Method for comparing fingerprints based on a previous alignment model

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.3.088

Keywords:

dactyloscopy; fingerprints; preliminary alignment; minutiae; biometric identification; affine transformations; tensor representation; machine learning; FVC2000; binary classification metrics.

Abstract

The subject of this article is the development and analysis of a new method for comparing fingerprints that uses the geometric Euclidean characteristics of minutiae for biometric identification. The research focuses on minutiae—special points of interruption or bifurcation of papillary lines—as key biometric features, contrasting them with traditional global and local descriptors such as SIFT, HOG, or LPQ. The purpose of the article is to develop a robust and efficient fingerprint comparison method that uses Euclidean geometric characteristics of minutiae and pre-alignment to improve the accuracy of biometric identification without relying on machine learning. The research task was performed in three stages: first, studying the theoretical provisions of minutia-based descriptors and their invariance to affine transformations (shift, rotation, scaling); second, development of a model using a shift vector and distance functions for matching minutiae; third, experimental verification of the model, determination of optimal parameters, and evaluation on a standard data set. Methods include theoretical analysis and experimental evaluation. The theoretical basis establishes the stability of alignment to shifts. The descriptor is formed through minutiae coordinates, distance functions, and alignment optimization. An image processing algorithm with filtering and minutiae analysis is used to extract features. The results are achieved through experimental verification on the FVC2000 (DB1_B) dataset and demonstrate high performance, as evaluated by classification metrics and execution time. Conclusions indicate the theoretical and practical achievements of the research. The model demonstrates theoretical and practical resistance to Euclidean shifts, with advantages for processing prints from different scanners. Experiments confirm the effectiveness of shift detection, achieving a high Van Rijseberg score (0.735), although dependence on positive matches requires additional filtering of false positives. The method is workable and can be applied in practice.

Author Biographies

Yurii Pohuliaiev, Kharkiv National University of Radio Electronics

Postgraduate Student at the Department of Software Engineering

Kirill Smelyakov, Kharkiv National University of Radio Electronics

Doctor of Sciences (Engineering), Professor, Head at the Department of Software Engineering

References

References

Sengoopta, C. (2004), Imprint of the Raj: how fingerprinting was born in colonial India. London, Pan, 234 p.

Machado, J. H. P., Koop, B. D. O., Filipak, M., Barbosa, M. A. C., Oliva, J. T. Southier, L. F. P. (2025), "A Super-Resolution Approach for Image Resizing of Infant Fingerprints With Vision Transformers". IEEE Access, Vol. 13, Р. 67718-67728. DOI: 10.1109/ACCESS.2025.3561206

Raj, J. M., Rakshitha, S., Priya, S. S., Vaishnavi, S. & Sivaranjani, A. (2020), "Latent Fingerprint Enhancement for Investigation". 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, IEEE, Р. 644-648. DOI: 10.1109/ICACCS48705.2020.9074191

Guan, X., Pan, Z., Feng, J. & Zhou, J. (2025), "Joint Identity Verification and Pose Alignment for Partial Fingerprints". IEEE Transactions on Information Forensics and Security, Vol. 20, Р. 249-263. DOI: 10.1109/TIFS.2024.3516566

Wang, S., Shen, Y. Yang, W. (2025), "Touchless Finger Vein and Fingerprint Verification via Exploiting Attention-Based Cross-Domain Fusion". IEEE Transactions on Circuits and Systems for Video Technology, Vol. 35, No. 4, Р. 3426-3437. DOI: 10.1109/TCSVT.2024.3504270

Ravulakollu, K. K., Reddy, G. S. N., Jadhav, M., Batti, V., Vupputuri, V. K. Polishetty, R. K. (2025), "Limited Training Approach To Model Latent Fingerprint Data For Time-Constrained Solutions". 2025 17th International Conference on COMmunication Systems and NETworks (COMSNETS), Bengaluru, India, IEEE, Р. 90-95. DOI: 10.1109/COMSNETS63942.2025.10885690

Maltoni, D., Maio, D., Jain, A.K. & Prabhakar, S. (2009), "Handbook of Fingerprint Recognition". 2nd ed. London, Springer, 496 p. DOI: 10.1007/978-1-84882-254-2

Ibragimov, A., Ferreira, F. Santos, G. (2025), "Fingerprint Pore Detection: A Survey and Comparative Analysis". IEEE Transactions on Biometrics, Behavior, and Identity Science, Vol. 7, No. 1. DOI: 10.1109/TBIOM.2025.3560655

Mani, K., Kumar, R., Singh, P. Sharma, A. (2024), "Two-Step Fingerprint Authentication Using Contour and Edge Matching". 2024 International Conference on Advanced Computer Information Technologies (ACIT), Rzeszow, Poland, IEEE, Р. 123-128. DOI: 10.1109/ACIT62805.2024.10877179

Chen, L., Moon, Y.S. Lee, H.K. (2006), "Efficient Alignment of Fingerprint Images". 2006 IEEE International Conference on Image Processing, Atlanta, GA, USA, IEEE, Р. 169-172. available at: https://ieeexplore.ieee.org/document/1698755 (last accessed 01.05.2025).

Jain, A.K., Feng, J. Nandakumar, K. (2007), "Orientation Field Alignment for Fingerprint Matching". Advances in Biometrics: International Conference, ICB 2007, Seoul, South Korea, Springer, Р. 745-754. DOI: 10.1007/978-3-540-74549-5_75

Zhang, Y., Li, X. & Wang, H. (2022), "Optimized Fingerprint Alignment for Large-Scale Databases". 2022 IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), Sofia, Bulgaria, IEEE, Р. 1-4. DOI: 10.1109/SILCON55242.2022.10028828

Gu, J., Zhou, J. Zhang, C. (2006), "Fingerprint Matching Using Ridges". Pattern Recognition, Vol. 39, No. 11, Р. 2131-2140. DOI: 10.1016/j.patcog.2006.04.015

Li, X., Zhang, Y. Chen, L. (2021), "Ridge Pattern Analysis for Low-Quality Fingerprint Images". 2021 International Conference on Smart Cities and Energy Efficiency (ICSCEE), Istanbul, Turkey, IEEE, Р. 1-6. DOI: 10.1109/ICSCEE50312.2021.9497996

Wang, H., Li, Y. Zhang, X. (2023), "Localized Deep Representation for Fingerprint Matching". arXiv preprint arXiv:2311.18576v2, 15 p. available at: https://arxiv.org/html/2311.18576v2 (accessed 01.05.2025)

Liu, Z., Zhang, Q. Wang, S. (2021), "Transformer-Based Fingerprint Representation for Matching". IEEE Transactions on Information Forensics and Security, Vol. 16, Р. 4867-4878. DOI: 10.1109/TIFS.2021.3134867

Kim, S., Park, J. Lee, H. (2022), "Hybrid Neural Networks for Fingerprint Matching in Noisy Conditions". 2022 International Conference on Future Trends in Intelligent Computing (ICFTIC), Shanghai, China, IEEE, Р. 45-50. DOI: 10.1109/ICFTIC57696.2022.10075139

Yang, J., Chen, X. Zhang, L. (2021), "Deep Learning for Complex Fingerprint Patterns". IEEE Transactions on Information Forensics and Security, Vol. 16, Р. 3921-3932. DOI: 10.1109/TIFS.2021.3139219

Park, T., Kim, Y. Lee, S. (2020), "Algorithm for Low-Quality Fingerprint Image Matching". 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, IEEE, Р. 123-128. DOI: 10.1109/ICSSIT48917.2020.921420

Zhao, Q., Li, J. Wang, X. (2025), "Latent Fingerprint Processing for Crime Scene Identification". 2025 IEEE Workshop on Applications of Computer Vision (WACV Workshops), Tucson, AZ, USA, IEEE, Р. 56-61. DOI: 10.1109/WACVW65960.2025.00159

Xu, L., Zhang, Y. Chen, H. (2025), "Local Correlation-Based Matching for Partial Fingerprints". IEEE Access, Vol. 13, Р. 12345-12354. DOI: 10.1109/ACCESS.2025.3555311

Lee, H., Kim, S. Park, J. (2024), "Secure Protocol for Fingerprint Matching with Encrypted Data". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 46, No. 8, Р. 5678-5690. DOI: 10.1109/TPAMI.2024.3486179

Choi, Y., Lee, H. Kim, D. (2023), "Enhanced Encryption Protocols for Biometric Systems". 2023 International Conference on Biometrics and Signal Processing (BIOSIG), Darmstadt, Germany, IEEE, Р. 89-94. DOI: 10.1109/BIOSIG58226.2023.10345974

Wu, X., Zhang, L. Chen, Y. (2025), "Obstructive Minutiae Removal for Latent Fingerprints". IEEE Sensors Letters, Vol. 9, No. 3, Р. 1-4. DOI: 10.1109/LSENS.2025.3550874

Han, C., Li, X. Wang, Y. (2024), "Optimized Computations for Automated Fingerprint Identification Systems". 2024 International Conference on Systems and Electronics (ICSES), Singapore, IEEE, Р. 34-39. DOI: 10.1109/ICSES63445.2024.10763052

Kim, D., Park, J. Lee, S. (2023), "New Architectures for Fingerprint Recognition Accuracy". 2023 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, IEEE, Р. 123-128. DOI: 10.1109/APSIPAASC58517.2023.10317455

Park, J., Kim, Y., Lee, H. (2023), "Deep Learning for Complex Fingerprint Deformations". 2023 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hangzhou, China, IEEE, Р. 56-61. DOI: 10.1109/AICAS57966.2023.10168628

Lim, S., Chen, X., Zhang, Y. (2020), "Adaptive Filtering for Fingerprint Preprocessing". 2020 IEEE International Conference on Advances in Science, Engineering and Technology (ASET), Dubai, UAE, IEEE, Р. 78-83. DOI: 10.1109/ASET48392.2020.9118193

Wulandari, R., Santoso, A., Nugroho, H. (2021), "Fingerprint Identification Using Edge Detection and GLCM Analysis". 2021 International Conference on Computer Science (ICCS), Jakarta, Indonesia, IEEE, Р. 123-128. DOI: 10.1109/ICITech50181.2021.9590134

Patel, R., Sharma, S. & Kumar, V. (2021), "Technique for Processing Noisy Fingerprints with Extreme Distortions". 2021 International Conference on Computer Systems (ICCS), Bangalore, India, IEEE, Р. 45-50. DOI: 10.1109/ICCS54944.2021.00068

Yu, T., Zhang, X. & Li, Y. (2025), 3D Fingerprint Unwrapping Using B-Spline for 2D Recognition. IEEE Open Journal of the Computer Society, Vol. 6, Р. 123-134. DOI: 10.1109/OJCS.2025.3559975

Calderón-Calderón, M.D., Medina-Pérez, M.A. & Monroy, R. (2025), "Fingerprint Quality Enhancement for Low-Resolution Scanners. IEEE Access, Vol. 13, Р. 56789-56798. DOI: 10.1109/ACCESS.2025.3527071

Pohuliaiev, Y. (2025), "Euclidean fingerprint descriptor and comparator model software". available at: https://drive.google.com/file/d/1bRD2yqc7Zg6NSBpGYvtAVv-hiJrekJJh/view?usp=sharing (last accessed: 01.05.2025)

Downloads

Published

2025-09-25

How to Cite

Pohuliaiev, Y., & Smelyakov, K. (2025). Method for comparing fingerprints based on a previous alignment model. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3(33), 88–101. https://doi.org/10.30837/2522-9818.2025.3.088