Modern approaches to deploying the infrastructure of mobile intelligent systems

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.2.033

Keywords:

mobile intelligent systems; UAVs; edge computing; Edge; cloud technologies; failure prediction; multichannel communication; adaptive algorithms.

Abstract

Subject matter: The infrastructure of mobile intelligent systems (MIS) for monitoring critical assets using groups of unmanned aerial vehicles (UAVs), integrating edge and cloud computing, load balancing methods, and cybersecurity mechanisms. Goal: To investigate the efficiency of automated resource management in MIS through adaptive scaling, heuristic optimization, and failure prediction methods to enhance system reliability and performance. Tasks To design an MIS architecture with hybrid distribution of computations between edge and cloud components; to evaluate the impact of resource balancing mechanisms under variable load conditions; to assess the effectiveness of multi-channel communication technologies in the event of primary link failure; and to implement cybersecurity methods to ensure uninterrupted system operation. Methods: Theoretical analysis of existing approaches, modeling and simulation to assess performance and reliability. The study involves the use of genetic algorithms, swarm intelligence, and artificial potential fields for UAV trajectory management. Results: Experimental evaluations conducted in Microsoft Azure and CoppeliaSim EDU environments confirmed the effectiveness of the proposed approaches. Average latency was reduced by 35%, energy consumption was optimized, and uninterrupted data transmission was ensured in 92% of connection failure scenarios. Reliability analysis showed the benefits of component redundancy and predictive failure detection, reducing the probability of critical faults by 22% and shortening recovery time by 42%. Conclusions: Automated resource management in MIS ensures operational stability and continuity for UAV groups even under dynamic operating conditions. Computational optimization and adaptive scaling enhance system performance, reduce transmission delays, and improve energy efficiency. The developed cybersecurity approaches ensure data protection and infrastructure resilience in the face of external threats and network attacks.

Author Biographies

Bohdan Kosarevskyi, National Aerospace University "Kharkiv Aviation Institute"

PhD Student, Department of Computer Systems, Networks and Cybersecurity

Artem Tetskyi, National Aerospace University "Kharkiv Aviation Institute"

PhD (Engineering Sciences), Associate Professor at the Department of Computer Systems, Networks and Cybersecurity

References

Список літератури

Журавська І. Гетерогенні комп’ютерні мережі критичного застосування: монографія. Миколаїв, 2019. 193 с. URL: https://dspace.chmnu.edu.ua

Zhao X., Wang L., Zhang Y., Han X., Deveci M., Parmar M. A review of convolutional neural networks in computer vision. Artificial Intelligence Review. 2024. Vol. 57. 99 р. DOI: 10.1007/s10462-024-10721-6

Бондар Д.В., Гурник А.В., Литовченко А.О., Хижняк В.В., Шевченко В.Л., Ядченко Д.М. Застосування безпілотних авіаційних систем у сфері цивільного захисту: монографія. За заг. ред. П.Б. Волянського. Київ: Інститут державного управління та наукових досліджень з цивільного захисту, 2022. 312 с. ISBN 978-617-8015-16-9

Комаров М.Ю. Метод та засоби захисту інформації від кібервпливів у комп’ютерних системах та мережах об’єктів критичної інфраструктури: дис. канд. техн. наук. Київ: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України, 2021. 200 с.

Loutfi S.I., Shayea I., Tureli U., El-Saleh A.A., Tashan W. An overview of mobility awareness with mobile edge computing over 6G network: Challenges and future research directions. Results in Engineering. 2024. Т. 23. DOI: 10.1016/j.rineng.2024.102601

Hoang T.V. Impact of Integrated Artificial Intelligence and Internet of Things Technologies on Smart City Transformation. Journal of Technical Education Science. Р. 64–73. 2024. DOI: 10.54644/jte.2024.1532

Rahmani A.M., Tanveer J., Gharehchopogh F.S., Rajabi S., Hosseinzadeh M. A novel offloading strategy for multi-user optimization in blockchain-enabled Mobile Edge Computing networks for improved Internet of Things performance. Computers and Electrical Engineering. 2024. Т. 119, Part A. DOI: 10.1016/j.compeleceng.2024.109514

Zuo Y., Guo J., Sheng B., Dai C., Xiao F., Jin S. Fluid antenna for mobile edge computing. IEEE Communications Letters. 2024. Vol. 28, Issue 7. P. 1728-1732. DOI: 10.1109/LCOMM.2024.3399407

Firoozi A.A., Firoozi A.A. Impact of integrating artificial intelligence and the internet of things in urban system management. Deep Science Publishing. P.180-191. 2024. DOI: 10.70593/978-93-49307-08-7_7

Guo S., Zhao C., Yang S., Liang Y., Wang Y., Han Q. Edge-Cloud Collaborative Real-Time Video Object Detection for Industrial Surveillance Systems. IEEE Intelligent Systems. 2025. DOI: 10.1109/MIS.2025.3539221

Selvam A. P., Al-Humairi S. N. S. Environmental impact evaluation using smart real-time weather monitoring systems: a systematic review. Innovative Infrastructure Solutions. 2025. Т. 10. №. 1. Р. 1-24.

Mardanshahi A., Sreekumar A., Yang X., Barman S.K., Chronopoulos D. Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies. Sensors. 2025. Т. 25, №5. 1424 р. DOI: 10.3390/s25051424

Погудіна О.К., Крицький Д.М., Биков А.М., Пластун Т.А., Пивовар М.В. Методологія формування інтелектуальної складової агентної системи рою безпілотних літальних апаратів: монографія. Харків, 2021. 220 с. URL: https://www.researchgate.net/publication/365797766.

Артюшин Л.М., Кононов О.А., Кир’янов А.Ю. Архітектура програмного забезпечення для керування групою безпілотних літальних апаратів. Збірник наукових праць Державного науково-дослідного інституту авіації. 2024. Вип. № 20 (27). DOI: 10.54858/dndia.2024-20-5

Pozdniakova A. Analysis of Smart City Architecture Models. Regional development problems. 2024. DOI: 10.32383/2523-4803/69-4_43

Yang T.; Shen X.S. Mission-Critical Search and Rescue Networking Based on Multi-Agent Cooperative Communication. Springer Singapore Pte. Limited: Singapore, 2020; Р. 55–76. DOI: 10.1007/978-981-15-4412-5_5

Gupta A., Gupta S.K. A survey on green unmanned aerial vehicles-based fog computing: Challenges and future perspective. Wiley. 2022. DOI: 10.1002/etl.4603

Mohsan S.A.H., Othman N.Q.H., Li Y., Alsharif M.H., Khan M.A. Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics. 2023. Vol. 16. P. 109–137. DOI: 10.1007/s11370-022-00452-4

Molokomme D. N., Onumanyi A. J., Abu-Mahfouz A. M. Edge Intelligence in Smart Grids: A Survey on Architectures, Offloading Models, Cyber Security Measures, and Challenges. Journal of Sensor and Actuator Networks. 2022. Vol. 11, No. 3. 47 р. DOI: 10.3390/jsan11030047

References

Zhuravska, I. (2019), "Heterogeneous Computer Networks for Critical Applications: A Monograph" ["Heterohennі kompyuternі merezhі krytychnoho zastosuvannya: monohrafiya"], Mykolaiv, 193 p., available at: https://dspace.chmnu.edu.ua

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., Parmar, M. (2024), "A review of convolutional neural networks in computer vision", Artificial Intelligence Review, Vol. 57, 99 р. DOI: 10.1007/s10462-024-10721-6

Bondar, D.V., Gurnik, A.V., Lytovchenko, A.O., Khizhnyak, V.V., Shevchenko, V.L., Yadchenko, D.M. (2022), "Application of Unmanned Aerial Systems in Civil Protection" ["Zastosuvannya bezpilotnykh aviatsiynykh system u sferi tsyvilʹnoho zakhystu"], edited by Volianskyi, P.B., Kyiv: Institute of Public Administration and Scientific Research in Civil Protection, 312 p., ISBN 978-617-8015-16-9

Komarov, M.Y. (2021), "Methods and Means of Protecting Information from Cyber Influence in Computer Systems and Networks of Critical Infrastructure Objects" ["Metody ta zasoby zakhystu informatsiyi vid kibervplyviv u kompyuternykh systemakh ta merezhakh ob'iektiv krytychnoi infrastruktury"], PhD thesis, Kyiv: Institute of Energy Modeling Problems, National Academy of Sciences of Ukraine, 200 p.

Loutfi, S.I., Shayea, I., Tureli, U., El-Saleh, A.A., Tashan, W. (2024), "An overview of mobility awareness with mobile edge computing over 6G network: Challenges and future research directions", Results in Engineering, Vol. 23, DOI: 10.1016/j.rineng.2024.102601

Hoang, T.V. (2024), "Impact of Integrated Artificial Intelligence and Internet of Things Technologies on Smart City Transformation", Journal of Technical Education Science, Р. 64–73. DOI: 10.54644/jte.2024.1532

Rahmani, A.M., Tanveer, J., Gharehchopogh, F.S., Rajabi, S., Hosseinzadeh, M. (2024), "A novel offloading strategy for multi-user optimization in blockchain-enabled Mobile Edge Computing networks for improved Internet of Things performance", Computers and Electrical Engineering, Vol. 119, Part A, DOI: 10.1016/j.compeleceng.2024.109514

Zuo, Y., Guo, J., Sheng, B., Dai, C., Xiao, F., Jin, S. (2024), "Fluid antenna for mobile edge computing", IEEE Communications Letters, Vol. 28, Issue 7, P. 1728-1732. DOI: 10.1109/LCOMM.2024.3399407

Firoozi, A.A., Firoozi, A.A. (2024), "Impact of integrating artificial intelligence and the Internet of Things in urban system management", Deep Science Publishing, P.180-191. DOI: 10.70593/978-93-49307-08-7_7

Guo, S., Zhao, C., Yang, S., Liang, Y., Wang, Y., Han, Q. (2025), "Edge-Cloud Collaborative Real-Time Video Object Detection for Industrial Surveillance Systems", IEEE Intelligent Systems. DOI: 10.1109/MIS.2025.3539221

Selvam, A.P., Al-Humairi, S.N.S. (2025), "Environmental impact evaluation using smart real-time weather monitoring systems: a systematic review", Innovative Infrastructure Solutions, Vol. 10, No. 1, P. 1-24.

Mardanshahi, A., Sreekumar, A., Yang, X., Barman, S.K., Chronopoulos, D. (2025), "Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies", Sensors, Vol. 25, No. 5, 1424 р. DOI: 10.3390/s25051424

Pogudina, O.K., Krytskyi, D.M., Bykov, A.M., Plastun, T.A., Pivovar, M.V. (2021), "Methodology for Forming the Intelligent Component of an Agent System of a UAV Swarm" ["Metodolohiya formuvannya intelektualʹnoyi skladovoyi ahentnoyi systemy royiv BPLA"], Kharkiv, 220 p., available at: https://www.researchgate.net/publication/365797766

Artyushin, L.M., Kononov, O.A., Kiryanov, A.Y. (2024), "Software Architecture for Group Control of Unmanned Aerial Vehicles", Collection of Scientific Papers of the State Research Institute of Aviation, Issue No. 20 (27). DOI: 10.54858/dndia.2024-20-5

Pozdnyakova, A.M. (2024), "Analysis of Smart City Architecture Models", Development of Productive Forces and Regional Economy, DOI: 10.32383/2523-4803/69-4_43

Yang, T., Shen, X.S. (2020), "Mission-Critical Search and Rescue Networking Based on Multi-Agent Cooperative Communication", Springer Singapore Pte. Limited: Singapore, P. 55–76. DOI: 10.1007/978-981-15-4412-5_5

Gupta, A., Gupta, S.K. (2022), "A survey on green unmanned aerial vehicles-based fog computing: Challenges and future perspective", Wiley, DOI: 10.1002/etl.4603

Mohsan, S.A.H., Othman, N.Q.H., Li, Y., Alsharif, M.H., Khan, M.A. (2023), "Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends", Intelligent Service Robotics, Vol. 16. P. 109–137. DOI: 10.1007/s11370-022-00452-4

Molokomme, D.N., Onumanyi, A.J., Abu-Mahfouz, A.M. (2022), "Edge Intelligence in Smart Grids: A Survey on Architectures, Offloading Models, Cyber Security Measures, and Challenges", Journal of Sensor and Actuator Networks, Vol. 11, No. 3. P. 47. DOI: 10.3390/jsan11030047

Published

2025-07-08

How to Cite

Kosarevskyi, B., & Tetskyi, A. (2025). Modern approaches to deploying the infrastructure of mobile intelligent systems. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (2(32), 33–48. https://doi.org/10.30837/2522-9818.2025.2.033