Uav urban mobility control: swarm intelligence and collision avoidance
DOI:
https://doi.org/10.30837/2522-9818.2024.4.059Keywords:
unmanned aerial vehicles (UAVs); swarm, collision avoidance; urban drone mobility; integrated management systems.Abstract
Subject matter: Intelligent management of traffic flows in urban environments using swarm intelligence principles and collision avoidance algorithms to ensure safe and efficient urban mobility. Special attention is given to the management of unmanned vehicles and drones. Goal: To develop and analyze an approach to managing urban mobility that combines swarm intelligence principles and collision avoidance algorithms to optimize traffic flows, improve traffic safety, and reduce the number of accidents. Tasks: Investigate the safety and efficiency problems of urban transportation in the context of growing urbanization; develop a model that integrates swarm intelligence and collision avoidance algorithms for managing the movement of unmanned vehicles; conduct a series of experiments to test the effectiveness of the proposed approach; analyze the results of the experiments and determine the potential for improving urban mobility and ensuring road safety. Methods: Mathematical modeling of traffic flows using the swarm intelligence algorithm to coordinate the movement of unmanned vehicles and avoid collisions. Results: The proposed urban mobility management algorithm has demonstrated the ability to improve traffic flows, reduce the risk of collisions, and increase overall road safety. The results of the experiments confirmed the effectiveness of using swarm intelligence for coordination vehicles and collision avoidance algorithms to prevent accidents.
References
Список літератури
Na S., Niu H., Lennox B., Arvin F. Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology, 2022, 71(3), Р. 2511-2526. DOI: 10.1109/TVT.2022.3145346
Pawełczyk M. Ł., Wojtyra M. Real World Object Detection Dataset for Quadcopter Unmanned Aerial Vehicle Detection. IEEE Access, 2020, 8, Р. 174394-174409. DOI: 10.1109/ACCESS.2020.3026192
Sytsma J., Thompson D., Sicoli J. Drone Ultrasonic Detection. Australian International Aerospace Congress, 2023. URL: https://search.informit.org/doi/abs/10.3316/informit.063769306863002 (дата звернення 11.11.2024).
Petersen K. Tackling air pollution with autonomous drones. MIT School of Engineering, 2021. URL: https://news.mit.edu/2021/tackling-air-pollution-with-autonomous-drones-0624 (дата звернення 11.11.2024)
Chu J. New 'traffic cop' algorithm helps a drone swarm stay on task. MIT News Office, 2023. URL: https://news.mit.edu/2023/new-traffic-cop-algorithm-drone-swarm-wireless-0313 (дата звернення 11.11.2024)
Enwerem C., Baras J.S. Consensus-Based Leader-Follower Formation Tracking for Control-Affine Nonlinear Multiagent Systems. 2023. URL: https://doi.org/10.48550/arXiv.2309.09156
Xu Z., Yan T., Yang S.X., Gadsden S.A. Distributed Leader Follower Formation Control of Mobile Robots based on Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter. IEEE Transactions on Industrial Informatics, 2023. DOI: 10.1109/TII.2023.3272666
Ye Y., Hu S., Zhu X., Sun Z. An Improved Super-Twisting Sliding Mode Composite Control for Quadcopter UAV Formation. Machines, 2024, 12(1), 32 р. DOI: https://doi.org/10.3390/machines12010032
Hadi B., Khosravi A., Sarhadi P. Adaptive formation motion planning and control of autonomous underwater vehicles using deep reinforcement learning. IEEE Journal of Oceanic Engineering. 2023. DOI:10.48550/arXiv.2304.00225
Zhang J., et al. Perdix: A Swarm of Swarming UAVs. Journal of Field Robotics, 2019, Vol. 36(6), Р. 1240–1255.
Distributed Leader Follower Formation Control of Mobile Robots based on Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter. 2023. 19 р. URL: https://arxiv.org/pdf/2301.01234.pdf
Sytsma J., Thompson D., Sicoli J. Drone Ultrasonic Detection. Australian International Aerospace Congress, 2023. Р. 221–225. URL: https://search.informit.org/doi/abs/10.3316/informit.063769306863002.
Kosanam B., Kukkadapu A. Swarm Intelligence Based Traffic Control System. IRA-International Journal of Technology & Engineering, 2017. Р. 46-52. DOI: http://dx.doi.org/10.21013/jte.v7.n2.p5
Tahir A. Formation Control of Swarms of Unmanned Aerial Vehicles. Doctoral Dissertation. University of Turku, Turku, Finland. 2023. 449 р. URL: https://urn.fi/URN:ISBN:978-951-29-9411-3
Pathak R., Barzin R., Bora G. C. Data-driven precision agricultural applications using field sensors and Unmanned Aerial Vehicle. International Journal of Precision Agriculture and Aviation. 2018. Vol. 1(1). P. 19–23. DOI: https://doi.org/10.33440/j.ijpaa.20180101.0004
Ali Z. A. Introductory chapter: Motion planning for dynamic agents. InTechOpen. 2024. URL: https://www.intechopen.com/chapters/1178552
Gielis J., Shankar A., Prorok A. A Critical Review of Communications in Multi-robot Systems. Current Robot Reports. 2022. Vol. 3(3). P. 213–225. DOI: 10.1007/s43154-022-00090-9
References
Na, S., Niu, H., Lennox, B. and Arvin, F. (2022), "Bio-Inspired Collision Avoidance in Swarm Systems via Deep Reinforcement Learning," in IEEE Transactions on Vehicular Technology, Vol. 71, No. 3, Р. 2511-2526. DOI: 10.1109/TVT.2022.3145346.
Pawełczyk, M. Ł., Wojtyra, M. (2020), "Real World Object Detection Dataset for Quadcopter Unmanned Aerial Vehicle Detection," in IEEE Access, Vol. 8, Р. 174394-174409. DOI: 10.1109/ACCESS.2020.3026192
Sytsma, J., Thompson, D., and Sicoli, J. (2023), "Drone Ultrasonic Detection", Australian International Aerospace Congress. available online: https://search.informit.org/doi/abs/10.3316/informit.063769306863002 (last accessed 11 November 2024).
Petersen, K. (2021), "Tackling air pollution with autonomous drones," MIT School of Engineering. available online: https://news.mit.edu/2021/tackling-air-pollution-with-autonomous-drones-0624 (last accessed 11 November 2024).
Chu, J. (2023), "New 'traffic cop' algorithm helps a drone swarm stay on task," MIT News Office. available online: https://news.mit.edu/2023/new-traffic-cop-algorithm-drone-swarm-wireless-0313 (last accessed 11 November 2024).
Enwerem, C. and Baras, J.S. (2023), "Consensus-Based Leader-Follower Formation Tracking for Control-Affine Nonlinear Multiagent Systems," available online: https://doi.org/10.48550/arXiv.2309.09156
Xu, Z., Yan, T., Yang, S.X., and Gadsden, S.A. (2023), "Distributed Leader Follower Formation Control of Mobile Robots based on Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter", IEEE Transactions on Industrial Informatics. DOI: 10.1109/TII.2023.3272666
Ye, Y., Hu, S., Zhu, X., and Sun, Z. (2024), "An Improved Super-Twisting Sliding Mode Composite Control for Quadcopter UAV Formation", Machines, 12(1), 32 р. DOI: https://doi.org/10.3390/machines12010032
Sarhadi, P., et al. (2023), "Adaptive formation motion planning and control of autonomous underwater vehicles using deep reinforcement learning", IEEE Journal of Oceanic Engineering. DOI: 10.48550/arXiv.2304.00225
Zhang, J., et al. (2019), "Perdix: A Swarm of Swarming UAVs", Journal of Field Robotics, Vol. 36, No. 6, Р. 1240–1255.
"Distributed Leader Follower Formation Control of Mobile Robots based on Bioinspired Neural Dynamics and Adaptive Sliding Innovation Filter". 2023. 19 р. available at: https://arxiv.org/pdf/2301.01234.pdf
Sytsma, J., Thompson, D., and Sicoli, J. (2023), "Drone Ultrasonic Detection", Australian International Aerospace Congress. Р. 221–225. available at: https://search.informit.org/doi/abs/10.3316/informit.063769306863002
Kosanam, B., Kukkadapu, A. (2017), Swarm Intelligence Based Traffic Control System. IRA-International Journal of Technology & Engineering. Р. 46-52. DOI: http://dx.doi.org/10.21013/jte.v7.n2.p5
Tahir, A. (2023), "Formation Control of Swarms of Unmanned Aerial Vehicles", Doctoral Dissertation, University of Turku, Turku, Finland. 449 р. available at: https://urn.fi/URN:ISBN:978-951-29-9411-3
Pathak, R., Barzin, R. and Bora, G.C. (2018), "Data-driven precision agricultural applications using field sensors and Unmanned Aerial Vehicle", International Journal of Precision Agriculture and Aviation, Vol. 1(1), P. 19–23. DOI: https://doi.org/10.33440/j.ijpaa.20180101.0004
Ali, Z.A. (2024), "Introductory chapter: Motion planning for dynamic agents", InTechOpen. available at: https://www.intechopen.com/chapters/1178552
Gielis, J., Shankar, A. and Prorok, A. (2022), "A Critical Review of Communications in Multi-robot Systems", Current Robot Reports, Vol. 3(3), P. 213–225. DOI: 10.1007/s43154-022-00090-9
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












