Research the efficiency of image processing algorithms in zero watermark schemes

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.1.102

Keywords:

image; zero watermark; algorithm; authentication

Abstract

Subject matter: image transformation algorithms used in zero-watermarking techniques for development authentication algorithm. Objectives: identify effective image transformation algorithms for use in zero-watermarking schemes. The study addresses the following tasks: examining the range of existing image transformation algorithms, formulating informal requirements for image transformation algorithms to be used in zero-watermarking-based authentication schemes, and making assumptions about the feasibility of using each analyzed image transformation algorithm. To achieve these objectives, the following methods are employed: modeling – software implementation of each studied algorithm, empirical methods – application of algorithms and observation of transformation results, mathematical methods – calculation of normal correlation metrics and peak signal-to-noise ratio (PSNR). Results: an analysis was conducted on a set of algorithms that could potentially be used in zero-watermarking schemes for authentication purposes. A methodology was developed to evaluate algorithms while considering image dimensionality reduction due to compression. Additionally, requirements for image processing algorithms in zero-watermarking-based authentication were established. Conclusions: the study identified the most effective image transformation algorithms for use in zero-watermarking authentication schemes: DWT (Discrete Wavelet Transform), SVD (Singular Value Decomposition), DCT (Discrete Cosine Transform), and K-means clustering. For low-resolution images, DCT is a viable option. The most effective algorithm combinations are DWT + DCT and DWT + K-means, as these combinations ensure optimal robustness to noise while maintaining sensitivity to distinguish similar images. Future authentication schemes based on these algorithms may be useful (in combination with IoT devices), including for user authentication in enterprises and organizations.

Author Biographies

Vadym Poddubnyi, Kharkiv National University of Radio Electronics

PhD Student at the Department of Information Technology Security

Oleksandr Sievierinov, Kharkiv National University of Radio Electronics

PhD (Engineering Sciences), Associate Professor at the Department of Information Technology Security

Dmytro Nepokrytov, Air Forces of Ivan Kozhedub Kharkiv National Air Force University

PhD (Engineering Sciences),  Department of Radioelectronic Systems of Control Points of Air Forces, Associate Professor at the Department of Radioelectronic Systems of Control Points

References

Список літератури

Tang Z., Dai Y., Zhang X. Perceptual Hashing for Color Images Using Invariant Moments. Applied Mathematics & Information Sciences. 2012. Vol. 6, No. 2S. P. 643S–650S. URL: https://surl.li/tvhbjz

Поддубний В. О., Сєвєрінов О. В., Гвоздьов Р. Ю. Використання нульових водяних знаків для підтвердження авторства зображень та багатофакторної автентифікації. Радіотехніка. 2024. Вип. 218. С. 35–43. DOI: https://doi.org/10.30837/rt.2024.3.218.02

Jalil Z., Mirza A. M., Sabir M. Content based Zero-Watermarking Algorithm for Authentication of Text Documents. International Journal of Computer Science and Information Security. 2010. Vol. 7, No. 2. DOI:10.48550/arXiv.1003.1796

Rani A., Bhullar A. K., Dangwal D., Kumar S. A Zero-Watermarking Scheme using Discrete Wavelet Transform. Procedia Computer Science. 2015. Vol. 70. P. 603–609. ISSN 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.10.046

Zhou Y., Jin W. A novel image zero-watermarking scheme based on DWT-SVD. Proceedings of the 2011 International Conference on Multimedia Technology. Hangzhou, China, 2011. P. 2873–2876. DOI: 10.1109/ICMT.2011.6002066

Liu X., Lou J., Wang Y., Du J., Zou B., Chen Y. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images, Proceedings of the SPIE, 2018, Volume 10579. DOI: https://doi.org/10.1117/12.2292852

Xiang R., Liu G., Li K., Liu J., Zhang Z., Dang M. Zero-watermark scheme for medical image protection based on style feature and ResNet. Biomedical Signal Processing and Control. 2023. Vol. 86, Part A. Article 105127. ISSN 1746-8094. DOI: https://doi.org/10.1016/j.bspc.2023.105127

Li F., Wang Z. A Zero-Watermarking Algorithm Based on Vortex-like Texture Feature Descriptors. Electronics. 2024. Vol. 13. Article 3906. DOI: https://doi.org/10.3390/electronics13193906

Yuan Z., Yang B., Zhao W., Liu Y. A Robust Zero Watermarking Algorithm based on NSCT DCT. Advances in Engineering Research. 2017. Vol. 61. DOI:10.1155/2021/4944797

Rajkumar M., Babu G. Zero Watermarking and Data Authentication. Big Data Innovation for Sustainable Cognitive Computing. May 2024. DOI: https://doi.org/10.1007/978-3-031-54696-9_6

Roček A., Javorník M., Slavíček K. et al. Zero Watermarking: Critical Analysis of Its Role in Current Medical Imaging. Journal of Digital Imaging. 2021. Vol. 34. P. 204–211. DOI:10.1007/s10278-020-00396-0

Poddubnyi V., Gvozdov R., Sievierinov O., Sukhoteplyi V., Bulba S., Lysytsia D. A Zero-Watermarking Algorithm for Use in RGB and Monochrome Images. 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek). P. 1–5. DOI: https://doi.org/10.1109/KhPIWeek61434.2024.10878081

Nadipally M. Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization. Intelligent Data-Centric Systems: Intelligent Data Analysis for Biomedical Applications. Academic Press, 2019. Ch. 2. P. 21–47. DOI:10.1016/B978-0-12-815553-0.00002-1

The USC-SIPI Image Database. URL: https://sipi.usc.edu/database/

Nasa Image and Video Library. URL: https://images.nasa.gov/

Accord Framework. URL: http://accord-framework.net

Emgu CV. Main Page. URL: https://www.emgu.com/

Math.NET Numerics. URL: https://numerics.mathdotnet.com/

References

Tang, Z., Dai, Y. & Zhang, X. (2012), "Perceptual hashing for color images using invariant moments", Applied Mathematics & Information Sciences, 6(2S), Р. 643S-650S. available at: https://surl.li/tvhbjz

Poddubnyi, V.O., Sievierinov, O.V., Gvozdov, R.Y. (2024), "Using zero-based watermarks to verify image authorship and multi-factor authentication" ["Vykorystannia nulovykh vodyanykh znakiv dlia pidtverdzhennia avtorstva zobrazhen ta bahatofaktornoi autentifikatsii"], Radiotekhnika, (218), Р. 35-43. DOI: https://doi.org/10.30837/rt.2024.3.218.02

Jalil, Z., Mirza, A. M., Sabir, M. (2010), "Content based Zero-Watermarking Algorithm for Authentication of Text Documents, International Journal of Computer Science and Information Security", International Journal of Computer Science and Information Security, Vol. 7, No. 2. DOI:10.48550/arXiv.1003.1796

Rani, A., Bhullar, A.K., Dangwal, D. Kumar, S. (2015), "A zero-watermarking scheme using discrete wavelet transform", Procedia Computer Science, 70, Р. 603-609. DOI: https://doi.org/10.1016/j.procs.2015.10.046

Zhou, Y. Jin, W. (2011), "A novel image zero-watermarking scheme based on DWT-SVD", 2011 International Conference on Multimedia Technology, Hangzhou, China, Р. 2873-2876. DOI: https://doi.org/10.1109/ICMT.2011.6002066

Liu, X., Lou, J., Wang, Y., Du, J., Zou, B. Chen, Y. (2018), "Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images". Proceedings of the SPIE, Volume 10579, DOI: https://doi.org/10.1117/12.2292852

Xiang, R., Liu, G., Li, K., Liu, J., Zhang, Z. Dang, M. (2023), "Zero-watermark scheme for medical image protection based on style feature and ResNet", Biomedical Signal Processing and Control, 86(A), 105127. DOI: https://doi.org/10.1016/j.bspc.2023.105127

Li, F. Wang, Z. (2024), "A zero-watermarking algorithm based on vortex-like texture feature descriptors", Electronics, 13, 3906. DOI: https://doi.org/10.3390/electronics13193906

Yuan, Z., Yang, B., Zhao, W. Liu, Y. (2017), "A robust zero watermarking algorithm based on NSCT DCT", International Conference on Mechanical, Electronic, Advances in Engineering Research, 61. DOI:10.1155/2021/4944797

Rajku, M., Babu, G. (2024), Zero Watermarking and Data Authentication", Big Data Innovation for Sustainable Cognitive Computing, May, DOI: https://doi.org/10.1007/978-3-031-54696-9_6

Roček, A., Javorník, M., Slavíček, K. (2021), "Zero watermarking: Critical analysis of its role in current medical imaging", Journal of Digital Imaging, 34, Р. 204–211. DOI:10.1007/s10278-020-00396-0

Poddubnyi, V., Gvozdov, R., Sievierinov, O., Sukhoteplyi, V., Bulba, S. Lysytsia, D. (2024), "A zero-watermarking algorithm for use in RGB and monochrome images", 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek), Р. 1-5. DOI: https://doi.org/10.1109/KhPIWeek61434.2024.10878081

Nadipally, M. (2019), "Optimization of methods for image-texture segmentation using ant colony optimization", Intelligent Data-Centric Systems: Intelligent Data Analysis for Biomedical Applications, Academic Press, Р. 21-47. DOI:10.1016/B978-0-12-815553-0.00002-1

"The USC-SIPI Image Database". available at: https://sipi.usc.edu/database/

"NASA Image and Video Library". available at: https://images.nasa.gov/

"Accord Framework". available at: http://accord-framework.net

"Emgu CV. Main Page". available at: https://www.emgu.com/

"Math.NET Numerics". available at: https://numerics.mathdotnet.com/

Published

2025-03-31

How to Cite

Poddubnyi, V., Sievierinov, O., & Nepokrytov, D. (2025). Research the efficiency of image processing algorithms in zero watermark schemes. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (1(31), 102–114. https://doi.org/10.30837/2522-9818.2025.1.102