Forecasting software system quality metrics using modifications of the DeepLIFT interpretation method

Authors

DOI:

https://doi.org/10.30837/2522-9818.2024.4.110

Keywords:

Modeling; DeepLIFT; innovations; quality assessment; neural networks; optimization.

Abstract

The subject of the study is to improve the interpretative method of DeepLIFT (Deep Learning Important Features) in the context of ensuring quality assessment of software systems (PS). The algorithmic and mathematical aspects of the DeepLIFT base method, as well as its improvement for analyzing and improving the quality of PS, are being studied. Purpose: development and justification of five methods of optimization modifications of the DeepLIFT method to improve the accuracy and efficiency of forecasting the quality of PS quality. The article solves the following tasks: to conduct a detailed review of problems related to the use of DeepLIFT when assessing the quality of the aircraft; provide a mathematical description of the five ways of modifying the DeepLIFT method aimed at improving the accuracy, adaptability and speed of quality assessment; experimental testing of the proposed modifications is performed to evaluate their effectiveness in assessing the quality of aircraft compared to the original DeepLIFT method. Research methods: analysis of literature; methods of experimental verification; calculation of average values and use of significance tests; modeling. The results were achieved: 1) a detailed analysis of the limitations of the base method of DeepLIFT in the context of modern software systems, which revealed low adaptability to dynamic data, limited interpretability for complex architectures and difficulty with stability of results in cases of variable operating conditions; 2) five DeepLIFT method is proposed; 3) the proposed modifications have undergone experimental testing, which demonstrated their effectiveness compared to the original DeepLIFT method. The results of the study showed that all modifications allow you to achieve improvements in key parameters. Conclusions: in the face of increasing the complexity of architectures, increasing the volume of data and productivity requirements, innovative methods of evaluation and predicting the quality of PS become a necessary. Each of the improved methods increases accuracy and interpretability compared to the base DeepLIFT. The highest accuracy is shown by the temporal DeepLIFT (T-Dlift) respectively.

Author Biographies

Anton Shantyr, State University of Information and Communication Technologies

PhD (Engineering Sciences),  Associate Professor at the Department of Artificial Intelligence

Olha Zinchenko, State University of Information and Communication Technologies

Doctor of Sciences (Engineering), Associate Professor,  Head at the Department of Artificial Intelligence

References

Список літератури

Altmann A., Toloşi L., Sander O., Lengauer T. Permutation importance: A corrected feature importance measure. Bioinformatics, 26 (10), 2010. Р. 1340–1347. DOI: https://doi.org.1093/bioinformatics/btq134

Amoriello T., Ciccoritti R., Ferrante P. Prediction of strawberries’ quality parameters using artificial neural networks. Agronomy, 12 (4), 2022. 963 р. DOI: https://doi.org.3390/agronomy12040963

Antwarg L., Miller R. M., Shapira B., Rokach L. Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Systems With Applications, 186, 2021. 115736 р. DOI: https://doi.org.1016/j.eswa.2021.115736

Dheeraj K. N., Goutham R. J., Arthi L. Crop quality prediction using ml and neural networks. International Journal on Cybernetics & Informatics, 10 (2), 2021. Р. 07–11. DOI: https://doi.org.5121/ijci.2021.100202

EjrnÆs R., Aude E., Nygaard B., Münier B. Prediction of habitat quality using ordination and neural networks. Ecological Applications, 12 (4), 2002. Р. 1180–1187. DOI: 10.1890/1051-0761(2002)012[1180:POHQUO]2.0.CO;2

Fumagalli F., Muschalik M., Hüllermeier E., Hammer B. Incremental permutation feature importance (iPFI): Towards online explanations on data streams. Machine Learning. 2023. Р. 4863–4903. DOI: https://doi.org.1007/s10994-023-06385-y

Ghanmi H., Ghith A., Benameur T. Ring spun yarn quality prediction using hybrid neural networks. The Journal of the Textile Institute, Р. 1–9. 2021. DOI: https://doi.org.1080/00405000.2021.2022826

Jha K. N., Chockalingam C. T. Prediction of quality performance using artificial neural networks. Journal of Advances in Management Research, 6 (1), 2009. Р. 70–86. DOI: https://doi.org.1108/09727980910972172

Kaneko H. Cross‐validated permutation feature importance considering correlation between features. Analytical Science Advances. P. 278-287. 2022. DOI: https://doi.org.1002/ansa.202200018

Michalski A., Duraj K., Kupcewicz B. Leukocyte deep learning classification assessment using Shapley additive explanations algorithm. International Journal of Laboratory Hematology. 2023. P. 297–302. DOI: https://doi.org.1111/ijlh.14031

Miković R., Arsić B., Gligorijević Đ. Importance of social capital for knowledge acquisition-DeepLIFT learning from international development projects. Information Processing & Management, 61 (4), 103694 р. 2024. DOI: https://doi.org.1016/j.ipm.2024.103694

Movsessian A., Cava D. G., Tcherniak D. Interpretable machine learning in damage detection using shapley additive explanations. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 8 (2). 2022. 11 р. DOI: https://doi.org/10.1115/1.4053304

Ni H., Yin H. Exchange rate prediction using hybrid neural networks and trading indicators. Neurocomputing, 72 (13-15), 2009. Р. 2815–2823. DOI: https://doi.org.1016/j.neucom.2008.09.023

Nirmalraj S., Antony A. S. M., Srideviponmalar P., Oliver A. S., Velmurugan K. J., Elanangai V., Nagarajan G. Permutation feature importance-based fusion techniques for diabetes prediction. Soft Computing. 2023. DOI: https://doi.org.1007/s00500-023-08041-y

Poligné I., Broyart B., Trystram G., Collignan A. Prediction of mass-transfer kinetics and product quality changes during a dehydration-impregnation-soaking process using artificial neural networks. application to pork curing. LWT - Food Science and Technology, 35(8), 2002. Р. 748–756. DOI: https://doi.org.1006/fstl.2002.0939

Rahman N. H. A., Lee M. H., Suhartono S., Latif M. T. Artificial neural networks and fuzzy time series forecasting: An application to air quality. Quality & Quantity, 49(6), 2014. Р. 2633–2647. DOI: https://doi.org.1007/s11135-014-0132-6

Schweidtmann A. M., Rittig J. G., König A., Grohe M., Mitsos A., Dahmen M. Graph neural networks for prediction of fuel ignition quality. Energy & Fuels, 34 (9), 2020. Р. 11395–11407. DOI: https://doi.org.1021/acs.energyfuels.0c01533

Tan C. H., Yusof K. M., Alwi S. R. W. Quality prediction for polypropylene extrusion based on neural networks. IOP Conference Series: Materials Science and Engineering, 1257 (1), 2022. Р. 1–6. DOI: doi:10.1088/1757-899X/1257/1/012034

Tan J. S. Ablation study on feature group importance for automated essay scoring. Asia-Pacific Journal of Information Technology and Multimedia, 11 (01), 2022. Р. 90–101. DOI: https://doi.org.17576/apjitm-2022-1101-08

Thwin M. M. T., Quah T. S. Application of neural networks for software quality prediction using object-oriented metrics. Journal of Systems and Software, 76 (2), 2005. Р. 147–156. DOI: https://doi.org.1016/j.jss.2004.05.001

Wang S., Zhang Y. Grad-CAM: Understanding AI models. Computers, Materials & Continua, 76 (2), 2023. Р. 1321–1324. DOI: https://doi.org.32604/cmc.2023.041419

References

Altmann, A., Toloşi, L., Sander, O., Lengauer, T. (2010), "Permutation importance: A corrected feature importance measure". Bioinformatics, 26 (10), Р. 1340–1347. DOI: https://doi.org.1093/bioinformatics/btq134

Amoriello, T., Ciccoritti, R., Ferrante, P. (2022), "Prediction of strawberries’ quality parameters using artificial neural networks". Agronomy, 12 (4), 963 р. DOI: https://doi.org.3390/agronomy12040963

Antwarg, L., Miller, R. M., Shapira, B., Rokach, L. (2021), "Explaining anomalies detected by autoencoders using Shapley Additive Explanations". Expert Systems With Applications, 186, 115736 р. DOI: https://doi.org.1016/j.eswa.2021.115736

Dheeraj, K. N., Goutham, R. J., Arthi, L. (2021), "Crop quality prediction using ml and neural networks". International Journal on Cybernetics & Informatics, 10 (2), Р. 07–11. DOI: https://doi.org.5121/ijci.2021.100202

EjrnÆs, R., Aude, E., Nygaard, B., Münier, B. (2002), "Prediction of habitat quality using ordination and neural networks". Ecological Applications, 12 (4), Р. 1180–1187. DOI: 10.1890/1051-0761(2002)012[1180:POHQUO]2.0.CO;2

Fumagalli, F., Muschalik, M., Hüllermeier, E., Hammer, B. (2023), "Incremental permutation feature importance (iPFI): Towards online explanations on data streams". Machine Learning. Р. 4863–4903. DOI: https://doi.org.1007/s10994-023-06385-y

Ghanmi, H., Ghith, A., Benameur, T. (2021), "Ring spun yarn quality prediction using hybrid neural networks". The Journal of the Textile Institute, Р. 1–9. DOI: https://doi.org.1080/00405000.2021.2022826

Jha, K. N., Chockalingam, C. T. (2009), "Prediction of quality performance using artificial neural networks". Journal of Advances in Management Research, 6 (1), Р. 70–86. DOI: https://doi.org.1108/09727980910972172

Kaneko, H. (2022), "Cross‐validated permutation feature importance considering correlation between features". Analytical Science Advances. P. 278-287. DOI: https://doi.org.1002/ansa.202200018

Michalski, A., Duraj, K., Kupcewicz, B. (2023), "Leukocyte deep learning classification assessment using Shapley additive explanations algorithm". International Journal of Laboratory Hematology. P. 297–302. DOI: https://doi.org.1111/ijlh.14031 Miković, R., Arsić, B., Gligorijević, Đ. (2024), "Importance of social capital for knowledge acquisition-DeepLIFT learning from international development projects". Information Processing & Management, 61 (4), 103694 р. DOI: https://doi.org.1016/j.ipm.2024.103694

Movsessian, A., Cava, D. G., Tcherniak, D. (2022), "Interpretable machine learning in damage detection using shapley additive explanations". ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 8 (2). 11 р. DOI: https://doi.org/10.1115/1.4053304

Ni, H., Yin, H. (2009), "Exchange rate prediction using hybrid neural networks and trading indicators". Neurocomputing, 72 (13–15), Р. 2815–2823. DOI: https://doi.org.1016/j.neucom.2008.09.023

Nirmalraj, S., Antony, A. S. M., Srideviponmalar, P., Oliver, A. S., Velmurugan, K. J., Elanangai, V., Nagarajan, G. (2023), "Permutation feature importance-based fusion techniques for diabetes prediction". Soft Computing. 2023. DOI: https://doi.org.1007/s00500-023-08041-y

Poligné, I., Broyart, B., Trystram, G., Collignan, A. (2002), "Prediction of mass-transfer kinetics and product quality changes during a dehydration-impregnation-soaking process using artificial neural networks. application to pork curing". LWT – Food Science and Technology, 35(8), Р. 748–756. DOI: https://doi.org.1006/fstl.2002.0939

Rahman, N. H. A., Lee, M. H., Suhartono, S., Latif, M. T. (2014), "Artificial neural networks and fuzzy time series forecasting: An application to air quality". Quality & Quantity, 49 (6), Р. 2633–2647. DOI: https://doi.org.1007/s11135-014-0132-6

Schweidtmann, A. M., Rittig, J. G., König, A., Grohe, M., Mitsos, A., (2020), "Dahmen M. Graph neural networks for prediction of fuel ignition quality". Energy & Fuels, 34 (9), Р. 11395-11407. DOI: https://doi.org.1021/acs.energyfuels.0c01533

Tan, C. H., Yusof, K. M., Alwi, S. R. W. (2022), "Quality prediction for polypropylene extrusion based on neural networks". IOP Conference Series: Materials Science and Engineering, 1257 (1), Р. 1–6. DOI: doi:10.1088/1757-899X/1257/1/012034

Tan, J. S. (2022), "Ablation study on feature group importance for automated essay scoring". Asia-Pacific Journal of Information Technology and Multimedia, 11 (01), Р. 90–101. DOI: https://doi.org.17576/apjitm-2022-1101-08

Thwin, M. M. T., Quah, T. S. (2005), "Application of neural networks for software quality prediction using object-oriented metrics". Journal of Systems and Software, 76 (2), 2005. Р. 147–156. DOI: https://doi.org.1016/j.jss.2004.05.001

Wang, S., Zhang, Y. (20230, "Grad-CAM: Understanding AI models". Computers, Materials & Continua, 76 (2), Р. 1321–1324. DOI: https://doi.org.32604/cmc.2023.041419

Published

2024-12-11

How to Cite

Shantyr, A., & Zinchenko, O. (2024). Forecasting software system quality metrics using modifications of the DeepLIFT interpretation method. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (4(30), 110–124. https://doi.org/10.30837/2522-9818.2024.4.110