Study of adsorption of household gas molecules on electrophysical properties of porous silicon
DOI:
https://doi.org/10.30837/ITSSI.2024.27.246Keywords:
porous silicon; adsorption; household gas; electrical conductivity; dielectric permeability; methan, sensors.Abstract
Purpose. This research comprehensively investigates the adsorption of household gas molecules on porous silicon surfaces and its impact on the electrophysical properties of the material. The primary aim is to understand how the adsorption process influences the electrical conductivity and capacitance of porous silicon. Methodology. The study employs various electrophysical analysis methods to measure changes in the material's conductivity and capacitance caused by gas adsorption. Furthermore, the research explores optimal conditions for detecting household gas and establishes the correlation between the degree of adsorption and alterations in electrophysical parameters. Originality. The research contributes novelty by not only revealing increased conductivity due to adsorption but also significant changes in capacitance, providing a foundation for developing efficient gas sensors. Additionally, the article discusses the potential applications of porous silicon in developing novel materials for gas sensors to detect various airborne pollutants. Results. In addition to the previously mentioned findings, the article highlights the results of experiments studying the influence of different concentrations of household gas on the electrophysical characteristics of porous silicon. This insight refines optimal parameters for the effective detection of gas pollutants. The research also discusses the applicability of the results in producing environmentally friendly and highly efficient sensor systems. Practical Value. The obtained conclusions deepen our understanding of the interaction between porous silicon and household gas, crucial for advancing gas sensor technologies. The study opens broad possibilities for applying porous silicon in highly sensitive and reliable gas sensors for diverse practical applications, including safety monitoring and air quality control in industrial and domestic settings. The practical implications extend to the development of real-time, eco-friendly sensor systems.
References
Список літератури
Levitsky I. A. Porous Silicon Structures as Optical Gas Sensors. Sensors. 15(8). 2015. Р. 19968–19991. DOI: https://doi.org/10.3390/s150819968
Gor G. Y., Huber P., Bernstein N. Аdsorption-induced deformation of nanoporous materials. Applied Physics Reviews. 2017. № 011303. DOI: https://doi.org/10.1063/1.4975001
Santana J. E., de Santiago F., Miranda Á., Pérez L. A., Salazar F., Trejo A., Cruz-Irisson M. Fluorinated porous silicon as a sensor material for environmentally toxic gases: a first-principles study. Materials Advances. 2021. P. 1072–1082. DOI: https://doi.org/10.1039/D0MA00884B
Kayahan E. Porous silicon-based CO2 sensors with high sensitivity. International Journal of Electronics and Optoelectronics, 2018. 1(1). P. 24–27. DOI: https://doi.org/10.1016/j.ijleo.2018.03.024
Korotcenkov G., Rusu E. How to Improve the Performance of Porous Silicon-Based Gas and Vapor Sensors. Approaches and Achievements. Physica Status Solidi A: Applications and Materials Science. 2019. DOI: https://doi.org/10.1002/pssa.201900348
Когдась М. Г., Оксанич А. П., Холод О. Г., Притчин C. Е. Удосконалення методу отримання поруватого шару на підкладках n-GaAs. Вчені записки Таврійського національного університету імені В.І. Вернадського. 2018. Том 29 (68) № 6, частина 2. С. 228–234. URL: https://www.tech.vernadskyjournals.in.ua/journals/2018/6_2018/part_2/44.pdf
Mhamdi H., Azaiez K., Fiorido T., Benabderrahmane Zaghouani R., Lazzari J. L., Bendahan M., Dimassi W. Room temperature NO2 gas sensor based on stain-etched porous silicon: Towards a low-cost gas sensor integrated on silicon. Sensors and Actuators B: Chemical. 2022. V. 139. 109325 р. DOI: https://doi.org/10.1016/j.inoche.2022.109325
Loni A., Defforge T., Caffull E., Gautier G., Canham L. T. Porous silicon fabrication by anodization: Progress towards the realization of layers and powders with high surface area and micropore content. Microporous and Mesoporous Materials. 2015. 209. P. 25–33. DOI: https://doi.org/10.1016/j.micromeso.2015.03.006
Оксанич А., Когдась М., Холод О., Мащенко М. Розробка високочутливих датчиків водню на базі діодів Шотткі, виготовлених із нанорозмірних шарів n-GaAs. Вісник Кременчуцького національного університету імені Михайла Остроградського. 2018. Вип. 2(109). С. 9–14. DOI: 10.30929/1995-0519.2018.2.P.9-14
Ghorbani Shiraz H. Efficient room temperature hydrogen gas sensing based on graphene oxide and decorated porous silicon. International Journal of Hydrogen Energy. 2017, 43(23). P. 15707–15717. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.045
Wang B., Zhang H., Phuong H. T., Jin F., Yang J. F., Ishizaki K. Gas permeability and adsorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size. Ceramics International. 2014. 41(1). P. 1614–1620. DOI: https://doi.org/10.1016/j.ceramint.2014.10.032
Wang W., Gao Y., Tao Q., Liu Y. Z., Zuo J. J., Ju X. C., Zhang J. K.. A Novel Porous Silicon Composite Sensor for Formaldehyde Detection. Chinese Journal of Analytical Chemistry. 2015. V. 43, Issue 6. P. 849–855. DOI: https://doi.org/10.1016/S1872-2040(15)60829-5
Chang-Fang Wang, Mirkka P. Sarparanta Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials. 2015. Vol. 48. 108–118. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.008
Choi M. S., Na H. G., Mirzaei A., Bang J. H., Oum W., Han S., Choi S. W., Kim M., Jin C., Kim S. S., Kim H. W. Room-temperature NO2 sensor based on electrochemically etched porous silicon. Journal of Alloys and Compounds. 2019. V. 811. 151975 р. DOI: https://doi.org/10.1016/j.jallcom.2019.151975.
Su-Ran Li, Fang-Yi Huo, Han-Qi Wang Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J Nanobiotechnology. 2022. № 20. 277 р. DOI: 10.1186/s12951-022-01489-4
References
Levitsky, I. A. (2015), "Porous Silicon Structures as Optical Gas Sensors", Sensors, 15(8), Р. 19968–19991. DOI: https://doi.org/10.3390/s150819968
Gor, G. Y., Huber, P., & Bernstein, N. (2017), "Adsorption-induced deformation of nanoporous materials", Applied Physics Reviews, 4, № 011303. DOI: https://doi.org/10.1063/1.4975001
Santana, J. E., de Santiago, F., Miranda, Á., Pérez, L. A., Salazar, F., Trejo, A., & Cruz-Irisson, M. (2021), "Fluorinated porous silicon as a sensor material for environmentally toxic gases: a first-principles study", Materials Advances, Р. 1072–1082. DOI: https://doi.org/10.1039/D0MA00884B
Kayahan, E. (2018), "Porous silicon-based CO2 sensors with high sensitivity", International Journal of Electronics and Optoelectronics, 1(1), Р. 24–27. DOI: https://doi.org/10.1016/j.ijleo.2018.03.024
Korotcenkov, G., & Rusu, E. (2019), "How to Improve the Performance of Porous Silicon-Based Gas and Vapor Sensors. Approaches and Achievements", Physica Status Solidi A: Applications and Materials Science. DOI: https://doi.org/10.1002/pssa.201900348
Kogdas, M., Oksanych, P., Kholod, G., Pritchin, E. (2018), "Improvement of the method of creating contacts from the Schottky barrier to porous GaAs", Scientific Notes of the Tauride National University named after V.I. Vernadsky. Vol. 29 (68) No. 6, part 2, P. 228–234. URL: https://www.tech.vernadskyjournals.in.ua/journals/2018/6_2018/part_2/44.pdf.
Mhamdi, H., Azaiez, K., Fiorido, T., Benabderrahmane Zaghouani, R., Lazzari, J. L., Bendahan, M., & Dimassi, W. (2022), "Room temperature NO2 gas sensor based on stain-etched porous silicon: Towards a low-cost gas sensor integrated on silicon", Sensors and Actuators B: Chemical. V. 139. 109325 р. DOI: https://doi.org/10.1016/j.inoche.2022.109325
Loni, A., Defforge, T., Caffull, E., Gautier, G., & Canham, L. T. (2015), "Porous silicon fabrication by anodization: Progress towards the realization of layers and powders with high surface area and micropore content", Microporous and Mesoporous Materials, 209, Р. 25–33. DOI: https://doi.org/10.1016/j.micromeso.2015.03.006
Kogdas, M., Oksanych, P., Kholod, G., Mashenko, M. (2018), "Development of highly sensitive hydrogen sensors based on Schottky diodes made of nanoscale n-GaAs layers", Bulletin of Kremenchuk Mykhailo Ostrohradskyi National University, Issue 2(109) P. 9–14. DOI: 10.30929/1995-0519.2018.2.P.9-14
Ghorbani Shiraz, H. (2017), "Efficient room temperature hydrogen gas sensing based on graphene oxide and decorated porous silicon", International Journal of Hydrogen Energy, 42(23), Р. 15707–15717. DOI: https://doi.org/10.1016/j.ijhydene.2017.05.045
Wang, B., Zhang, H., Phuong, H. T., Jin, F., Yang, J. F., & Ishizaki, K. (2014), "Gas permeability and adsorbability of the glass-bonded porous silicon carbide ceramics with controlled pore size", Ceramics International, 41(1), Р. 1614–1620. DOI: https://doi.org/10.1016/j.ceramint.2014.10.032
Wang, W., Gao, Y., Tao, Q., Liu, Y. Z., Zuo, J. J., Ju, X. C., & Zhang, J. K. (2015), "A Novel Porous Silicon Composite Sensor for Formaldehyde Detection", Chinese Journal of Analytical Chemistry, 43(6), Р. 849–855. DOI: https://doi.org/10.1016/S1872-2040(15)60829-5
Chang-Fang Wang, Mirkka P. (2015), "Sarparanta Multifunctional porous silicon nanoparticles for cancer theranostics", Frontiers in Chemistry, Vol. 48, P. 108–118. DOI: https://doi.org/10.1016/j.biomaterials.2015.01.008
Choi, M. S., Na, H. G., Mirzaei, A., Bang, J. H., Oum, W., Han, S., Choi, S. W., Kim, M., Jin, C., Kim, S. S., & Kim, H. W. (2019), "Room-temperature NO2 sensor based on electrochemically etched porous silicon", Journal of Alloys and Compounds. V. 811. 151975 р. DOI: https://doi.org/10.1016/j.jallcom.2019.151975
Su-Ran Li, Fang-Yi Huo, Han-Qi Wang (2022), "Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy", J Nanobiotechnology, 20. 277 р. DOI: 10.1186/s12951-022-01489-4
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.