Research the efficiency of image processing algorithms in zero watermark schemes
DOI:
https://doi.org/10.30837/2522-9818.2025.1.102Keywords:
image; zero watermark; algorithm; authenticationAbstract
Subject matter: image transformation algorithms used in zero-watermarking techniques for development authentication algorithm. Objectives: identify effective image transformation algorithms for use in zero-watermarking schemes. The study addresses the following tasks: examining the range of existing image transformation algorithms, formulating informal requirements for image transformation algorithms to be used in zero-watermarking-based authentication schemes, and making assumptions about the feasibility of using each analyzed image transformation algorithm. To achieve these objectives, the following methods are employed: modeling – software implementation of each studied algorithm, empirical methods – application of algorithms and observation of transformation results, mathematical methods – calculation of normal correlation metrics and peak signal-to-noise ratio (PSNR). Results: an analysis was conducted on a set of algorithms that could potentially be used in zero-watermarking schemes for authentication purposes. A methodology was developed to evaluate algorithms while considering image dimensionality reduction due to compression. Additionally, requirements for image processing algorithms in zero-watermarking-based authentication were established. Conclusions: the study identified the most effective image transformation algorithms for use in zero-watermarking authentication schemes: DWT (Discrete Wavelet Transform), SVD (Singular Value Decomposition), DCT (Discrete Cosine Transform), and K-means clustering. For low-resolution images, DCT is a viable option. The most effective algorithm combinations are DWT + DCT and DWT + K-means, as these combinations ensure optimal robustness to noise while maintaining sensitivity to distinguish similar images. Future authentication schemes based on these algorithms may be useful (in combination with IoT devices), including for user authentication in enterprises and organizations.
References
Список літератури
Tang Z., Dai Y., Zhang X. Perceptual Hashing for Color Images Using Invariant Moments. Applied Mathematics & Information Sciences. 2012. Vol. 6, No. 2S. P. 643S–650S. URL: https://surl.li/tvhbjz
Поддубний В. О., Сєвєрінов О. В., Гвоздьов Р. Ю. Використання нульових водяних знаків для підтвердження авторства зображень та багатофакторної автентифікації. Радіотехніка. 2024. Вип. 218. С. 35–43. DOI: https://doi.org/10.30837/rt.2024.3.218.02
Jalil Z., Mirza A. M., Sabir M. Content based Zero-Watermarking Algorithm for Authentication of Text Documents. International Journal of Computer Science and Information Security. 2010. Vol. 7, No. 2. DOI:10.48550/arXiv.1003.1796
Rani A., Bhullar A. K., Dangwal D., Kumar S. A Zero-Watermarking Scheme using Discrete Wavelet Transform. Procedia Computer Science. 2015. Vol. 70. P. 603–609. ISSN 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.10.046
Zhou Y., Jin W. A novel image zero-watermarking scheme based on DWT-SVD. Proceedings of the 2011 International Conference on Multimedia Technology. Hangzhou, China, 2011. P. 2873–2876. DOI: 10.1109/ICMT.2011.6002066
Liu X., Lou J., Wang Y., Du J., Zou B., Chen Y. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images, Proceedings of the SPIE, 2018, Volume 10579. DOI: https://doi.org/10.1117/12.2292852
Xiang R., Liu G., Li K., Liu J., Zhang Z., Dang M. Zero-watermark scheme for medical image protection based on style feature and ResNet. Biomedical Signal Processing and Control. 2023. Vol. 86, Part A. Article 105127. ISSN 1746-8094. DOI: https://doi.org/10.1016/j.bspc.2023.105127
Li F., Wang Z. A Zero-Watermarking Algorithm Based on Vortex-like Texture Feature Descriptors. Electronics. 2024. Vol. 13. Article 3906. DOI: https://doi.org/10.3390/electronics13193906
Yuan Z., Yang B., Zhao W., Liu Y. A Robust Zero Watermarking Algorithm based on NSCT DCT. Advances in Engineering Research. 2017. Vol. 61. DOI:10.1155/2021/4944797
Rajkumar M., Babu G. Zero Watermarking and Data Authentication. Big Data Innovation for Sustainable Cognitive Computing. May 2024. DOI: https://doi.org/10.1007/978-3-031-54696-9_6
Roček A., Javorník M., Slavíček K. et al. Zero Watermarking: Critical Analysis of Its Role in Current Medical Imaging. Journal of Digital Imaging. 2021. Vol. 34. P. 204–211. DOI:10.1007/s10278-020-00396-0
Poddubnyi V., Gvozdov R., Sievierinov O., Sukhoteplyi V., Bulba S., Lysytsia D. A Zero-Watermarking Algorithm for Use in RGB and Monochrome Images. 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek). P. 1–5. DOI: https://doi.org/10.1109/KhPIWeek61434.2024.10878081
Nadipally M. Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization. Intelligent Data-Centric Systems: Intelligent Data Analysis for Biomedical Applications. Academic Press, 2019. Ch. 2. P. 21–47. DOI:10.1016/B978-0-12-815553-0.00002-1
The USC-SIPI Image Database. URL: https://sipi.usc.edu/database/
Nasa Image and Video Library. URL: https://images.nasa.gov/
Accord Framework. URL: http://accord-framework.net
Emgu CV. Main Page. URL: https://www.emgu.com/
Math.NET Numerics. URL: https://numerics.mathdotnet.com/
References
Tang, Z., Dai, Y. & Zhang, X. (2012), "Perceptual hashing for color images using invariant moments", Applied Mathematics & Information Sciences, 6(2S), Р. 643S-650S. available at: https://surl.li/tvhbjz
Poddubnyi, V.O., Sievierinov, O.V., Gvozdov, R.Y. (2024), "Using zero-based watermarks to verify image authorship and multi-factor authentication" ["Vykorystannia nulovykh vodyanykh znakiv dlia pidtverdzhennia avtorstva zobrazhen ta bahatofaktornoi autentifikatsii"], Radiotekhnika, (218), Р. 35-43. DOI: https://doi.org/10.30837/rt.2024.3.218.02
Jalil, Z., Mirza, A. M., Sabir, M. (2010), "Content based Zero-Watermarking Algorithm for Authentication of Text Documents, International Journal of Computer Science and Information Security", International Journal of Computer Science and Information Security, Vol. 7, No. 2. DOI:10.48550/arXiv.1003.1796
Rani, A., Bhullar, A.K., Dangwal, D. Kumar, S. (2015), "A zero-watermarking scheme using discrete wavelet transform", Procedia Computer Science, 70, Р. 603-609. DOI: https://doi.org/10.1016/j.procs.2015.10.046
Zhou, Y. Jin, W. (2011), "A novel image zero-watermarking scheme based on DWT-SVD", 2011 International Conference on Multimedia Technology, Hangzhou, China, Р. 2873-2876. DOI: https://doi.org/10.1109/ICMT.2011.6002066
Liu, X., Lou, J., Wang, Y., Du, J., Zou, B. Chen, Y. (2018), "Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images". Proceedings of the SPIE, Volume 10579, DOI: https://doi.org/10.1117/12.2292852
Xiang, R., Liu, G., Li, K., Liu, J., Zhang, Z. Dang, M. (2023), "Zero-watermark scheme for medical image protection based on style feature and ResNet", Biomedical Signal Processing and Control, 86(A), 105127. DOI: https://doi.org/10.1016/j.bspc.2023.105127
Li, F. Wang, Z. (2024), "A zero-watermarking algorithm based on vortex-like texture feature descriptors", Electronics, 13, 3906. DOI: https://doi.org/10.3390/electronics13193906
Yuan, Z., Yang, B., Zhao, W. Liu, Y. (2017), "A robust zero watermarking algorithm based on NSCT DCT", International Conference on Mechanical, Electronic, Advances in Engineering Research, 61. DOI:10.1155/2021/4944797
Rajku, M., Babu, G. (2024), Zero Watermarking and Data Authentication", Big Data Innovation for Sustainable Cognitive Computing, May, DOI: https://doi.org/10.1007/978-3-031-54696-9_6
Roček, A., Javorník, M., Slavíček, K. (2021), "Zero watermarking: Critical analysis of its role in current medical imaging", Journal of Digital Imaging, 34, Р. 204–211. DOI:10.1007/s10278-020-00396-0
Poddubnyi, V., Gvozdov, R., Sievierinov, O., Sukhoteplyi, V., Bulba, S. Lysytsia, D. (2024), "A zero-watermarking algorithm for use in RGB and monochrome images", 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek), Р. 1-5. DOI: https://doi.org/10.1109/KhPIWeek61434.2024.10878081
Nadipally, M. (2019), "Optimization of methods for image-texture segmentation using ant colony optimization", Intelligent Data-Centric Systems: Intelligent Data Analysis for Biomedical Applications, Academic Press, Р. 21-47. DOI:10.1016/B978-0-12-815553-0.00002-1
"The USC-SIPI Image Database". available at: https://sipi.usc.edu/database/
"NASA Image and Video Library". available at: https://images.nasa.gov/
"Accord Framework". available at: http://accord-framework.net
"Emgu CV. Main Page". available at: https://www.emgu.com/
"Math.NET Numerics". available at: https://numerics.mathdotnet.com/
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












