarna klasyfikatsiya na osnovi poyednannya teoriyi pryblyznykh mnozhyn i derev rishenʹ"], Innovative technologies and scientific solutions for industries, No. 4 (26), P. 87–94. DOI: 10.30837/ITSSI.2023.26.087

Kovalenko, O. (2020), "Ontology and model of information transformation in situational agent systems" ["Ontolohiya ta modelʹ transformatsiyi informatsiyi v sytuatsiynykh ahentnykh systemakh], Electronic modeling, Vol. 42, No. 5, P. 5–23. DOI: 10.15407/emodel.42.05.005

Kulvatunyou, B., Wallace, E.K., Kiritsis, D., Smith, B., Will, C. (2018), "The Industrial Ontologies Foundry Proof-of-Concept Project", International Conference Advances in Production Management Systems (APMS 2018). In: Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. DOI: 10.1007/978-3-319-99707-0_50

Karray, M. H., Ameri, F., Hodkiewicz, M., Louge, T. (2019), ROMAIN: Towards a BFO compliant Reference Ontology for Industrial Maintenance. Applied Ontology, No. 14 (2), P. 1–24. DOI: 10.3233/AO-190208

Tebes, G. et al. (2020), "Analyzing and documenting the systematic review results of software testing ontologies", Information and Software Technology, Vol. 123, P. 1–23. DOI: 10.1016/j.infsof.2020.106298

Beskorovainyi, V., Kolesnyk, L., Mgbere, D. C. (2023), "Mathematical models for daterming the pareto front for building technological processes options under the conditions of interval presentation of local criteria", Innovative technologies and scientific solutions for industries, No. 2(24), P. 16–26. https://doi.org/10.30837/ITSSI.2023.24.016

UTC Aerospace Systems. available at: https://www.linkedin.com/company/utc_aerospace_systems/?trk=public_profile_profile-section-card_subtitle-click&originalSubdomain=ua (last accessed 05.02.2024)

Konotop, D. I. (2022), "Knowledge-oriented system in the design of aircraft" ["Znannya-oriyentovana systema pry proektuvanni litalʹnykh aparativ"], Mechanics of gyroscopic systems, Vol. 44, P. 133–142. DOI: 10.20535/0203-3771442022284641

Adisorn, T., Tholen, L., Götz, T. (2021), "Towards a digital product passport fit for contributing to a circular economy", Energies, Vol. 14, No. 8, art. 2289. DOI: 10.3390/en14082289

"DSTU (National Standard of Ukraine) 3974-2000 System of development and supply of products for production. Rules for performing research and development works. Terms" ["DSTU 3974-2000 Systema rozroblennia ta postavlennia produktsii na vyrobnytstvo. Pravyla vykonannia doslidno-konstruktorskykh robit. Zahalni polozhennia"]. available at: https://www.dnu.dp.ua/docs/ndc/standarts/DSTU_3974-2000.pdf (last accessed 06.04.2024).

Malyeyeva, O., Nosova, N., Fedorovych, O., Kosenko, V. (2019), The semantic network creation for an innovative project scope as a part of project knowledge ontology", CEUR Workshop Proceedings, Vol. 2362, P. 301–311. available at: https://www.semanticscholar.org/paper/The-Semantic-Network-Creation-for-an-Innovative-as-Malyeyeva-Nosova/40932bf666b79ae2d6d0e808364beabe0e05519b

A free, open-source ontology editor and framework for building intelligent systems. available at: https://protege.stanford.edu (last accessed 13.02.2024).

Published

2024-07-02

How to Cite

Fedorovych, O., & Malieiev, L. (2024). Ontological model of structure and parameters of components in high-tech product modernization projects. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1 (27), 179–191. https://doi.org/10.30837/ITSSI.2024.27.179