Models of forming logistics infrastructure for complex equipment recycling

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.3.019

Keywords:

recycling; secondary raw material processing; complex equipment; optimization model; infrastructure; logistics; two-stage system.

Abstract

Subject matter: models for the formation of the logistics infrastructure for complex equipment recycling, taking into account the two-stage processing system and the multicomponent composition of secondary raw materials. This study aims to develop a model for the formation of a logistics infrastructure for complex equipment recycling enterprises, the implementation of which will reduce transportation costs of secondary raw materials and infrastructure development expenses. Objectives: to investigate the current state and challenges of complex equipment recycling in Ukraine and abroad; to identify the characteristics of logistics processes in complex equipment recycling; to develop a model for the formation of recycling logistics infrastructure for complex equipment. The following methods were used during the research: mathematical modeling, location-allocation methods, and systems approach. Research results: the current state and challenges of complex equipment recycling have been analyzed, including infrastructure deficiencies, a low level of sorting, and uneven distribution of processing facilities; approaches to solving the facility location problem for recycling infrastructure have been reviewed; a two-level structure of the complex equipment recycling system has been developed, consisting of a network of local collection and sorting centers and processing enterprises; a mathematical model for forming the logistics infrastructure has been developed, considering production capacities, transportation costs and the multicomponent nature of resources. The conclusions state that the proposed optimization model for the logistics infrastructure of complex equipment recycling considers a two-stage processing sequence, from collection and sorting to final recycling. The model integrates economic, spatial, and technological factors, enabling the minimization of total transportation and infrastructure development costs. The application of the proposed model ensures effective planning of the recycling network, taking into account processing capacities, logistical routes, and the volume of different types of secondary raw materials.

Author Biographies

Maksym Kikot, National Aerospace University "Kharkiv Aviation Institute"

PhD Student at the Department of Computer
Science

Julia Malieieva, National Aerospace University "Kharkiv Aviation Institute"

PhD (Engineering Sciences),  Associate Professor at the Department of Computer Science and Information Technologies,

References

Список літератури

Lytvynenko O., Pavlov K., Mykhailova L. Waste management in Ukraine: organizational aspects. E3S Web of Conferences,

Vol. 280, No. 11004. 2021. DOI: 10.1051/e3sconf/202128011004

Шишкін Е., Гайко Ю., Черноносова Т. Шляхи рециклінгу будівельного сміття під час післявоєнної відбудови

зруйнованих міст. Містобудування та територіальне планування. 2024. Т. 85. С. 679–697. DOI:

https://doi.org/10.32347/2076-815x.2024.85.679-697

Кікоть М., Малєєва Ю. Моделі формування логістичної інфраструктури ресайклінгу складної техніки. Сучасний стан

наукових досліджень та технологій в промисловості. 2024. Т. 3, № 29. С. 15–28. DOI: https://doi.org/10.30837/2522-

2024.3.015

Wang H., Luo P., Wu Y. Research on the location decision-making method of emergency medical facilities based on WSR.

Sci Rep. 2023. Vol. 13, No. 18011. DOI: 10.1038/s41598-023-44209-0

Dissanayake I., Gunathilake M. A comprehensive survey of recent advances in facility location problems: Models, solution

methods, and applications. Journal of Sustainable Development of Transport and Logistics. 2024. Vol. 9, No. 2. P. 78-90.

DOI: 10.14254/jsdtl.2024.9-2.6

Kazakovtsev L., Rozhnov I., Shkaberina G. Self-Configuring (1 + 1)-Evolutionary Algorithm for the Continuous p-Median

Problem with Agglomerative Mutation. Algorithms. 2021. Vol. 14, No. 130. DOI: 10.3390/a14050130

Christopher R. Houck, Jeffrey A. Joines, Michael G. Kay. Comparison of Genetic Algorithms, Random Restart, and Two-Opt

Switching for Solving Large Location-Allocation Problems. Computers & Operations Research. 1996. Vol. 22, No 6. P. 587-

Zhang Y., Li J., Zhu Y., Xu H. An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public

Health Emergencies. International Journal of Environmental Research and Public Health. 2022. Vol. 19, No. 15(9752). DOI:

3390/ijerph19159752

Коряшкіна Л., Лубенець Д. Математичні моделі та методи мультиплексного розбиття і багатократного покриття

множин для задач розміщення-розподілу. Information Technology: Computer Science, Software Engineering and Cyber

Security. 2023. Т. 4. С. 20–31. DOI: https://doi.org/10.32782/IT/2023-4-3

Kiseleva A. I., Prytomanova O. M., Us S. A. Solving a Two-Stage Continuous-Discrete Problem of Optimal Partition–

Allocation with a Given Position of the Centers of Subsets. Cybern Syst Anal. 2020. Vol. 56. P. 1–12. DOI:

https://doi.org/10.1007/s10559-020-00215-y

Станіна О. Д. Моделі та методи розміщення двоетапного виробництва з неперервно розподіленим ресурсом: дис.

канд. техн. наук.: 01.05.02. Харків, 2019. 188 с.

Peidro, D., Martin, X.A., Panadero, J. Solving the uncapacitated facility location problem under uncertainty: a hybrid tabu

search with path-relinking simheuristic approach. Appl Intell. 2024. Vol. 54. P. 5617-5638. DOI: 10.1007/s10489-024-05441-

x

Szczepanski E., Jachimowski R., Izdebski M., Jacyna-Gołda I. Warehouse location problem in supply chain designing: a

simulation analysis. Archives of Transport. 2019. Vol. 50, no. 2. P. 101-110. DOI: 10.5604/01.3001.0013.5752

Коряшкіна Л. С., Дзюба С. В. Математичні моделі та методи зонування і розміщення об’єктів в системах екстреної

логістики. Системні технології. 2023. Т. 6, № 149. с. 107-122. DOI: https://doi.org/10.34185/1562-9945-6-149-2023-09

Катренко А. В., Антоняк Т. І. Розв’язання задач оптимального розміщення об’єктів методом імітаційного

моделювання. Вісник. Інформаційні системи та мережі. 2011. № 715. С. 150-162

Kostiuchenko L.V., Marchuk V.Ye., Harmash O.M. Development of recycling infrastructure in Ukraine. Electronic Scientific

Journal “Intellectualization of Logistics and Supply Chain Management”, 2021. Vol. 9. P. 44-52. DOI: 10.46783/smartscm/

-9-4

Із третього світу в перший. Реформа управління відходами в Україні. PWC. URL:

https://www.pwc.com/ua/en/survey/2020/waste-management.pdf (дата звернення: 15.04.2025).

Мартиненко А. Міф про безпечне сміттєспалювання. ГС Український Альянс Нуль Відходів. URL:

https://zwsociety.org/wp-content/uploads/mif-pro-bezpechne-smittyespalyuvannya.pdf (дата звернення: 22.04.2025).

Xiaoxia Cao, Paul N. Williams, Yuanhang Zhan, Scott A. Coughlin, John W. McGrath, Jason P. Chin, Yingjian Xu.

Municipal solid waste compost: Global trends and biogeochemical cycling. Soil & Environmental Health. Vol. 1 No. 4. 2023.

DOI: 10.1016/j.seh.2023.100038

Edo-Alcon N, Gallardo A, Colomer-Mendoza FJ, Lobo A. Efficiency of biological and mechanical-biological treatment plants

for MSW: The case of Spain. Heliyon. 2024. Vol. 10 no. 4. DOI: 10.1016/j.heliyon.2024.e26353

European Waste Treatment and Disposal Number of Enterprises by Country. ReportLinker. URL:

https://www.reportlinker.com/dataset/18a291d77e387c50e181b0c0e68e784476cc0ca5 (date of access: 07.05.2025).

Us S. A., Koriashkina L. S., Stanina O. D. An optimal two-stage allocation of material flows in a transport-logistic system

with continuously distributed resource. Radio Electronics, Computer Science, Control. (2019). Vol. 1. DOI: 10.15588/1607-

-2019-1-24

Kiseleva, E., Prytomanova, O., Hart, L. Solving a Two-stage Continuous-discrete Problem of Optimal Partitioning-Allocation

with Subsets Centers Placement. Open Computer Science. 2020. Vol. 10, No. 1. P. 124-136. DOI:

https://doi.org/10.1515/comp-2020-0142

References

Lytvynenko, O., Pavlov, K., Mykhailova, L. (2021), "Waste management in Ukraine: organizational aspects". E3S Web of

Conferences, 280, 11004 р. DOI: https://doi.org/10.1051/e3sconf/202128011004

Shyshkin, E., Haiko, Y, Chernonosova, T. (2024), "Approaches to Recycling Construction Waste during the Post-War

Reconstruction of Devastated Cities". Urban Planning and Territorial Development, 85, Р. 679–697. DOI:

https://doi.org/10.32347/2076-815x.2024.85.679-697

Kikot, M., Maleieva, Y. (2024), "Models of forming logistics infrastructure for complex equipment recycling". Current State

of Scientific Research and Technologies in Industry, 3(29), Р. 15–28. DOI: https://doi.org/10.30837/2522-9818.2024.3.015

Wang, H., Luo, P., Wu, Y. (2023), "DOI:Research on the location decision-making method of emergency medical facilities

based on WSR". Sci Rep., 13(18011). DOI: https://doi.org/10.1038/s41598-023-44209-0

Dissanayake, I., Gunathilake, M. (2024), "A comprehensive survey of recent advances in facility location problems: Models,

solution methods, and applications". Journal of Sustainable Development of Transport and Logistics, 9(2), Р. 78-90. DOI:

https://doi.org/10.14254/jsdtl.2024.9-2.6

Kazakovtsev, L., Rozhnov, I., Shkaberina, G. (2021), "Self-Configuring (1 + 1)-Evolutionary Algorithm for the Continuous p-

Median Problem with Agglomerative Mutation". Algorithms, 14(130). DOI: https://doi.org/10.3390/a14050130

Christopher R. Houck, Jeffrey A. Joines, Michael G. Kay. (1996), "Comparison of Genetic Algorithms, Random Restart, and

Two-Opt Switching for Solving Large Location-Allocation Problems". Computers & Operations Research, 22(6), Р. 587-596.

Zhang, Y., Li, J., Zhu, Y., Xu, H. (2022), "An Improved Genetic Algorithm for Location Allocation Problem with Grey

Theory in Public Health Emergencies". International Journal of Environmental Research and Public Health, 19(15(9752)).

DOI: https://doi.org/10.3390/ijerph19159752

Koriashkina, L, Lubenets, D. (2023), "Mathematical Models and Methods of Multiplex Partitioning and Multiple Coverage of

Sets for Location-Allocation Problems". Information Technology: Computer Science, Software Engineering and Cyber

Security, 4, Р. 20–31. DOI: https://doi.org/10.32782/IT/2023-4-3

Kiseleva, A. I., Prytomanova, O. M., Us, S. A. (2020), "Solving a Two-Stage Continuous-Discrete Problem of Optimal

Partition–Allocation with a Given Position of the Centers of Subsets". Cybern Syst Anal., 56, Р. 1–12. DOI:

https://doi.org/10.1007/s10559-020-00215-y

Stanina, O. D. (2019), "Models and Methods for Locating Two-Stage Production with Continuously Distributed Resource"

[Doctoral dissertation, National Technical University “Dnipro Polytechnic”]. Karazin University. 2019. 188 р.

Peidro, D., Martin, X.A., Panadero, J. (2024), "Solving the uncapacitated facility location problem under uncertainty: a hybrid tabu

search with path-relinking simheuristic approach". Appl Intell., 54, Р. 5617-5638. DOI: https://doi.org/10.1007/s10489-024-05441-x

Szczepanski, E., Jachimowski, R., Izdebski, M., Jacyna-Gołda, I. (2019), "Warehouse location problem in supply chain

designing: a simulation analysis". Archives of Transport, 50(2), Р. 101-110. DOI: https://doi.org/10.5604/01.3001.0013.5752

Koriashkina, L. S., Dziuba, S. V. (2024), "Mathematical Models and Methods for Facility Location and Territory Zoning in

Emergency Logistics Systems". System Technologies, 6(149), Р. 107-122. DOI: https://doi.org/10.34185/1562-9945-6-149-2023-09

Katrenko, A. V., Antonyak, T. I. (2011), "Solving Optimal Facility Location Problems by Simulation Modeling". Bulletin.

Information Systems and Networks, (715), Р. 150-162.

Kostiuchenko, L.V., Marchuk, V. Ye., Harmash, O. M. (2021), "Development of recycling infrastructure in Ukraine".

Electronic Scientific Journal “Intellectualization of Logistics and Supply Chain Management”, 9, Р. 44-52. DOI:

https://doi.org/10.46783/smart-scm/2021-9-4

PWC. (2020), "From Third World to First. Waste Management Reform in Ukraine". PWC. available at:

https://www.pwc.com/ua/en/survey/2020/waste-management.pdf

Martinenko, A. (2020), "The Myth of Safe Waste Incineration". Ukrainian Zero Waste Alliance NGO. available at:

https://zwsociety.org/wp-content/uploads/mif-pro-bezpechne-smittyespalyuvannya.pdf

Xiaoxia, Cao, Paul, N. Williams, Yuanhang, Zhan, Scott, A. Coughlin, John, W. McGrath, Jason, P. Chin, Yingjian Xu.

(2023), "Municipal solid waste compost: Global trends and biogeochemical cycling". Soil & Environmental Health, 1(4).

DOI: https://doi.org/10.1016/j.seh.2023.100038

Edo-Alcon, N, Gallardo, A, Colomer-Mendoza, FJ, Lobo, A. (2024), "Efficiency of biological and mechanical-biological

treatment plants for MSW: The case of Spain". Heliyon, 10(4). DOI: https://doi.org/10.1016/j.heliyon.2024.e26353

ReportLinker. (2023), "European Waste Treatment and Disposal Number of Enterprises by Country". ReportLinker. available

at: https://www.reportlinker.com/dataset/18a291d77e387c50e181b0c0e68e784476cc0ca5

Us, S. A., Koriashkina, L. S., Stanina, O. D. (2019), "An optimal two-stage allocation of material flows in a transport-logistic

system with continuously distributed resource". Radio Electronics, Computer Science, Control, 1. DOI:

https://doi.org/10.15588/1607-3274-2019-1-24

Kiseleva, E., Prytomanova, O., Hart, L. (2020), "Solving a Two-stage Continuous-discrete Problem of Optimal Partitioning-

Allocation with Subsets Centers Placement". Open Computer Science, 10(1), Р. 124-136. DOI: https://doi.org/10.1515/comp-

-0142

Published

2025-09-25

How to Cite

Kikot, M., & Malieieva, J. (2025). Models of forming logistics infrastructure for complex equipment recycling. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3(33), 19–32. https://doi.org/10.30837/2522-9818.2025.3.019