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ARCHITECTURE OF AN AUTOMATED PROGRAM COMPLEX BASED
ON A MULTIPLE KERNEL SVM CLASSIFIER
FOR ANALYZING MALICIOUS EXECUTABLE FILES

Subject matter. This article presents the development and architecture of an automated program complex designed to identify
and analyze malicious executable files using a classifier based on a multiple kernel support vector machine (SVM). Goal. The aim of
the work is to create an automated system that enhances the accuracy and efficiency of malware detection by combining static
and dynamic analysis into a single framework capable of processing large volumes of data with optimal time expenditure.
Tasks. To achieve this goal, tasks were carried out that included developing a program complex that automates the collection of static
and dynamic data from executable files using tools like IDA Pro, IDAPython, and Drakvuf; integrating a multiple kernel SVM
classifier to analyze the collected heterogeneous data; validating the system's effectiveness based on a substantial dataset
containing 1,389 executable samples; and demonstrating the system's scalability and practical applicability in real-world conditions.
Methods. The methods involved a hybrid approach that combines static analysis — extracting byte code, disassembled instructions,
and control flow graphs using IDA Pro and IDAPython — with dynamic analysis, which entails monitoring real-time behavior using
Drakvuf. The multiple kernel SVM classifier integrates different data representations using various kernels, allowing for both linear
and nonlinear relationships to be considered in the classification process. Results. The results of the study show that the system
achieves a high level of accuracy and completeness, as evidenced by key performance metrics such as an F-score of 0.93 and ROC
AUC and PR AUC values. The automated program complex reduces the analysis time of a single file from an average of 11 minutes
to approximately 5 minutes, effectively doubling the throughput compared to previous methods. This significant reduction
in processing time is critically important for deployment in environments where rapid and accurate malware detection is
necessary. Furthermore, the system's scalability allows for efficient processing of large data volumes, making it suitable
for real-world applications. Conclusions. In conclusion, the automated program complex developed in this study demonstrates
significant improvements in the accuracy and efficiency of malware detection. By integrating multiple kernel SVM classification
with static and dynamic analysis, the system shows potential for real-time malware detection and analysis. Its scalability and
practical applicability indicate that it could become an important tool in combating modern cyber threats, providing
organizations with an effective means to enhance their cybersecurity.

Keywords: cybersecurity; malware detection; automated program complex; static analysis; dynamic analysis; drakvuf;
IDA Pro; multiple kernel.

Introduction By combining static and dynamic analysis methods,

comprehensive features can be extracted from executable
files, enabling the detection of sophisticated malware that
traditional methods might miss. However, challenges
remain in optimizing these systems for performance and

Cyber  threats have become increasingly
sophisticated, presenting significant challenges to global
security. Modern malware uses advanced techniques like

code obfuscation, polymorphism, and zero-day exploits
to bypass traditional security measures. This escalation
necessitates the development of more robust detection
systems capable of identifying threats in real time.
Traditional antivirus programs, relying on signature-
based detection, are inadequate against novel and rapidly
changing malware variants. There is an urgent need
for automated systems that can effectively analyze
executable files without prior knowledge of specific
threats, processing large volumes of data efficiently.
Integrating machine learning into malware detection
shows promise in enhancing accuracy and speed.

scalability, especially when dealing with the vast and
diverse nature of modern malware.

Analysis of publications and problem statement

Study [1] focuses on the use of deep learning for the
static analysis of complete executable files. It presents
a method that automates feature extraction without the
need for manual definition, allowing the system to ingest
.exe files and classify them as malicious or benign.
This approach employs convolutional neural networks
to effectively detect complex patterns and anomalies
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in binary data indicating maliciousness. However,
limitations arise due to the large volumes of data required
for training and vulnerability to adversarial attacks.
Additionally, the significant computational resources
needed restrict its practical deployment.

Another study [2] explores the application of
dynamic analysis for automating the feature extraction
process, relying on the behavioral characteristics of
malware. It utilizes techniques that detect malicious
actions based on observations of program execution,
providing a deeper level of analysis. Despite its
effectiveness, this approach demands substantial
computational resources and time, rendering it inefficient
for real-time applications where prompt detection
is essential.

Recent research [3] introduces a novel approach to
malware detection using graph-based features. It employs
graphlet frequency distribution as feature vectors for
classifying malware, demonstrating improved accuracy
over traditional methods. Similarly, study [4] has
explored feature selection and learning techniques for
graphlet kernels, further advancing malware analysis
through machine learning. These methods highlight the
potential of graph-based representations in capturing
complex structural patterns within malware code.

Furthermore, research [5] investigates the
performance overhead of virtual machine introspection
using Drakvuf for malware analysis. This study
underscores the potential of virtual machine introspection
in providing detailed behavioral insights while
minimizing system performance degradation. Another
work [6] contributes by employing graphlet analysis on
complex data, which can be adapted to analyze
intricate malware behaviors, offering deeper insights
into malware dynamics.

Based on these challenges, the goal of this work is
to develop an automated program complex that integrates
static and dynamic analysis into a single system using
a multiple kernel SVM classifier, thereby enhancing
the accuracy and efficiency of malware detection.
By creating an automated system capable of analyzing
large volumes of data with optimal time expenditure, the
proposed solution aims to address the limitations of
previous methods. Based on our previous works [7, 8, 9,
10] that theoretically and practically substantiated the use
of an SVM classifier, a program complex was developed
that integrates the described approaches and algorithms.

Architecture of the program complex

The program complex developed in this work
employs a multiple kernel SVM classifier structure,
ensuring an effective combination of static and dynamic
analysis of executable files. The program complex
consists of three interconnected modules that provide
data collection, processing, and analysis, forming the
necessary foundation for effective malware detection.
Each of these modules has its unique parameters
set, directly influencing the final decision of the
SVM classifier regarding the maliciousness of
an executable file [11].

The Information Extraction Module consists
of four submodules, each focused on a specific type of
executable file representation:

1. Binary: This submodule uses IDA Pro and
IDAPython to extract byte code from executable files,
allowing for low-level information retrieval about the
file's structure. [12, 13]

2. Disassembly instructions: Utilizing IDA Pro and
IDAPython, this submodule extracts disassembled
instructions, enabling the analysis of the program's
internal commands. [14]

3. CFG (Control Flow Graphs): Also using IDA
Pro and IDAPython, this submodule creates control flow
graphs that depict the possible execution paths of the
program and its structural connections. [15]

4. Dynamic: The use of Drakvuf for dynamic
analysis allows tracking the program's execution in
real-time, providing behavioral features essential for
identifying malicious actions. [16, 17]

The Information Processing Module analyzes and
transforms the data obtained from the first module,
preparing it for classification. This module optimizes the
data for further analysis, ensuring its standardization
and normalization, which are necessary for accurate
machine learning.

The Multiple Kernel SVM Classifier Module
classifies executable files as malicious or benign.
The integration of features from different sources
and their analysis using various SVM Kkernels ensures
high accuracy in malware detection, considering
both static and dynamic aspects of the analysis.
The architecture of the multiple kernel SVM classifier
program complex can be seen in Figure 1. Experiments
were conducted on a personal computer with the
following specifications: Windows 10 operating
system, Intel Core i5-7600 processor, 8 GB of RAM.
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The dynamic analysis was performed in a Linux Windows 7 operating system, allocated 4 GB of
(Ubuntu 22.04) virtual machine environment with RAM and two processor cores.
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Fig. 1. Architecture of the program complex

Dataset and testing samples. The training sample includes
889 files, with 437 benign and 452 malicious files.

To validate and train the proposed architecture ~ The testing set includes 500 files, with 250 benign
of the program complex, an own dataset was collected and 250 malicious files. The ratio of malicious to benign
from public sources. Forming the dataset is a fundamental ~ files is approximately 50/50 to achieve more balanced
step in creating a machine learning model [18, 19]. accuracy results for the model. Figure 2 and Figure 3
For this study, a dataset comprising 1,389 executable ~ shows the distribution charts of files by type for
files was assembled. This set was divided into training each sample.
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Fig. 2. Infographic of the distribution of malicious files by type in the training set
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Fig. 3. Infographic of the distribution of malicious files by type in the test set

The malicious files were collected from various
sites:  "virusshare.com", "malicia-project.com"”, and
"thezoo.morirt.com”. The benign files were taken from
the installation folders of legitimate software applications
across different categories. Additionally, files were
sourced from the website "exefiles.com". The "VirusShare"
category represents a collection of malicious files of
unknown origin, downloaded from the "virusshare.com"
resource. The assembled dataset was used for training and
testing the program complex, allowing its effectiveness
and accuracy to be verified under conditions close
to real-world scenarios.

Information extraction module

Automation of static analysis data collection

The automation of the static analysis process in our
program complex is a crucial component that allows for
the rapid processing of large volumes of executable files.
This process is based on using IDA Pro with integrated
scripting in IDAPython, which implements a complete
analysis cycle for three different representations of an
executable file: bytecode, disassembled instructions, and
control flow graphs. The static analysis process starts
with the launch of the main script "main_static.py",
which automatically processes a set of executable files.
For each file, the script runs IDA Pro via the command
line and applies the "IDAPython_static.py™ script, which
performs several key tasks:

— Bytecode extraction: The script extracts all the
bytecode from the executable file. This code, which is the
fundamental representation of the program at the lowest
level, provides critical information for further analysis of
malicious patterns.

— Disassembled instructions extraction: Using the
IDA Pro disassembler, the script transforms the bytecode
into disassembled instructions, allowing an understanding
of the program's logic and potentially malicious actions.

— Control flow Graph (CFG) generation: The script
constructs control flow graphs representing all possible
execution paths of the program. These graphs are
essential for identifying complex behavioural patterns
and dependencies between different code blocks.

All collected information from each executable file
is stored as text files, enabling convenient archiving and
data analysis during subsequent processing. The recorded
data includes raw byte data, disassembled code, and
control flow graphs as adjacency matrices. Examples
of these text files can be seen in Figure 4. The required
time to process one executable file ranges from 4
to 18 seconds, depending on the file itself.

Automation of dynamic analysis data collection

The dynamic analysis process starts with the
execution of a control script that orchestrates a sequence
of actions to run each executable file in a virtual
environment. The system utilizes the Drakvuf tool to
monitor system calls, interactions with the file system,
registry, network requests, and other critical program
behaviour parameters [20]. The control script coordinates
the process, ensuring each file runs in isolation, and no
processes can affect the host machine or other virtual
machines. The analysis of an executable file lasts
120 seconds, during which the running program has time
to exhibit its properties. After the execution, Drakvuf
logs all relevant events triggered by the executable file
and saves this information in text files for further
analysis. It should be noted that preparation for analysis
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and process completion requires additional time. Before
running each executable file, it is necessary to prepare the
environment: start the virtual machine and create its
snapshot. A snapshot is a state capture of the virtual
machine at a certain point in time, allowing it to be
quickly restored to this state after the analysis. This is
particularly important when working with malicious
programs, as it ensures that each file runs in the same

state, and any system changes caused by the malicious
program do not affect subsequent tests. After analyzing
the executable file, the virtual machine is destroyed.
Overall, starting the virtual machine, creating the
snapshot, and deleting the environment after the analysis
adds extra time, resulting in a total processing time of
one file of 280 seconds. The dynamic analysis system is
described in detail in our previous work [8].

Control flow graph
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Fig. 4. Fragments of text files of static data types

Information processing module

The information processing module takes a set of
text files for each of the four data representations
as input. The module's goal is to transform the text files
into a format suitable for machine learning, particularly
for the SVM classifier. The output consists of five final
matrices for each data representation: Binary,
Instructions, System calls, CFG, File Info.

The data processing process begins with the
automated parsing of text files by running a Python script
that uses regular expressions to parse information from
the text files and store it in NumPy arrays. This makes it
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mov eax, rod
00 00 C7 mov eax: rod
;; :E ii mov eax, rad
e > o
02 00 00
5 89 45 shr eax, 10h
00 00 83 test r9d, 8080h
88 4D F4 test r9d, 8e8eh
test r9d, 8080h
00 83 C4
test r9d, 808eh
00 41 00
00 00 Al test r9d, 8080h
04 8B 4D test r9d, 8e8eh
07 00 00 test r9d, 8080h
09 00 00 cmovz  r9d, eax
CC cC cC cmovz  r9d, eax
83 C7 01 cmovz r9d, eax
10 E8 83 cmovz  r9d, eax
FF 75 oC lea rax, [rdx+2]
FF 74 24 lea rax, [rdx+2]
0B C3 EB lea rax, [rdx+2]
5B C3 6A lea rax, [rdx+2]
8B 45 E4 cmovz  rdx, rax
Co 88 70 cmovz rdx, rax
85 A6 00 cmovz rdx, rax
75 45 57 cmovz rdx, rax
CA 11 00 add r9b, rdb
88 7D oC add rob, rob
3A 11 00 add rob, rob
00 00 00 sbb rdx, 3
22 gg o sbb rdx, 3
sbb rdx, 3
40 60 81 sbb  rdx, 3
12 ;2 gg sub rdx, r8
sub rdx, r8
09 69 45 sub rdx, r8
g; gg ;g movsxd r8, edx
movsxd r8, edx
23 2? :g movsxd r8, edx
41 00 75 mov edx, 0C350h
04 07 83 mov edx, 0C350h
48 32 41 mov edx, 0C350h
8B 44 24 mov edx, 0C350h
Co 20 50 mov edx, 0C350h
59 74 78 sub rdx, r8
00 85 (0 sub rdx, r8
46 0C 00 sub rdx, r8
add rex, r8

easier to manipulate the data in subsequent processing
stages. The resulting arrays store sequences of certain
elements such as bytes — [4A, 5D, 00, 6G, ..., FF],
disassembled instructions — [mov, push, call, ..., jm],
or system calls — [NtOpenKeyEx, NtDelayExecution,
NtAlpcQueryInformationMessage, ..., NtTraceEvent].
The next step is to create adjacency matrices that account
for interactions between sequential elements. However,
first, it is necessary to determine the feature set for each
data representation, as the adjacency matrices are built
based on this feature set. For the binary representation,
the feature set includes all existing bytes, so the
adjacency matrix's dimensionality equals 256x256.
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For the other two representations, all corresponding
NumPy arrays must be analyzed and the number of
unique elements: disassembled instructions or system
calls, must be counted. It was found that our set of
executable files includes 322 unique disassembled
instructions and 241 unique system call names. These
unique elements form the basis of the corresponding
adjacency matrices, from which transition matrices are
then built, where each cell stores the probability of
transitioning from one byte, instruction, or system call to
another. Each transition matrix is then converted into
a vector representing a separate row in the final matrix of
a specific data representation. This vectorization process
reduces the data complexity to a format that can be
effectively used for machine learning. The final matrix's
dimensionality, which is input to the SVM classifier,
can be calculated using the following formula: the
number of files * (the number of unique elements)”2.

To process text files with control flow graphs, the
graphlet kernel method is used. The graphlet kernel
analyzes a graph through its local structures - graphlets,
which are subgraphs with a certain number of vertices.
We use four-vertex graphlets, such as 4-clique,
4-chordalcycle, 4-tailedtriangle, 4-cycle, 3-star, 4-path.
For each executable file, the number of occurrences
of each graphlet type is counted, and this data
is transformed into a feature set representing the
percentage ratio of each graphlet type in the graphs
of all executable file functions.

Based on the already processed data, another
representation of the executable file is built — File info.
Seven key metadata are used, which help gather
a broader spectrum of information about the executable
file and its potential malicious activity. This metadata
includes: file entropy, which indicates the randomness
level of the data; file packing to detect code obfuscation;
file size; the number of vertices and edges in the control
flow graph; and the number of static and dynamic
instructions. The data processing for the five data
representation types is described in detail in our
previous work [10].

Multiple kernel SVM classifier module

graph information, dynamic analysis of system calls,
and file metadata. Combining this data into a single
integrated machine-learning model allows the classifier
to consider the diverse aspects and features of each data
type during training, significantly improving the accuracy
of detecting malicious files. One of the key aspects
of the multiple kernel SVM classifier is its ability
to combine different types of kernels, allowing the
use of both linear and nonlinear relationships between
the data. We use Gaussian and polynomial Kernels.
The multiple kernel SVM classifier module is divided
into two submodules. The first submodule handles
training the classifier, using the available data to learn
and improve the model before applying it in real-world
conditions. The input to the submodule consists
of five matrices, each corresponding to its data
representation. During training, these matrices are
combined using kernels, allowing the model to account
for various dependencies between the data.This approach
ensures high accuracy in classifying malicious programs
and the model's adaptability to new samples.
For retraining the classifier in case of new samples,
an incremental learning approach is used, where new
data is added to the existing training dataset, and the
model is retrained to account for these new samples.
The second submodule classifies new samples using the
already trained model. The process of the multiple kernel
SVM classifier is detailed in our previous work [10].

Results

The foundation of the software complex for
analyzing malicious executable files is a multiple kernel
SVM classifier capable of integrating various types of
data into a single model. These representations include
binary code, disassembled instructions, control flow

This section compares the results of the new model
developed in this study (New model) and the old model
presented in our previous work [10]. The Old model
was trained on the dataset used in the previous work,
which included 180 executable files, but testing was
carried out on the new test set used in this study.
The New model described in this work was trained on
a set of 889 files and was also tested on the same test
set of 500 executable files

Metrics such as F-score, Precision, Recall,
ROC AUC, and PR AUC are used to reflect the models'
ability to distinguish between malicious and benign
files. Additionally, the throughput of each system is
compared, providing insight into efficiency and speed.
The metrics results can be seen in Table 1. The training

dataset in the new model significantly increased
compared to the previous work, likely impacting
the overall accuracy improvement. The F-score,
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Precision, and Recall metrics not only improved but
also became more balanced, indicating the new
model's ability to effectively recognize both classes
(malicious and benign files). The previous model
was more prone to identifying malicious files. In this
study, the method of distributing types of malicious
files for the test and training sets was changed.
The test set includes a significant number of ‘undefined'
malicious files that are not classified into specific
families. This gives the model a more balanced and
generalized ability to recognize both malicious and
benign files, making it more realistic and better at
adapting to unknown threats.

In the previous work, the dynamic analysis with
Drakvuf Sandbox required manually running each
executable file and manually saving the results, taking
about eight minutes per file. In the static analysis, files
were manually opened in IDA Pro, and text files were
saved, taking about three minutes per file. The new
program complex with a multiple kernel SVM classifier
automated the data collection processes. Dynamic
analysis based on Drakvuf now takes 280 seconds per
file, and static analysis with IDA Pro processes each
file in 4-18 seconds. Automation made the system'’s
throughput two times faster, making it more efficient
in detecting cyber threats.

Table 1. Experiment results. The throughput metric represents the minutes required to extract information from

one executable file

F-score Precision Recall
roc_auc pr_auc | throughput
0 1 0 1 0 1
Old model 0.8667 0.8732 0.8903 0.8517 0.8443 0.8961 0.9521 0.9542 11
New model 0.9327 0.9351 0.9502 0.9189 0.9160 0.9520 0.9716 0.9723 5
Conclusion real-world application conditions. In cases where a high

In this study, an automated program complex based
on a multiple kernel SVM classifier was developed for
analyzing malicious executable files. One of the key
results is the notable increase in the system's throughput,
specifically the reduction in the time required to analyze
each file. Compared to the previous system, where
processing each file took an average of 11 minutes, the
automated program complex now requires only about
5 minutes per file. This improvement allows for the
analysis to be over two times faster, optimizing time and
resource utilization. Thanks to the improved data
processing speed, our complex can be useful in various

References
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APXITEKTYPA ABTOMATHU30BAHOI'O TIPOT'PAMHOI'O KOMIIVIEKCY
HA OCHOBI BATATOAAEPHOI'O SVM-KJIACU®IKATOPA
JIJISA AHAJII3Y HKIIJINBUX BUKOHYBAHUX ®AWJIIB

TemaTuka gocaigKeHHsl. Y CTaTTi 3alpOIIOHOBAHO PO3POOJICHHS Ta apXiTEKTYpy aBTOMATH30BAHOTO IPOTPAMHOI0 KOMILIEKCY,
MPU3HAYCHOTO Ui iMeHTHU(QIKamii Ta aHami3y NIKIAJIMBHX BHKOHYBaHUX (ailmiB 3a JOMOMOroK Kiacudikatopa Ha OCHOBI
6araTosiIepHOr0 HaBYaHHs MAIIMHKA OMOpHHUX BekTopiB (SVM). Mera — CTBOpEHHS aBTOMAaTH30BAHOI CHCTEMH, IO MiIABHUIILYE
TOYHICTh 1 e()eKTHBHICTb BHSBICHHS LIKiJJIMBOTO MPOrPaMHOr0 3a0e3MedeHHs 3aBISKH IO€JHAHHIO CTATHYHOTO H JAMHAMIYHOTO
aHai3y B €IUHY CTPYKTYpY, 34aTHY OOpOONSTH 3HauHi oOCATHM JaHMX 3 ONTUMAJbHUMH BHTpAaTaMH dYacy. 3aBJAaHHSl CTATTi.
J71s JocATHEHHS OKpeCIeHOi METH pO3pOOJICHO MPOTrpaMHHKA KOMITIIEKC, 10 aBTOMATU3Y€ 30ip CTATUYHUX 1 TUHAMIYHUX BiJOMOCTEH
i3 BHUKOHYBaHMX (haililiB 3a JOMOMOrorw Takux iHCTpyMeHTiB, sik IDA Pro, IDAPython i Drakvuf; 3acrocoBano iHTerpaitito
OararosimepHoro kimacudikaropa SVM mis anamizy 3i0paHHX pI3HOPIZHMX TaHWX; BHKOHAHO Baigallil0 e(EKTUBHOCTI CHCTEMH
Ha OCHOBI 3HA4YHOTO JaraceTy, IO MicTuTh 1 389 BHKOHYBaHHMX 3pa3KiB; HNPOAEMOHCTPOBAHO MaclITaOOBAHICTh 1 NMPAKTHYHY
3aCTOCOBHICTE CHCTEMH B peaJbHHX yMoBax. Mertoam nepenbadand TiOpHIHMI MiAXil, IO TOEAHY€E CTaTUYHHMN aHami3 —
BUTAr OaiiT-KoIy, AW3aceMONbOBaHHX IHCTpYKLii Ta rpadiB moToky kepyBanHs 3a momomoroio IDA Pro ta IDAPython —
3 AMHAMIYHMM aHali30M, SKHH NOJAraB y MOHITOPHHIY HOBENIHKM B peanbHOMYy 4aci 3a nomomororo Drakvuf. BararosnuepHuii
knacudikatop SVM iHTerpye pi3HI MOJAaHHA JaHWX, BUKOPHCTOBYIOUH pIi3HI sApa, OO0 Aa€ 3MOTy OpaTh OO YBaru sk
TMiHIMHI, TaK 1 HeNmiHIMHI B3a€MO3B’SM3KHM B Tpoueci kiacudikamii. Pe3yabraTm AoCHiIsKeHHS TIPOIEMOHCTPYBAIH,
IO CHCTEMa J0CATa€ BUCOKOTO PiBHA TOYHOCTI Ta MMOBHOTH, IPO IO CBigYaTh KIOYOBI METPUKHU eeKTUBHOCTI, 30kpeMa F-mipa 0,93
ta 3HadeHHs ROC AUC i PR AUC. Apromaru3oBaHuil MporpaMHHUil KOMIUIEKC 3MEHIIyE 4Yac aHallidy oxHoro aiimy
3 cepemHix 11 XB 10 npuOMM3HO 5 XB, MmO (aKTUYHO IIOJBOIOE MPOIYCKHY 3AaTHICTh IIOPIBHSAHO 3 HONEPeAHIMU
Metonamu. lle 3HayHE CKOpOUEHHsS 4acy OOpOOJICHHsS € KPUTUYHO BaXKIMBUM JUIs BIPOBA/DKCHHS B CEPEJOBHINAX, A€ HEOoOXiqHe
MIBUJIKE ¥ TOYHE BHSBICHHS ILIKI/UIMBOTO IIporpaMHOro 3abesnedeHHs. KpiM Toro, MacmrabOBaHICTE CHCTEMH A€ 3MOTY
e(eKTUBHO 0OpOOJIATH 3HAYHI OOCSTH JaHMX, IO pOOWTH 1i MPHUAATHOIO IUIS peaJbHOrO 3acTOoCyBaHHS. BmcHoBKkH. Po3pobneHwmit
y Mexax IIbOro JOCIHI/UKEHHS aBTOMATH30BaHMH NpPOrpaMHHIl KOMIUIEKC JEMOHCTPYE 3HAyHi MONINIIEHHS MO0 TOYHOCTI
Ta e(h)eKTUBHOCTI BHSBJICHHS IIKIUIMBOTO ITPOrpaMHOro 3abe3nedeHHs. [HTerpytoun 6ararosaepHy knacudikanito SVM 3i craTnaHiM
i IMHAMiYHMM aHANi30M, CHCTEMa BMSBJIAE MOTEHIiaN JUlA aHanisy wkigmusoro I13 B peambHux ymoBax. Ii MaciraGosaHicTh
Ta MPaKTHYHA 3aCTOCOBHICTH CBif4aTh MPO T€, IO CHCTEMa MOXKE CTaTH BKIMBUM IHCTPYMEHTOM Y OOpoThOi i3 cydacHHMH
Kibep3arpozamu, HaJaroud OpraHi3allisiM eeKTUBHUIA 3aci0 Ay MiABUIIEHHS iX KibepOe3neKu.

KurouoBi cioBa: xibepOe3neka; BHSBICHHS IIKIIJIMBHX NPOrpaM; aBTOMATH30BAaHWK HPOTPAMHHN KOMIUIEKC; CTaTHYHHN

aHaui3; auHamiuHui ananis; Drakvuf; IDA Pro; GararosiepHe HaB4aHHSL.
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