Probabilistic-fuzzy actuator model in the soft control circuit of an autonomous unmanned system

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.1.061

Keywords:

artificial intelligence; soft-computing-based control; autonomous unmanned system; fuzzy systems; probabilistic models.

Abstract

The subject matter of the article is artificial intelligence methods and models used in autonomous unmanned system control. The goal of the work is to create a new actuator model for autonomous unmanned systems that implements control decisions made by Artificial Intelligence under conditions of uncertainty. The following tasks were solved in the article: a model of a Probabilistic Fuzzy Actuator (PFA) is proposed and the possibility of its application as a universal controller of the actuators in autonomous systems is investigated. The PFA model, borrowed from biological muscle actuators, is formalized as a set of automata-like elements with a probabilistic mechanism for assigning their input variables calculated on the basis of fuzzy characteristics of control decisions obtained from an AI system that supports soft control technology. The following methods are used – fuzzy control, decision-making under uncertainty based on the confidence factor, automata theory, probability theory. The following results were obtained – a model of PFA borrowed from living beings has been proposed and substantiated; a PFA algorithm has been developed that implements control decisions obtained by the soft control method. Conclusions: Probabilistic Fuzzy Actuator, unlike existing methods of implementing decisions in soft control models, opens up the possibility of implementing commands that do not have an absolute advantage among all potentially possible ones when making decisions. This capability of autonomous system actuators is useful in conditions when the system encounters an unfamiliar situation since all reaction prototypes existing in its memory are characterized by low confidence. In these cases, to maintain autonomy, it is important to try different behaviors, not just the one that ranks first. Besides this, the "trial and error" method is still required by the self-learning model in autonomous systems that rely on it. Computer experiments confirmed the possibility of implementing this mechanism using the proposed PFA model.

Author Biographies

Anatolii Kargin, Ukrainian State University of Railway Transport

Doctor of Sciences (Engineering), Professor, Department of Information Technology

Roman Kuzmenko, Ukrainian State University of Railway Transport

PhD Student at the Department of Information Technology

References

Список літератури

Litman T. A. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Victoria Transport Policy Inst., Aug. 2022. URL: https://www.vtpi.org/avip.pdf (дата звернення: 27.11.2024).

Siciliano B., Khatib O. (Eds.). Modeling and Control of Underwater Robots. Springer Handbook of Robotics (2nd ed.). Berlin, Heidelberg: Springer-Verlag, 2016. 2225 р. DOI: https://doi.org/10.1007/978-3-319-32552-1

Belpaeme T., Kennedy J., Ramachandran A., Scassellati B., Tanaka F. Social robots for education: A review. International Journal of Social Robotics. 2018. Vol. 10. No. 3. P. 299–315. DOI: https://doi.org/10.1126/scirobotics.aat5954

Pagliarini L., Lund H. H. The future of Robotics Technology. Journal of Robotics, Networking and Artificial Life. Vol. 3. No. 4. March 2017. P. 270–273. DOI: 10.2991/jrnal.2017.3.4.12

Mubin O., Stevens C. J., Shahid S., Mahmud A. A., Dong J. J. A Review of the Applicability of Robots in Education. Journal of Technology in Education and Learning. 2013. Vol. 1. No. 1. P. 1–7. DOI: 10.2316/Journal.209.2013.1.209-0015

Singh P., Dulebenets M. A., Pasha J., Gonzalez E. D. R. S., Lau Y.-y., Kampmann R. Deployment of Autonomous Trains in Rail Transportation: Current Trends and Existing Challenges. IEEE Access. 2021. Vol. 9. P. 1550–1562. DOI: 10.1109/ACCESS.2021.3091550

Thrun S., Burgard W., Fox D. Probabilistic Robotics. MIT Press, 2005. Розділ 5: Robot Motion. Р. 91–119. URL: https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf (дата звернення: 27.11.2024).

Piegat A (2001) Fuzzy modelling and control. Physica-Verlag, 728 p.

Kargin A., Petrenko T. Feeling Artificial Intelligence for AI-Enabled Autonomous Systems. In Proc. of 2022 IEEE Global Conf. on Artificial Intelligence and Internet of Things (GCAIoT). Alamein New City, Egypt, Dec. 18, 2022, Р. 88–93. DOI: 10.1109/GCAIoT57150.2022.10019235

Beetz M., Jain D., Mösenlechner L., Tenorth M. Towards performing everyday manipulation activities. Robotics and Autonomous Systems. 2010. Р. 1–10. DOI: 10.1016/j.robot.2010.05.007

Arkin R. Behavior-Based Robotics. Automatica. 1998. Р. 69–79. DOI: 10.1016/S0005-1098(02)00169-3

Brooks R. A Robust Layered Control System for a Mobile Robot. IEEE Journal on Robotics and Automation. 1986. Vol. 2, № 1. Р. 14–23. DOI: 10.1109/JRA.1986.1087032

Simmons R. Experience with a Task Control Architecture for Mobile Robots. 1989. P. 4–8. URL: https://www.academia.edu/51291699/Experience_with_a_Task_Control_Architecture_for_Mobile_Robots (дата звернення: 27.11.2024).

Guizzo E. Types of Robots. Categories frequently used to classify robots. Robotsguide.com. URL: https://robotsguide.com/learn/types-of-robots (дата звернення: 15.06.2024).

Open X-Embodiment: Robotic Learning Datasets and RT-X Models. Open X-Embodiment Collaboration, 2024. URL: https://robotics-transformer-x.github.io/ (дата звернення: 15.06.2024).

Levine S., Hausman K. The global project to make a general robotic brain. IEEE Spectrum. Jan 2024. URL: https://spectrum.ieee.org/global-robotic-brain (дата звернення: 15.06.2024).

Kargin A., Petrenko T. Knowledge Distillation for Autonomous Intelligent Unmanned System. In Pedrycz W., Chen S.-M. Advancements in Knowledge Distillation: Towards New Horizons of Intelligent Systems. Studies in Comput. Intell., vol. 1100. Springer International Publishing, 2023, P. 193–230. DOI: 10.1007/978-3-031-32095-8

Kargin A., Petrenko T. Spatio-Temporal Data Interpretation Based on Perceptional Model. In Mashtalir V, Ruban I, Levashenko V. Advances in Spatio-Temporal Segmentation of Visual Data. Studies in Computational Intelligence, Vol. 876. Springer, Cham, 2020, P. 101-159. DOI: 10.1007/978-3-030-35480-0_3

Hengji Wang, Joshua Swore, Shashank Sharma, and Adrienne L. Fairhall. A complete biomechanical model of Hydra contractile behaviors, from neural drive to muscle to movement. PNAS, March 10, 2023, 120 (11). DOI: 10.1073/pnas.2210439120

References

Litman, T. A. (2022), "Autonomous Vehicle Implementation Predictions: Implications for Transport Planning, Victoria Transport Policy Institute", available at: https://www.vtpi.org/avip.pdf (last accessed 27.11.2024).

Siciliano, B., Khatib, O. (2016), "Modeling and Control of Underwater Robots". Springer Handbook of Robotics (2nd ed.), Springer-Verlag, Berlin, Heidelberg, 2225 p. DOI: https://doi.org/10.1007/978-3-319-32552-1

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., Tanaka, F. (2018), "Social robots for education: A review", International Journal of Social Robotics, Vol. 10, No. 3, Р. 299–315. DOI: https://doi.org/10.1126/scirobotics.aat5954

Pagliarini, L., Lund, H. H. (2017), "The future of Robotics Technology", Journal of Robotics, Networking and Artificial Life, Vol. 3, No. 4, Р. 270–273. DOI: 10.2991/jrnal.2017.3.4.12

Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. A., Dong, J. J. (2013), "A Review of the Applicability of Robots in Education", Journal of Technology in Education and Learning, Vol. 1, No. 1, Р. 1–7. DOI: 10.2316/Journal.209.2013.1.209-0015

Singh, P., Dulebenets, M. A., Pasha, J., Gonzalez, E. D. R. S., Lau, Y.-y., Kampmann, R. (2021), "Deployment of Autonomous Trains in Rail Transportation: Current Trends and Existing Challenges", IEEE Access, Vol. 9, Р. 1550–1562. DOI: 10.1109/ACCESS.2021.3091550

Thrun, S., Burgard, W., Fox, D. (2005), "Probabilistic Robotics, MIT Press, Chapter 5: Robot Motion", Р. 91–119, available at: https://docs.ufpr.br/~danielsantos/ProbabilisticRobotics.pdf (last accessed 27.11.2024).

Piegat A (2001), Fuzzy modelling and control. Physica-Verlag, 728 p.

Kargin, A., Petrenko, T. (2022), "Feeling Artificial Intelligence for AI-Enabled Autonomous Systems. In Proc". IEEE Global Conf. on Artificial Intelligence and Internet of Things (GCAIoT). Alamein New City, Egypt, Dec. 18, 2022, Р. 88–93. DOI: 10.1109/GCAIoT57150.2022.10019235

Beetz, M., Jain, D., Mösenlechner, L., Tenorth, M. (2010), "Towards performing everyday manipulation activities", Robotics and Autonomous Systems. Р. 1–10. DOI: 10.1016/j.robot.2010.05.007

Arkin, R. (1998), "Behavior-Based Robotics", Automatica. Р. 69–79. DOI: 10.1016/S0005-1098(02)00169-3

Brooks, R. (1986), "A Robust Layered Control System for a Mobile Robot", IEEE Journal on Robotics and Automation, Vol. 2, No. 1, Р. 14–23. DOI: 10.1109/JRA.1986.1087032

Simmons, R. (1989), "Experience with a Task Control Architecture for Mobile Robots", Р. 4–8, available at: https://www.academia.edu/51291699/Experience_with_a_Task_Control_Architecture_for_Mobile_Robots (last accessed 27.11.2024).

Guizzo, E. (2024), "Types of Robots. Categories frequently used to classify robots", Robotsguide.com, available at: https://robotsguide.com/learn/types-of-robots (last accessed 15.06.2024).

Open X-Embodiment Collaboration (2024), "Open X-Embodiment: Robotic Learning Datasets and RT-X Models", available at: https://robotics-transformer-x.github.io/ (last accessed 15.06.2024).

Levine, S., Hausman, K. (2024), "The global project to make a general robotic brain", IEEE Spectrum, Jan. 2024, available at: https://spectrum.ieee.org/global-robotic-brain (last accessed 15.06.2024).

Kargin, A., Petrenko, T. (2023), "Knowledge Distillation for Autonomous Intelligent Unmanned System", in Pedrycz, W., Chen, S.-M. (Eds.), Advancements in Knowledge Distillation: Towards New Horizons of Intelligent Systems, Studies in Computational Intelligence, Vol. 1100, Springer International Publishing, Р. 193–230. DOI: 10.1007/978-3-031-32095-8

Kargin,. A., Petrenko, T. (2020), "Spatio-Temporal Data Interpretation Based on Perceptional Model". In Mashtalir V, Ruban I, Levashenko V (eds) Advances in Spatio-Temporal Segmentation of Visual Data. Studies in Computational Intelligence, Vol. 876. Springer, Cham, P. 101-159. DOI: 10.1007/978-3-030-35480-0_3

Hengji, Wang, Joshua, Swore, Shashank, Sharma, and Adrienne, L. Fairhall (2023), "A complete biomechanical model of Hydra contractile behaviors, from neural drive to muscle to movement". PNAS, March 10, 2023, 120 (11). DOI: 10.1073/pnas.2210439120

Published

2025-03-31

How to Cite

Kargin, A., & Kuzmenko, R. (2025). Probabilistic-fuzzy actuator model in the soft control circuit of an autonomous unmanned system. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1(31), 61–72. https://doi.org/10.30837/2522-9818.2025.1.061