Розроблення об’єктно-орієнтованого алгоритму порівняння зображень для їх ефективного пошуку

Автор(и)

DOI:

https://doi.org/10.30837/2522-9818.2025.2.079

Ключові слова:

оброблення зображень; детекція об’єктів; глибоке навчання; дескриптор зображень; пошук зображень; великі дані; зберігання зображень; оптимізація пошуку; інформаційні технології.

Анотація

Об’єктом у статті є пошук зображень на основі змісту. Предмет дослідження – моделі та методи пошуку зображень на основі змісту (CBIR) і управління значними обсягами медіаконтенту у великих системах збереження зображень. Мета статті – розроблення алгоритму порівняння об’єктно-орієнтованих дескрипторів зображень, що передбачає використання передових моделей комп’ютерного зору для виявлення об’єктів і побудови ефективних методів порівняння й пошуку цих дескрипторів. Запропонований дескриптор і алгоритм порівняння мають на меті підвищити ефективність і точність процесів пошуку зображень і управління ними. Завдання: аналіз сучасних підходів і рішень для створення та порівняння дескрипторів зображень та їх використання в пошуку зображень на основі змісту (CBIR); розроблення метрик і алгоритмів порівняння дескрипторів зображень, що ефективно використовують інформацію про виявлені об’єкти, такі як їх типи, розміри та місце розташування для пошуку зображень у великих сховищах даних; проведення експериментів для оцінювання запропонованого алгоритму пошуку за зображенням і порівняння ефективності з наявними рішеннями. Методологія передбачає всебічний огляд передових методів створення дескрипторів зображень, зокрема: геш-дескрипторів, створених вручну дескрипторів, дескрипторів на основі глибокого навчання; аналіз використання наявних дескрипторів у системах CBIR, зважаючи на їх переваги й обмеження; аналіз найкращих алгоритмів пошуку за зображенням, зокрема з підходами, що використовують глибоке навчання; розроблення алгоритму порівняння об’єктних дескрипторів для завдань пошуку за тегами, зображенням тощо. Досягнуті результати: розроблено дескриптор зображення, оснований на об’єктах, виявлених за допомогою сучасних моделей машинного навчання; розроблено метрики й алгоритми порівняння запропонованих дескрипторів, що дають змогу використовувати їх для пошуку зображень на основі змісту у великих сховищах даних; проведено серію експериментів для оцінювання ефективності та якості пошуку у великих системах збереження зображень за допомогою запропонованого дескриптора та алгоритмів. Експерименти дали змогу порівняти їх ефективність з наявними методами, виявивши їх переваги й обмеження, а саме: більш швидке створення дескриптора, більш швидке порівняння дескрипторів, ніж гешовані, створені вручну, та дескриптори на основі глибокого навчання, ефективне фільтрування зображень у сховищі, вища якість та швидкість пошуку зображень, але ефективність дескриптора залежить від якості моделі та даних, що використовуються для виявлення об’єктів, оскільки зображення без виявлених об’єктів не з’являються внаслідок пошуку, що може обмежувати повноту пошуку. Висновки. Розроблений алгоритм порівняння об’єктно-орієнтованих дескрипторів зображень є ефективним інструментом для розв’язання низки завдань пошуку зображень на основі змісту. Досягнуті результати є задовільними, оскільки розроблений алгоритм пошуку зображень перевершує більшість аналогів за швидкістю та якістю пошуку. Перспективним напрямом цього дослідження є побудова системи пошуку зображень на основі змісту з використанням розробленого дескриптора та алгоритмів, посилене застосування паралельних і розподілених обчислень, доопрацювання під конкретні потреби, що дасть змогу використовувати його не тільки в контексті зображень загального призначення, а й для більш точних наукових напрямів.

Біографії авторів

Олександр Прокопенко, Харківський національний університет радіоелектроніки

аспірант кафедри Програмної інженерії

Сергій Смеляков, Харківський національний університет радіоелектроніки

доктор фізико-математичних наук, професор, професор кафедри Програмної інженерії

Посилання

Список літератури

Gonzalez R. C., Woods R. E. Digital Image Processing: monograph. 4th ed., New York, 2018. 1168 р. ISBN: 9780133356724

Yang W., Zhao H., Wang M. Design of Intelligent Search Engine Service Performance Evaluation System. 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). Singapore, 2020. Р. 86–91. DOI: https://doi.org/10.1109/ACIRS49895.2020.9162611

Amorós F., Payá L., Mayol-Cuevas W. Holistic Descriptors of Omnidirectional Color Images and Their Performance in Estimation of Position and Orientation. IEEE Access. 2020. Vol. 8. Р. 81822–81848. DOI: https://doi.org/10.1109/ACCESS.2020.2990996

Liu X., Cheung G., Lin C.-W. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images. IEEE Transactions on Image Processing. 2018. Vol. 27. № 7. H. 3222–3235. DOI: https://doi.org/10.1109/TIP.2018.2799704

Carvalho E. D., Filho A. O. C., Silva R. R. V. Breast Cancer Diagnosis from Histopathological Images Using Textural Features and CBIR. Artificial Intelligence in Medicine. 2020. Vol. 105. Р. 101845. DOI: https://doi.org/10.1016/j.artmed.2020.101845

Nakazato M., Huang T. S. 3D MARS: Immersive Virtual Reality for Content-Based Image Retrieval. IEEE International Conference on Multimedia and Expo (ICME). Tokyo, Japan, 2001. Р. 44–47. DOI: https://doi.org/10.1109/ICME.2001.1237651

Iqbal K., Odetayo M. O., James A. Content-Based Image Retrieval Approach for Biometric Security Using Colour, Texture and Shape Features Controlled by Fuzzy Heuristics. Journal of Computer and System Sciences. 2012. Vol. 78. № 4. Р. 1258–1277. DOI: https://doi.org/10.1016/j.jcss.2011.10.013

Popescu A., Grefenstette G. Social Media Driven Image Retrieval. Proceedings of the 1st ACM International Conference on Multimedia Retrieval (ICMR '11). New York, NY, USA, 2011. Р. 1–8. DOI: https://doi.org/10.1145/1991996.1992029

Liu Y., Mei T., Hua X.-S. CrowdReranking: Exploring Multiple Search Engines for Visual Search Reranking. Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '09). New York, NY, USA, 2009. Р. 500–507. DOI: https://doi.org/10.1145/1571941.1572027

Staszewski P., Jaworski M., Cao J. A New Approach to Descriptors Generation for Image Retrieval by Analyzing Activations of Deep Neural Network Layers. IEEE Transactions on Neural Networks and Learning Systems. 2022. Vol. 33. № 12. Р. 7913–7920. DOI: https://doi.org/10.1109/TNNLS.2021.3084633

Sahmoudi Y., El-Ogri O., El-Mekkaoui J. An Efficient Biomedical Color Image Retrieval System Based on Continuous Orthogonal Legendre Fourier Quaternion. 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS). Marrakech, Morocco, 2024. Р. 1–6. DOI: https://doi.org/10.1109/ICDS62089.2024.10756406

Bano M., Matta P., Chandel S. Content Based Image Retrieval: A Study of Approaches and Techniques. 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS). Tashkent, Uzbekistan, 2024. Р. 16–22. DOI: https://doi.org/10.1109/ICTACS62700.2024.10840489

Anand A., Saxena A., Singh K. Statistical Features Based Content Based Image Retrieval Using Machine Learning Classifiers. 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC). Gwalior, India, 2024. Р. 1102–1109. DOI: https://doi.org/10.1109/AIC61668.2024.10731120

Debin H., Yue Z., Shuai J. Application of Content-Based Retrieval Technology in Image Archive Management. 2024 Global Conference on Communications and Information Technologies (GCCIT). Bangalore, India, 2024. Р. 1–6. DOI: https://doi.org/10.1109/GCCIT63234.2024.10862277

Bai J., Ni B., Wang M. Deep Progressive Hashing for Image Retrieval. IEEE Transactions on Multimedia. 2019. Vol. 21. № 12. Р. 3178–3193. DOI: https://doi.org/10.1109/TMM.2019.2920601

Lowe D. G. Object Recognition from Local Scale-Invariant Features. Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999. Vol. 2. Р. 1150–1157. DOI: https://doi.org/10.1109/ICCV.1999.790410

Bay H., Ess A., Tuytelaars T. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding. 2008. Vol. 110. № 3. Р. 346–359. DOI: https://doi.org/10.1016/j.cviu.2007.09.014

Mikolajczyk K., Schmid C. A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005. Vol. 27. № 10. Р. 1615–1630. DOI: https://doi.org/10.1109/TPAMI.2005.188

Ke Y., Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA, 2004. Vol. 2. Р. II–II. DOI: https://doi.org/10.1109/CVPR.2004.1315206

Calonder M., Lepetit V., Strecha C. BRIEF: Binary Robust Independent Elementary Features. Computer Vision – ECCV 2010. Lecture Notes in Computer Science. 2010. Vol. 6314. Р. 778–792. DOI: https://doi.org/10.1007/978-3-642-15561-1_56

Rublee E., Rabaud V., Konolige K. ORB: An Efficient Alternative to SIFT or SURF. 2011 International Conference on Computer Vision. Barcelona, Spain, 2011. Р. 2564–2571. DOI: https://doi.org/10.1109/ICCV.2011.6126544

Leutenegger S., Chli M., Siegwart R. Y. BRISK: Binary Robust Invariant Scalable Keypoints. 2011 International Conference on Computer Vision. Barcelona, Spain, 2011. Р. 2548–2555. DOI: https://doi.org/10.1109/ICCV.2011.6126542

Alahi A., Ortiz R., Vandergheynst P. FREAK: Fast Retina Keypoint. 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012. Р. 510–517. DOI: https://doi.org/10.1109/CVPR.2012.6247715

Žižakić N., Pižurica A. Efficient Local Image Descriptors Learned with Autoencoders. IEEE Access. 2022. Vol.10. Р. 221–235. DOI: https://doi.org/10.1109/ACCESS.2021.3138168

Liu Y., Xu X., Li F. Image Feature Matching Based on Deep Learning. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). Chengdu, China, 2018. Р. 1752–1756. DOI: https://doi.org/10.1109/CompComm.2018.8780936

Radenović F., Tolias G., Chum O. Fine-Tuning CNN Image Retrieval with No Human Annotation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019. Vol. 41. № 7. Р. 1655–1668. DOI: https://doi.org/10.1109/TPAMI.2018.2846566

Song L., Lin J., Wang Z. J. An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis. IEEE Journal of Biomedical and Health Informatics. 2020. Vol. 24. № 10. Р. 2912–2921. DOI: https://doi.org/10.1109/JBHI.2020.2973614

Wang B., Zhang H., Zhu L. Multi-Level Adversarial Attention Cross-Modal Hashing. Signal Processing: Image Communication. 2023. Vol. 117. 117017 р. DOI: https://doi.org/10.1016/j.image.2023.117017

Gajjar V., Khandhediya Y., Gurnani A. Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy, 2017. Р. 2805–2809. DOI: https://doi.org/10.1109/ICCVW.2017.330

Adel M., Moussaoui A., Rasigni M. Statistical-Based Tracking Technique for Linear Structures Detection: Application to Vessel Segmentation in Medical Images. IEEE Signal Processing Letters. 2010. Vol. 17. № 6. Р. 555–558. DOI: https://doi.org/10.1109/LSP.2010.2046697

Truong X.-T., Yoong V. N., Ngo T.-D. RGB-D and Laser Data Fusion-Based Human Detection and Tracking for Socially Aware Robot Navigation Framework. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai, China, 2015. Р. 608–613. DOI: https://doi.org/10.1109/ROBIO.2015.7418835

Galvez R. L., Bandala A. A., Dadios E. P. Object Detection Using Convolutional Neural Networks. TENCON 2018 – 2018 IEEE Region 10 Conference. Jeju, Korea (South), 2018. Р. 2023–2027. DOI: https://doi.org/10.1109/TENCON.2018.8650517

Wehbe A., Hotiet H., Minetti I. Integrating YOLO for Advanced Content-Based Image Retrieval in Lung Cancer Imaging. 2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS). Nancy, France, 2024. Р. 1–4. DOI: https://doi.org/10.1109/ICECS61496.2024.10848862

Dosovitskiy A., Beyer L., Kolesnikov A. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale / А. Dosovitskiy та ін. International Conference on Learning Representations. 2021. DOI: https://doi.org/10.48550/arXiv.2010.11929

References

Gonzalez, R.C. and Woods, R.E. (2018), Digital Image Processing, 4th ed., Pearson/Prentice Hall, 1168 p. DOI/ISBN: 9780133356724

Yang, W., Zhao, H., Wang, M. and Ji, J. (2020), "Design of Intelligent Search Engine Service Performance Evaluation System", 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Singapore, Р. 86–91. DOI: https://doi.org/10.1109/ACIRS49895.2020.9162611

Amorós, F., Payá, L., Mayol-Cuevas, W., Jiménez, L.M. and Reinoso, O. (2020), "Holistic Descriptors of Omnidirectional Color Images and Their Performance in Estimation of Position and Orientation", IEEE Access, vol. 8, Р. 81822–81848. DOI: https://doi.org/10.1109/ACCESS.2020.2990996

Liu, X., Cheung, G., Lin, C.-W., Zhao, D. and Gao, W. (2018), "Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images", IEEE Transactions on Image Processing, Vol. 27, No. 7, Р. 3222–3235. DOI: https://doi.org/10.1109/TIP.2018.2799704

Carvalho, E.D., Filho, A.O.C., Silva, R.R.V., Araújo, F.H.D., Diniz, J.O.B., Silva, A.C., Paiva, A.C. and Gattass, M. (2020), "Breast Cancer Diagnosis from Histopathological Images Using Textural Features and CBIR", Artificial Intelligence in Medicine, Vol. 105, 101845 р. DOI: https://doi.org/10.1016/j.artmed.2020.101845

Nakazato, M. and Huang, T.S. (2001), "3D MARS: Immersive Virtual Reality for Content-Based Image Retrieval", IEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan, Р. 44–47. DOI: https://doi.org/10.1109/ICME.2001.1237651

Iqbal, K., Odetayo, M.O. and James, A. (2012), "Content-Based Image Retrieval Approach for Biometric Security Using Colour, Texture and Shape Features Controlled by Fuzzy Heuristics", Journal of Computer and System Sciences, Vol. 78, No. 4, Р. 1258–1277. DOI: https://doi.org/10.1016/j.jcss.2011.10.013

Popescu, A. and Grefenstette, G. (2011), "Social Media Driven Image Retrieval", Proceedings of the 1st ACM International Conference on Multimedia Retrieval (ICMR '11), New York, NY, USA, Article 33, Р. 1–8. DOI: https://doi.org/10.1145/1991996.1992029

Liu, Y., Mei, T. and Hua, X.-S. (2009), "CrowdReranking: Exploring Multiple Search Engines for Visual Search Reranking", Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '09), New York, NY, USA, Р. 500–507. DOI: https://doi.org/10.1145/1571941.1572027

Staszewski, P., Jaworski, M., Cao, J. and Rutkowski, L. (2022), "A New Approach to Descriptors Generation for Image Retrieval by Analyzing Activations of Deep Neural Network Layers", IEEE Transactions on Neural Networks and Learning Systems, vol. 33, No. 12, Р. 7913–7920. DOI: https://doi.org/10.1109/TNNLS.2021.3084633

Sahmoudi, Y., El-Ogri, O., El-Mekkaoui, J. and Hjouji, A. (2024), "An Efficient Biomedical Color Image Retrieval System Based on Continuous Orthogonal Legendre Fourier Quaternion", 2024 Sixth International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, Р. 1–6. DOI: https://doi.org/10.1109/ICDS62089.2024.10756406

Bano, M., Matta, P. and Chandel, S. (2024), "Content Based Image Retrieval: A Study of Approaches and Techniques", 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, Р. 16–22. DOI: https://doi.org/10.1109/ICTACS62700.2024.10840489

Anand, A., Saxena, A. and Singh, K. (2024), "Statistical Features Based Content Based Image Retrieval Using Machine Learning Classifiers", 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), Gwalior, India, Р. 1102–1109. DOI: https://doi.org/10.1109/AIC61668.2024.10731120

Debin, H., Yue, Z. and Shuai, J. (2024), "Application of Content-Based Retrieval Technology in Image Archive Management", 2024 Global Conference on Communications and Information Technologies (GCCIT), Bangalore, India, Р. 1–6. DOI: https://doi.org/10.1109/GCCIT63234.2024.10862277

Bai, J., Ni, B., Wang, M., Li, Z., Cheng, S. and Yang, X. (2019), "Deep Progressive Hashing for Image Retrieval", IEEE Transactions on Multimedia, Vol. 21, No. 12, Р. 3178–3193. DOI: https://doi.org/10.1109/TMM.2019.2920601

Lowe, D.G. (1999), "Object Recognition from Local Scale-Invariant Features", Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, Р. 1150–1157. DOI: https://doi.org/10.1109/ICCV.1999.790410

Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L. (2008), "Speeded-Up Robust Features (SURF)", Computer Vision and Image Understanding, vol. 110, No. 3, Р. 346–359. DOI: https://doi.org/10.1016/j.cviu.2007.09.014

Mikolajczyk, K. and Schmid, C. (2005), "A Performance Evaluation of Local Descriptors", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 10, Р. 1615–1630. DOI: https://doi.org/10.1109/TPAMI.2005.188

Ke, Y. and Sukthankar, R. (2004), "PCA-SIFT: A More Distinctive Representation for Local Image Descriptors", Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, Vol. 2, Р. II–II. DOI: https://doi.org/10.1109/CVPR.2004.1315206

Calonder, M., Lepetit, V., Strecha, C. and Fua, P. (2010), "BRIEF: Binary Robust Independent Elementary Features", Computer Vision – ECCV 2010. Lecture Notes in Computer Science, Vol. 6314, Р. 778–792. DOI: https://doi.org/10.1007/978-3-642-15561-1_56.

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011), "ORB: An Efficient Alternative to SIFT or SURF", 2011 International Conference on Computer Vision, Barcelona, Spain, Р. 2564–2571. DOI: https://doi.org/10.1109/ICCV.2011.6126544

Leutenegger, S., Chli, M. and Siegwart, R.Y. (2011), "BRISK: Binary Robust Invariant Scalable Keypoints", 2011 International Conference on Computer Vision, Barcelona, Spain, Р. 2548–2555. DOI: https://doi.org/10.1109/ICCV.2011.6126542

Alahi, A., Ortiz, R. and Vandergheynst, P. (2012), "FREAK: Fast Retina Keypoint", 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, Р. 510–517. DOI: https://doi.org/10.1109/CVPR.2012.6247715

Žižakić, N. and Pižurica, A. (2022), "Efficient Local Image Descriptors Learned with Autoencoders", IEEE Access, Vol. 10, Р. 221–235. DOI: https://doi.org/10.1109/ACCESS.2021.3138168

Liu, Y., Xu, X. and Li, F. (2018), "Image Feature Matching Based on Deep Learning", 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, Р. 1752–1756. DOI: https://doi.org/10.1109/CompComm.2018.8780936

Radenović, F., Tolias, G. and Chum, O. (2019), "Fine-Tuning CNN Image Retrieval with No Human Annotation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, No. 7, Р. 1655–1668. DOI: https://doi.org/10.1109/TPAMI.2018.2846566

Song, L., Lin, J., Wang, Z.J. and Wang, H. (2020), "An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis", IEEE Journal of Biomedical and Health Informatics, vol. 24, No. 10, Р. 2912–2921. DOI: https://doi.org/10.1109/JBHI.2020.2973614

Wang, B., Zhang, H., Zhu, L., Nie, L. and Liu, L. (2023), "Multi-Level Adversarial Attention Cross-Modal Hashing", Signal Processing: Image Communication, Vol. 117, 117017 р. DOI: https://doi.org/10.1016/j.image.2023.117017

Gajjar, V., Khandhediya, Y. and Gurnani, A. (2017), "Human Detection and Tracking for Video Surveillance: A Cognitive Science Approach", 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, Р. 2805–2809. DOI: https://doi.org/10.1109/ICCVW.2017.330

Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S. and Hamami, L. (2010), "Statistical-Based Tracking Technique for Linear Structures Detection: Application to Vessel Segmentation in Medical Images", IEEE Signal Processing Letters, Vol. 17, No. 6, Р. 555–558. DOI: https://doi.org/10.1109/LSP.2010.2046697

Truong, X.-T., Yoong, V.N. and Ngo, T.-D. (2015), "RGB-D and Laser Data Fusion-Based Human Detection and Tracking for Socially Aware Robot Navigation Framework", 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, Р. 608–613. DOI: https://doi.org/10.1109/ROBIO.2015.7418835

Galvez, R.L., Bandala, A.A., Dadios, E.P., Vicerra, R.R.P. and Maningo, J.M.Z. (2018), "Object Detection Using Convolutional Neural Networks", TENCON 2018 – 2018 IEEE Region 10 Conference, Jeju, Korea (South), Р. 2023–2027. DOI: https://doi.org/10.1109/TENCON.2018.8650517

Wehbe, A., Hotiet, H., Minetti, I. and Dellapiane, S. (2024), "Integrating YOLO for Advanced Content-Based Image Retrieval in Lung Cancer Imaging", 2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Nancy, France, Р. 1–4. DOI: https://doi.org/10.1109/ICECS61496.2024.10848862

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021), "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", International Conference on Learning Representations. DOI: https://doi.org/10.48550/arXiv.2010.11929

##submission.downloads##

Опубліковано

2025-07-08

Як цитувати

Прокопенко, О., & Смеляков, С. (2025). Розроблення об’єктно-орієнтованого алгоритму порівняння зображень для їх ефективного пошуку. СУЧАСНИЙ СТАН НАУКОВИХ ДОСЛІДЖЕНЬ ТА ТЕХНОЛОГІЙ В ПРОМИСЛОВОСТІ, (2(32), 79–101. https://doi.org/10.30837/2522-9818.2025.2.079