Method for comparing fingerprints based on a previous alignment model
DOI:
https://doi.org/10.30837/2522-9818.2025.3.088Keywords:
dactyloscopy; fingerprints; preliminary alignment; minutiae; biometric identification; affine transformations; tensor representation; machine learning; FVC2000; binary classification metrics.Abstract
The subject of this article is the development and analysis of a new method for comparing fingerprints that uses the geometric Euclidean characteristics of minutiae for biometric identification. The research focuses on minutiae—special points of interruption or bifurcation of papillary lines—as key biometric features, contrasting them with traditional global and local descriptors such as SIFT, HOG, or LPQ. The purpose of the article is to develop a robust and efficient fingerprint comparison method that uses Euclidean geometric characteristics of minutiae and pre-alignment to improve the accuracy of biometric identification without relying on machine learning. The research task was performed in three stages: first, studying the theoretical provisions of minutia-based descriptors and their invariance to affine transformations (shift, rotation, scaling); second, development of a model using a shift vector and distance functions for matching minutiae; third, experimental verification of the model, determination of optimal parameters, and evaluation on a standard data set. Methods include theoretical analysis and experimental evaluation. The theoretical basis establishes the stability of alignment to shifts. The descriptor is formed through minutiae coordinates, distance functions, and alignment optimization. An image processing algorithm with filtering and minutiae analysis is used to extract features. The results are achieved through experimental verification on the FVC2000 (DB1_B) dataset and demonstrate high performance, as evaluated by classification metrics and execution time. Conclusions indicate the theoretical and practical achievements of the research. The model demonstrates theoretical and practical resistance to Euclidean shifts, with advantages for processing prints from different scanners. Experiments confirm the effectiveness of shift detection, achieving a high Van Rijseberg score (0.735), although dependence on positive matches requires additional filtering of false positives. The method is workable and can be applied in practice.
References
References
Sengoopta, C. (2004), Imprint of the Raj: how fingerprinting was born in colonial India. London, Pan, 234 p.
Machado, J. H. P., Koop, B. D. O., Filipak, M., Barbosa, M. A. C., Oliva, J. T. Southier, L. F. P. (2025), "A Super-Resolution Approach for Image Resizing of Infant Fingerprints With Vision Transformers". IEEE Access, Vol. 13, Р. 67718-67728. DOI: 10.1109/ACCESS.2025.3561206
Raj, J. M., Rakshitha, S., Priya, S. S., Vaishnavi, S. & Sivaranjani, A. (2020), "Latent Fingerprint Enhancement for Investigation". 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, IEEE, Р. 644-648. DOI: 10.1109/ICACCS48705.2020.9074191
Guan, X., Pan, Z., Feng, J. & Zhou, J. (2025), "Joint Identity Verification and Pose Alignment for Partial Fingerprints". IEEE Transactions on Information Forensics and Security, Vol. 20, Р. 249-263. DOI: 10.1109/TIFS.2024.3516566
Wang, S., Shen, Y. Yang, W. (2025), "Touchless Finger Vein and Fingerprint Verification via Exploiting Attention-Based Cross-Domain Fusion". IEEE Transactions on Circuits and Systems for Video Technology, Vol. 35, No. 4, Р. 3426-3437. DOI: 10.1109/TCSVT.2024.3504270
Ravulakollu, K. K., Reddy, G. S. N., Jadhav, M., Batti, V., Vupputuri, V. K. Polishetty, R. K. (2025), "Limited Training Approach To Model Latent Fingerprint Data For Time-Constrained Solutions". 2025 17th International Conference on COMmunication Systems and NETworks (COMSNETS), Bengaluru, India, IEEE, Р. 90-95. DOI: 10.1109/COMSNETS63942.2025.10885690
Maltoni, D., Maio, D., Jain, A.K. & Prabhakar, S. (2009), "Handbook of Fingerprint Recognition". 2nd ed. London, Springer, 496 p. DOI: 10.1007/978-1-84882-254-2
Ibragimov, A., Ferreira, F. Santos, G. (2025), "Fingerprint Pore Detection: A Survey and Comparative Analysis". IEEE Transactions on Biometrics, Behavior, and Identity Science, Vol. 7, No. 1. DOI: 10.1109/TBIOM.2025.3560655
Mani, K., Kumar, R., Singh, P. Sharma, A. (2024), "Two-Step Fingerprint Authentication Using Contour and Edge Matching". 2024 International Conference on Advanced Computer Information Technologies (ACIT), Rzeszow, Poland, IEEE, Р. 123-128. DOI: 10.1109/ACIT62805.2024.10877179
Chen, L., Moon, Y.S. Lee, H.K. (2006), "Efficient Alignment of Fingerprint Images". 2006 IEEE International Conference on Image Processing, Atlanta, GA, USA, IEEE, Р. 169-172. available at: https://ieeexplore.ieee.org/document/1698755 (last accessed 01.05.2025).
Jain, A.K., Feng, J. Nandakumar, K. (2007), "Orientation Field Alignment for Fingerprint Matching". Advances in Biometrics: International Conference, ICB 2007, Seoul, South Korea, Springer, Р. 745-754. DOI: 10.1007/978-3-540-74549-5_75
Zhang, Y., Li, X. & Wang, H. (2022), "Optimized Fingerprint Alignment for Large-Scale Databases". 2022 IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), Sofia, Bulgaria, IEEE, Р. 1-4. DOI: 10.1109/SILCON55242.2022.10028828
Gu, J., Zhou, J. Zhang, C. (2006), "Fingerprint Matching Using Ridges". Pattern Recognition, Vol. 39, No. 11, Р. 2131-2140. DOI: 10.1016/j.patcog.2006.04.015
Li, X., Zhang, Y. Chen, L. (2021), "Ridge Pattern Analysis for Low-Quality Fingerprint Images". 2021 International Conference on Smart Cities and Energy Efficiency (ICSCEE), Istanbul, Turkey, IEEE, Р. 1-6. DOI: 10.1109/ICSCEE50312.2021.9497996
Wang, H., Li, Y. Zhang, X. (2023), "Localized Deep Representation for Fingerprint Matching". arXiv preprint arXiv:2311.18576v2, 15 p. available at: https://arxiv.org/html/2311.18576v2 (accessed 01.05.2025)
Liu, Z., Zhang, Q. Wang, S. (2021), "Transformer-Based Fingerprint Representation for Matching". IEEE Transactions on Information Forensics and Security, Vol. 16, Р. 4867-4878. DOI: 10.1109/TIFS.2021.3134867
Kim, S., Park, J. Lee, H. (2022), "Hybrid Neural Networks for Fingerprint Matching in Noisy Conditions". 2022 International Conference on Future Trends in Intelligent Computing (ICFTIC), Shanghai, China, IEEE, Р. 45-50. DOI: 10.1109/ICFTIC57696.2022.10075139
Yang, J., Chen, X. Zhang, L. (2021), "Deep Learning for Complex Fingerprint Patterns". IEEE Transactions on Information Forensics and Security, Vol. 16, Р. 3921-3932. DOI: 10.1109/TIFS.2021.3139219
Park, T., Kim, Y. Lee, S. (2020), "Algorithm for Low-Quality Fingerprint Image Matching". 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, IEEE, Р. 123-128. DOI: 10.1109/ICSSIT48917.2020.921420
Zhao, Q., Li, J. Wang, X. (2025), "Latent Fingerprint Processing for Crime Scene Identification". 2025 IEEE Workshop on Applications of Computer Vision (WACV Workshops), Tucson, AZ, USA, IEEE, Р. 56-61. DOI: 10.1109/WACVW65960.2025.00159
Xu, L., Zhang, Y. Chen, H. (2025), "Local Correlation-Based Matching for Partial Fingerprints". IEEE Access, Vol. 13, Р. 12345-12354. DOI: 10.1109/ACCESS.2025.3555311
Lee, H., Kim, S. Park, J. (2024), "Secure Protocol for Fingerprint Matching with Encrypted Data". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 46, No. 8, Р. 5678-5690. DOI: 10.1109/TPAMI.2024.3486179
Choi, Y., Lee, H. Kim, D. (2023), "Enhanced Encryption Protocols for Biometric Systems". 2023 International Conference on Biometrics and Signal Processing (BIOSIG), Darmstadt, Germany, IEEE, Р. 89-94. DOI: 10.1109/BIOSIG58226.2023.10345974
Wu, X., Zhang, L. Chen, Y. (2025), "Obstructive Minutiae Removal for Latent Fingerprints". IEEE Sensors Letters, Vol. 9, No. 3, Р. 1-4. DOI: 10.1109/LSENS.2025.3550874
Han, C., Li, X. Wang, Y. (2024), "Optimized Computations for Automated Fingerprint Identification Systems". 2024 International Conference on Systems and Electronics (ICSES), Singapore, IEEE, Р. 34-39. DOI: 10.1109/ICSES63445.2024.10763052
Kim, D., Park, J. Lee, S. (2023), "New Architectures for Fingerprint Recognition Accuracy". 2023 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Taipei, Taiwan, IEEE, Р. 123-128. DOI: 10.1109/APSIPAASC58517.2023.10317455
Park, J., Kim, Y., Lee, H. (2023), "Deep Learning for Complex Fingerprint Deformations". 2023 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hangzhou, China, IEEE, Р. 56-61. DOI: 10.1109/AICAS57966.2023.10168628
Lim, S., Chen, X., Zhang, Y. (2020), "Adaptive Filtering for Fingerprint Preprocessing". 2020 IEEE International Conference on Advances in Science, Engineering and Technology (ASET), Dubai, UAE, IEEE, Р. 78-83. DOI: 10.1109/ASET48392.2020.9118193
Wulandari, R., Santoso, A., Nugroho, H. (2021), "Fingerprint Identification Using Edge Detection and GLCM Analysis". 2021 International Conference on Computer Science (ICCS), Jakarta, Indonesia, IEEE, Р. 123-128. DOI: 10.1109/ICITech50181.2021.9590134
Patel, R., Sharma, S. & Kumar, V. (2021), "Technique for Processing Noisy Fingerprints with Extreme Distortions". 2021 International Conference on Computer Systems (ICCS), Bangalore, India, IEEE, Р. 45-50. DOI: 10.1109/ICCS54944.2021.00068
Yu, T., Zhang, X. & Li, Y. (2025), 3D Fingerprint Unwrapping Using B-Spline for 2D Recognition. IEEE Open Journal of the Computer Society, Vol. 6, Р. 123-134. DOI: 10.1109/OJCS.2025.3559975
Calderón-Calderón, M.D., Medina-Pérez, M.A. & Monroy, R. (2025), "Fingerprint Quality Enhancement for Low-Resolution Scanners. IEEE Access, Vol. 13, Р. 56789-56798. DOI: 10.1109/ACCESS.2025.3527071
Pohuliaiev, Y. (2025), "Euclidean fingerprint descriptor and comparator model software". available at: https://drive.google.com/file/d/1bRD2yqc7Zg6NSBpGYvtAVv-hiJrekJJh/view?usp=sharing (last accessed: 01.05.2025)
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.












