Formation of a smart city model based on the dynamics of changes in urban building
DOI:
https://doi.org/10.30837/2522-9818.2025.2.016Keywords:
set-theoretic model; remote sensing data; deep learning, updating data; directions of city intellectualization.Abstract
The purpose of the article is improving the validity of assessments for the formation of decisions on the intellectualization of the city based on analysis of urban building. Objectives. The trends in the development of Smart City concepts were analyzed; requirements for Smart Cities are analyzed and a set-theoretical model of a Smart City is proposed; the method of analyzing urban building using remote sensing data has been improved and the possibility of its use has been experimentally confirmed. The following methods used are – methods of system analysis, set theory, and deep learning. The following results were obtained. Creating a comfortable urban environment promotes economic growth, improves the quality of life and ensures sustainable development. This is possible through the implementation of the smart city concept. To unify the steps to create Smart Cities, a set-theoretic model of a Smart City is proposed. It generalizes the requirements of standards of the ISO 37100 series and combines a set of indicators, ensuring the implementation of certain areas of intellectualization. The choice of the intellectualization direction should be based on the study of urbanization problems. The complexity of this issue requires improvement of urban building analysis processes, for example, using remote sensing data. To obtain estimates suitable for further analysis and decision-making, a method for studying urban development based on remote sensing data is proposed. It is uses of deep learning in processing structured data using the Image Analyst ArcGIS Pro 3.4. A scheme of the algorithm for obtaining a Deep Learning model for decrypting urban building objects has been developed, and its software implementation has been proposed. The study of the capabilities of the developed method was carried out when solving the problems of updating information about the urban development of Kyiv. The resulting Deep Learning model recognizes urban building objects well and has good adaptability to objects other than the training sample. Conclusions: The choice of the direction of intellectualization should be based on a thorough study of the situation that has arisen as a result of the urbanization. An experimental analysis of the dynamics of changes in the urban development of the Kyiv district for the period 2005 – 2021 showed: an increase in the number of residential (by 5.4%) and commercial development (by 11%), neglect of the development of social infrastructure, non-development of transport infrastructure, ignoring issues of landscaping the territory of the district, etc. The results obtained can be useful in forming priority ways of introducing intelligent solutions into the everyday life of city residents.
References
Список літератури
Tricomi G., CV POp-CoRN: The (smart) city-vehicle participatory-opportunistic cooperative route navigation system / G. Tricomi, C. Scaffidi, A. Puliafito, S. Distefano. Ad Hoc Networks. 2024. Article 103604. DOI: https://doi.org/10.1016/j.adhoc.2024.103604
Teng Q., Bai X., Apuke O. D. Modelling the factors that affect the intention to adopt emerging digital technologies for a sustainable smart world city. Technology in Society. 2024. Vol. 78. Article 102603. DOI: https://doi.org/10.1016/j.techsoc.2024.102603
Yang R., Zhen F. Smart city development Models: A cross-cultural regional analysis from theory to practice. Research in Globalization. 2024. Vol. 8. Article 100221. DOI: https://doi.org/10.1016/j.resglo.2024.100221
Чичкало-Кондрацька І. Б., Буряк А. А., Кондрацька Д. С. Особливості створення та перспективи розвитку Smart Cities у країнах світу. Ефективна економіка. 2020. № 8. DOI: https://doi.org/10.32702/2307-2105-2020.8.9
IMD Smart City Index 2024. URL: https://www.imd.org/wp-content/uploads/2024/04/20240412-SmartCityIndex-2024-Full-Report_4.pdf. (дата звернення 1.07.2024).
IMD World Competitiveness Booklet. URL: https://www.imd.org/wp-content/uploads/2023/06/WCY_Booklet_2023-FINAL.pdf. (дата звернення 1.07.2024).
Zhu J. How different can smart cities be? A typology of smart cities in China / J. Zhu et al. Cities. 2024. Vol. 149. Article 104992. DOI: https://doi.org/10.1016/j.cities.2024.104992
Okonta D. E., Vukovic V. Smart cities software applications for sustainability and resilience. Heliyon. 2024. Vol. 10, Issue 2. Article e32654. DOI: https://doi.org/10.1016/j.heliyon.2024.e32654
Liu Y., Wen X. Sustainability assessment of cities using multicriteria decision-making combined with deep learning methods Sustainable Cities and Society. 2024. Vol. 115. Article 105571. DOI: https://doi.org/10.1016/j.scs.2024.105571
Шпак О., Федорка П., Пригара М. Розумні міста та Інтернет речей: вплив розробок у сфері ІТ на розвиток міст і покращення якості життя. Сучасний стан наукових досліджень та технологій в промисловості. 2023. № 3 (25). С. 114 – 128. DOI: https://doi.org/10.30837/ITSSI.2023.25.114
Kim J. S., Feng Y. Understanding complex viewpoints in smart sustainable cities: The experience of Suzhou, China. Cities. 2024, Vol. 147, Article 104832. DOI: https://doi.org/10.1016/j.cities.2024.104832
Han M.J.N., Kim M. J. A systematic literature review of the smart city transformation process: The role and interaction of stakeholders and technology. Cities. 2024. Vol. 150. Article 105027. DOI: https://doi.org/10.1016/j.cities.2024.105027
Abdullah Kaiser Z. R. M. Smart Governance for Smart Cities and Nations: The Case of Smart Bangladesh. Journal of Economy and Technology. 2024, Article 003. DOI: https://doi.org/10.1016/j.ject.2024.07.003
Makkonen T., Inkinen T. Inclusive smart cities? Technology-driven urban development and disabilities. Cities. 2024. Vol. 154. Article 105334. DOI: https://doi.org/10.1016/j.cities.2024.105334
Ulya A. Major Dimensions of Smart City: A Systematic Literature Review / A. Ulya, T. D. Susanto, Y. S. Dharmawan, A. P. Subriadi. Procedia Computer Science. 2024. Vol. 234. Р. 996-1006. DOI: https://doi.org/10.1016/j.procs.2024.03.089
Florentin K. M., Onuki M., Yarime M. Facilitating citizen participation in Greenfield smart city development: The case of a human-centered approach in Kashiwanoha international campus town. Telematics and Informatics Reports. 2024. Vol. 15. Article 100154. DOI: https://doi.org/10.1016/j.teler.2024.100154
Trencher G. Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technological Forecasting and Social Change. 2019. Vol. 142. P. 117-128. DOI: https://doi.org/10.1016/j.techfore.2018.07.033
Даншина С. Ю., Андрєєв С. М. Дистанційні дані у процесі реставрації пам’яток архітектури. Управління розвитком складних систем. 2024. No. 59. С. 138-147. DOI: https://doi.org/10.32347/2412-9933.2024.59.138-147
ISO 37122:2019. Sustainable cities and communities – Indicators for smart cities. URL: https://www.iso.org/standard/69050.html. (дата звернення 5.07.2024).
Zheng Y. Wavelet Transform Cluster Analysis of UAV Images for Sustainable Development of Smart Regions Due to Inspecting Transport Infrastructure / Y. Zheng et al. Sustainability. 2025. Vol. 17(3), Article 927. DOI: https://doi.org/10.3390/su17030927
Дюжев С. Генеральне стратегічне містобудівне планування та проблеми планувального управління розселенням (частина друга: проблеми, перешкоди щодо їх розв’язання, актуальні завдання та технологічні вимоги до змісту містобудівної документації). Містобудування та територіальне планування. 2023. № 84. С. 64-131. DOI: https://doi.org/10.32347/2076-815x.2023.84.64-131
Danshyna S., Nechausov A. Andrieiev S. Information technology of transport infrastructure monitoring based on remote sensing data. Radio Electronics, Computer Science, Control. 2022. No. 4 (63). P. 86–97. DOI: https://doi.org/10.15588/1607-3274-2022-4-7
Zhou H. Identifying influencing factors and characterizing key issues in urban sustainable development capacity through machine learning / H. Zhou et al. Chinese Journal of Population, Resources and Environment. 2024. Vol. 22, issue 3. P. 291-304. DOI: https://doi.org/10.1016/j.cjpre.2024.09.008
Deep learning using the ArcGIS Image Analyst extension. URL: https://pro.arcgis.com/en/pro-app/3.3/help/analysis/image-analyst/deep-learning-in-arcgis-pro.htm
Shaoqing R. University of Science and Technology of China, Hefei, Anhui, ChinaFaster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks / Sh. Ren, Kaiming He, R. Girshick, J. Sun. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. Vol. 39, Issue 6. P. 1137-1149. DOI: https://doi.org/10.1109/TPAMI.2016.2577031
References
Tricomi, G., Scaffidi, C., Puliafito, A., Distefano, S. (2024), “CV POp-CoRN: The (smart) city-vehicle participatory-opportunistic cooperative route navigation system”, Ad Hoc Networks, Article 103604. DOI: https://doi.org/10.1016/j.adhoc.2024.103604
Teng, Q., Bai, X., Apuke, O. D. (2024), "Modelling the factors that affect the intention to adopt emerging digital technologies for a sustainable smart world city", Technology in Society, Vol. 78, Article 102603. DOI: https://doi.org/10.1016/j.techsoc.2024.102603
Yang, R., Zhen, F. (2024), "Smart city development Models: A cross-cultural regional analysis from theory to practice", Research in Globalization, Vol. 8, Article 100221. DOI: https://doi.org/10.1016/j.resglo.2024.100221
Chychkalo-Kondratska, I, Buriak, A, Kondratska, D. (2020), "Features of Creation and Prospects of Development of Smart Cities in the Countries of the World" ["Osoblyvosti stvorennia ta perspektyvy rozvytku Smart Cities u krainakh svitu"], Effective Economy, No. 8, DOI: https://doi.org/10.32702/2307-2105-2020.8.9
"IMD Smart City Index 2024". available at: https://www.imd.org/wp-content/uploads/2024/04/20240412-SmartCityIndex-2024-Full-Report_4.pdf. (last accessed 1.07.2024).
"IMD World Competitiveness Booklet". available at: https://www.imd.org/wp-content/uploads/2023/06/WCY_Booklet_2023-FINAL.pdf. (last accessed 1.07.2024).
Zhu, J., Gianoli, A., Noori, N., de Jong, M., Edelenbos, J. (2024), "How different can smart cities be? A typology of smart cities in China", Cities, Vol. 149, Article 104992. DOI: https://doi.org/10.1016/j.cities.2024.104992
Okonta, D. E., Vukovic, V. (2024), "Smart cities software applications for sustainability and resilience", Heliyon, Vol. 10, issue 2, Article e32654. DOI: https://doi.org/10.1016/j.heliyon.2024.e32654
Liu, Y., Wen, X. (2024), "Sustainability assessment of cities using multicriteria decision-making combined with deep learning methods", Sustainable Cities and Society, Vol. 115, Article 105571. DOI: https://doi.org/10.1016/j.scs.2024.105571
Shpak, О., Fedorka, Р., Prygara, M. (2023), "Smart cities and the internet of things: the impact of it developments on the development of cities and improving the quality of life" ["Rozumni mista ta Internet rechei: vplyv rozrobok u sferi IT na rozvytok mist i pokrashchennia yakosti zhyttia"], Innovative Technologies and Scientific Solutions for Industries, No. 3 (25), Р. 114 – 128. DOI: https://doi.org/10.30837/ITSSI.2023.25.114
Kim, J. S., Feng, Y. (2024), "Understanding complex viewpoints in smart sustainable cities: The experience of Suzhou, China", Cities, Vol. 147, Article 104832. DOI: https://doi.org/10.1016/j.cities.2024.104832
Han, M.J.N., Kim, M. J. (2024), "A systematic literature review of the smart city transformation process: The role and interaction of stakeholders and technology", Cities, Vol. 150, Article 105027. DOI: https://doi.org/10.1016/j.cities.2024.105027
Abdullah Kaiser, Z. R. M. (2024), "Smart Governance for Smart Cities and Nations: The Case of Smart Bangladesh", Journal of Economy and Technology, Article 003. DOI: https://doi.org/10.1016/j.ject.2024.07.003
Makkonen, T., Inkinen, T. (2024), "Inclusive smart cities? Technology-driven urban development and disabilities", Cities, Vol. 154, Article 105334. DOI: https://doi.org/10.1016/j.cities.2024.105334
Ulya, A., Susanto, T. D., Dharmawan, Y. S., Subriadi, A. P. (2024), "Major Dimensions of Smart City: A Systematic Literature Review", Procedia Computer Science, Vol. 234, Р. 996 – 1006. DOI: https://doi.org/10.1016/j.procs.2024.03.089
Florentin, K. M., Onuki, M., Yarime, M. (2024), "Facilitating citizen participation in Greenfield smart city development: The case of a human-centered approach in Kashiwanoha international campus town", Telematics and Informatics Reports, Vol. 15, Article 100154. DOI: https://doi.org/10.1016/j.teler.2024.100154
Trencher, G. (2019), "Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges", Technological Forecasting and Social Change, Vol. 142, Р. 117 – 128. DOI: https://doi.org/10.1016/j.techfore.2018.07.033
Danshyna, S., Andrieiev, S. (2024), "Remote data in the process of architectural monuments restoration", ["Dystantsiini dani u protsesi restavratsii pamiatok arkhitektury"], Management of Development of Complex Systems, No. 59. pp. 138 – 147. DOI: https://doi.org/10.32347/2412-9933.2024.59.138-147
"ISO 37122:2019. Sustainable cities and communities – Indicators for smart cities". available at: https://www.iso.org/standard/69050.html. (last accessed 5.07.2024).
Zheng, Y., Shcherbakova, G., Rusyn, B., Sachenko, A., Volkova, N., Kliushnikov, I., & Antoshchuk, S. (2025), "Wavelet Transform Cluster Analysis of UAV Images for Sustainable Development of Smart Regions Due to Inspecting Transport Infrastructure", Sustainability, Vol. 17(3), Article 927. DOI: https://doi.org/10.3390/su17030927
Dyuzhev, S. (2023), "General strategic city planning designing and problems of planning management for settling (the second part: problems, hindrances concerning their solution, actual targets and technological demands to the content of city planning documentations)" ["Heneralne stratehichne mistobudivne planuvannia ta problemy planuvalnoho upravlinnia rozselenniam (chastyna druha: problemy, pereshkody shchodo yikh rozviazannia, aktualni zavdannia ta tekhnolohichni vymohy do zmistu mistobudivnoi dokumentatsii) "], Urban Development and Spatial Planning, No. 84, Р. 64 – 131. DOI: https://doi.org/10.32347/2076-815x.2023.84.64-131
Danshyna, S., Nechausov, A. Andrieiev, S. (2022), "Information technology of transport infrastructure monitoring based on remote sensing data", Radio Electronics, Computer Science, Control, No. 4 (63). Р. 86 – 97. DOI: https://doi.org/10.15588/1607-3274-2022-4-7
Zhou, H., Gao, L., Xu, Z., Shi, L., Lv Q. (2024), "Identifying influencing factors and characterizing key issues in urban sustainable development capacity through machine learning", Chinese Journal of Population, Resources and Environment, Vol. 22, Issue 3, Р. 291 – 304. DOI: https://doi.org/10.1016/j.cjpre.2024.09.008.
"Deep learning using the ArcGIS Image Analyst extension". available at: https://pro.arcgis.com/en/pro-app/3.3/help/analysis/image-analyst/deep-learning-in-arcgis-pro.htm. (last accessed 15.01.2025).
Shaoqing, R, Kaiming, He., Girshick, R., Sun, J. (2017), "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, Issue 6, Р. 1137 – 1149. DOI: https://doi.org/10.1109/TPAMI.2016.2577031
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












