Integrated information security risk management model based on ahp and bayesian networks

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.3.166

Keywords:

CRAMM methodology, SIEM systems, Analytic Hierarchy Process (AHP), Bayesian Networks (BN), Expert evaluation, Threat and vulnerability analysis.

Abstract

The subject of the study is information security risk management in a modern digital environment, where the integration of strategic and tactical approaches is necessary to ensure adaptive protection. The purpose of the work is to develop a hybrid model of cyber risk management by combining methodological analysis, expert assessments, probabilistic modeling and technical monitoring. The objectives of the study are: (1) analysis of the complementarity of the CRAMM methodology and SIEM systems; (2) construction of a procedure for quantitative prioritization of threats and vulnerabilities based on the analytical hierarchy process (AHP); (3) integration of the obtained estimates into Bayesian networks (BN) for probabilistic risk forecasting; (4) implementation of the proposed approach using modern automation tools. The methods used in the work include: CRAMM methodology for identifying assets, threats and vulnerabilities; Thomas Saati's AHP for quantitative assessment of priorities based on expert judgments with measurement of consistency using the Kendall concordance coefficient; mathematical modeling of causal relationships using Bayesian networks (BN); and the use of SIEM-class systems for operational monitoring of security events. The practical implementation of the approach was carried out using Python, in particular the Numpy, SciPy, pgmpy libraries, and the Streamlit web interface. Results. An integrated approach was developed that combines CRAMM, AHP, BN, and SIEM into a single adaptive risk management system. It is shown that AHP allows you to transform subjective expert assessments into objective weighting factors, which increases the reliability of the analysis. Based on these data, a Bayesian network was built to assess the risk of financial losses, which takes into account the presence of a threat, vulnerability, and a possible incident. The model is implemented programmatically, demonstrating the process of factoring the joint distribution and marginalizing latent variables to obtain posterior probabilities. The web interface based on Streamlit ensures the ease of use of the tool by non-professional users. Conclusions. The proposed hybrid approach allows for the effective combination of strategic planning (CRAMM), expert assessments (AHP), probabilistic modeling (BN) and operational monitoring (SIEM), forming a proactive, scientifically sound risk management system. Such integration provides a high level of adaptability and accuracy in a dynamic threat landscape, which makes the model practically applicable for organizations of various levels.

Author Biographies

Anatolii Timoshyn, Kharkiv National University of Internal Affairs

Associate Professor, Associate Professor of the Department of Information Systems and Technologies

Lidia Kalienichenko, Kharkiv National University of Internal Affairs

Doctor of Law, Professor, Department of Information Systems and Technologies (Head of Department)

Yurii Gnusov, Kharkiv National University of Internal Affairs

Candidate of technical science, Associate Professor, Head of the Department of Cybersecurity and DATA Technologies

Inna Khavina, Kharkiv National University of Internal Affairs

Candidate of technical science, Associate Professor,  Associate Professor of the Department of Cybersecurity and DATA Technologies

Mykhailo Tsuranov, Kharkiv National University of Internal Affairs

Senior Lecturer, Department of Cybersecurity and DATA Technologies

Iryna Dovhan, Kharkiv National University of Internal Affairs

Teacher of the Department of Information Systems and Technologies

References

Список літератури

Сидоркін П. Г., Горліченко С. О., Некоз В. С., Шилан М. В. Методи управління ризиками інформаційної безпеки CRAMM та COBIT 5 FOR RISK. Сучасні інформаційні технології у сфері безпеки та оборони. 2023. № 2 (47). С. 41 – 47. DOI: https://doi.org/10.33099/2311-7249/2023-47-2-41-47

Берко А. Ю., Висоцька В. А., Рішняк І. В. Методи та засоби оцінювання ризиків безпеки інформації в системах електронної комерції. Інформаційні системи та мережі: [збірник наукових праць]: Видавництво Львівської політехніки. 2008. № 610 (1). С. 20 – 33. URL: https://science.lpnu.ua/sites/default/files/journal-paper/2019/apr/16336/vis610inform-syst-20-33.pdf

Залива В. В. Методики захисту API за допомогою JavaScript: математичні моделі для підвищення безпеки. Телекомунікаційні та інформаційні технології. 2024. № 3 (84). С. 4 – 11. DOI: 10.31673/2412-4338.2024.030411

Карпович І.М., Гладка О.М., Наконечна Ю.А. Аналіз ризиків безпеки інформаційної системи ІТ-підприємства. Вчені записки ТНУ імені В.І. Вернадського. 2020. Том 31 (70) № 5 С. 9-74. DOI https://doi.org/10.32838/2663-5941/2020.5/12

A multicriterial analysis of the efficiency of conservative information security systems / Dudykevych V., Prokopyshyn I., Chekurin V., Opirskyy I., Lakh Yu., Kret T., Ivanchenko Ye., Ivanchenko I., Eastern-European Journal of Enterprise Technologies. 2019.Vol. 3, Issue 9 (99). Р. 6–13. DOI: https://doi.org/10.15587/1729-4061.2019.166349

Gaute Wangen, Christoffer Hallstensen, Einar Snekkenes. A framework for estimating information security risk assessment method completeness. Int. J. Inf. Secur. 2018. Vol. 17. P. 681 – 699. DOI: https://doi.org/10.1007/s10207-017-0382-0

Барченко Н. Л., Любчак В. О., Лаврик Т. В. Модель індикаторів оцінки національного рівня цифровізації та кібербезпеки держав світу. КІБЕРБЕЗПЕКА: освіта, наука, техніка. 2022. № 2(18). С. 73 – 85.

Amanda Gearharta, D. Terrance Booth, Kevin Sedivec and Christopher Schauer. Use of Kendall’s coefficient of concordance to assess agreement among observers of very high resolution imagery. Geocarto International 2013. Vol. 28, No. 6, P. 517–526. DOI: 10.1080/10106049.2012.725775

Бурячок В. Л., Толубко В. Б., Хорошко В. О., Толюпа С. В. Інформаційна та кібербезпека: соціотехнічний аспект: за заг. ред. д-ра техн. наук, професора В. Б. Толубка. Київ: ДУТ. 2015. 288 с.

Дзюба Л. Ф., Чмир О. Ю. Оцінювання ризиків інформаційної безпеки з використанням методів математичної статистики. Львівський державний університет безпеки життєдіяльності. Вісник ЛДУБЖД. 2022. №26. С. 47–54. URL: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vldubzh_2022_26_8

Олецький О. В. Підвищення узгодженості матриць попарних порівнянь у методі аналізу ієрархій на основі розв’язків систем лінійних алгебраїчних рівнянь. Наукові записки НаУКМА. Комп’ютерні науки. 2022. Том 5. 2022. С. 85-91. DOI: 10.18523/2617-3808.2022.5.85-91

Wilson, Simon and De Persis, Cristina and Bosque, José Luis and Huertas, Irene and Sillero Denamiel, Maria Remedios, Quantitative System Risk Assessment from Incomplete Data with Belief Networks and Pairwise Comparison Elicitation. URL: https://ssrn.com/abstract=4577878 (дата звернення 01.07.2025)

CRAMM Version 5.1 User Guide. URL: https://pdfcoffee.com/cramm-version-51-user-guide-pdf-free.html (дата звернення 01.07.2025

Смірнова Т. В., Константинова Л. В., Конопліцька-Слободенюк О. К., Козлов Я. О., Кравчук О. В., Козірова Н. Л., Смірнов О. А. Дослідження сучасного стану SIEM-систем. "Кібербезпека: освіта, наука, техніка" No 1(25), Р. 6-18. 2024 DOI: https://doi.org/10.28925/2663-4023.2024.25.618

Ankur Ankan, Abinash Panda. pgmpy: Probabilistic Graphical Models using Python. 2015. URL: https://www.researchgate.net/publication/328778465_pgmpy_Probabilistic_Graphical_Models_using_Python (дата звернення 01.07.2025)

Saaty T. L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill. 1980. URL: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1895817

Fenton N., Neil M. Risk Assessment and Decision Analysis with Bayesian Networks. CRC Press. 2012. 4 р. DOI: https://doi.org/10.1080/15598608.2014.847770

Khakzad N., Khan F., Amyotte P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliability Engineering & System Safety, №111, 2013. Р. 81–92. DOI: https://doi.org/10.1016/j.ress.2012.10.015

Borg A., Feldt R., Hansson K. Cyber security risk assessments: Systematic development of a risk assessment process using the ISO. IEC 27005 standard. Computers & Security, № 47, Р. 128–143. 2014. DOI: https://doi.org/10.1016/j.cose.2014.07.003

Sharma S., Singh S., Sharma A. A hybrid framework for cyber risk assessment using fuzzy AHP and Bayesian networks. Journal of Information Security and Applications, № 52, 102492 р. 2020. DOI: https://doi.org/10.1016/j.jisa.2020.102492

Cherdantseva Y., Hilton J. A reference model of information security risk management. Proceedings of the 2013 9th International Conference on Availability, Reliability and Security (ARES), Р. 546–555. 2013. DOI: https://doi.org/10.1109/ARES.2013.72

Onwuegbuzie A. J., Collins K. M. T., Jiao, Q. G. The role of theory in advanced mixed research designs. International Journal of Multiple Research Approaches, № 4(1), Р. 8–22. 2010. DOI: https://doi.org/10.5172/mra.4.1.8

Akhgar B., Chalkidis G., Hessami A. G. Cybersecurity Big Data Analytics: Governance and strategic decision making in cyberspace. Springer. 2020. DOI: https://doi.org/10.1007/978-3-030-43541-7

Zargar S. T., Joshi J., Tipper D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials, 15(4), Р. 2046–2069. 2013. DOI: https://doi.org/10.1109/SURV.2013.031413.00127

Wilson S. P., De Persis C. Quantitative system risk assessment from incomplete data with belief networks and pairwise comparison elicitation. Risk Analysis, 42(8), Р. 1683–1702. 2022. DOI: https://doi.org/10.1111/risa.13878

References

Sydorkin, P. H., Horlichenko, S. O., Nekoz, V. S., Shylan, M. V. (2023), "Methods of information security risk management CRAMM and COBIT 5 FOR RISK". ["Metody upravlinnia ryzykamy informatsiinoi bezpeky CRAMM ta COBIT 5 FOR RISK"]. Modern Information Technologies in the Sphere of Security and Defense, № 2(47), Р. 41–47. DOI: https://doi.org/10.33099/2311-7249/2023-47-2-41-47

Berko, A. Yu., Vysotska, V. A., Rishniak, I. V. (2008), "Methods and means of assessing information security risks in e-commerce systems". [Metody ta zasoby otsiniuvannia ryzykiv bezpeky informatsii v systemakh elektronnoi komertsii]. Information Systems and Networks: [collection of scientific papers]: Lviv Polytechnic Publishing House, 610(1), Р. 20–33. available at: https://science.lpnu.ua/sites/default/files/journal-paper/2019/apr/16336/vis610inform-syst-20-33.pdf

Zalyva, V. V. (2024), "API protection methods using JavaScript: mathematical models for enhancing security". ["Metodyky zakhystu API za dopomohoiu JavaScript: matematychni modeli dlia pidvyshchennia bezpeky"], Telecommunication and Information Technologies, № 3(84), Р. 4–11. DOI: 10.31673/2412-4338.2024.030411

Karpovych, I. M., Hladka, O. M., Nakonechna, Yu. A. (2020), "Analysis of information system security risks of an IT enterprise". ["Analiz ryzykiv bezpeky informatsiinoi systemy IT-pidpryiemstva"]. Scientific Notes of V.I. Vernadsky TNU, № 31(70)(5), Р. 9–74. DOI https://doi.org/10.32838/2663-5941/2020.5/12

Dudykevych, V., Prokopyshyn, I., Chekurin, V., Opirskyy, I., Lakh, Yu., Kret, T., Ivanchenko, Ye., Ivanchenko, I. (2019), "A multicriterial analysis of the efficiency of conservative information security systems". Eastern-European Journal of Enterprise Technologies, № 3(9)(99), P. 6–13. DOI: https://doi.org/10.15587/1729-4061.2019.166349

Wangen, G., Hallstensen, C., Snekkenes, E. (2018), "A framework for estimating information security risk assessment method completeness". International Journal of Information Security, № 17, Р. 681–699. DOI: https://doi.org/10.1007/s10207-017-0382-0

Barchenko, N. L., Liubchak, V. O., Lavryk, T. V. (2022), "Model of indicators for assessing the national level of digitalization and cybersecurity of world states". ["Model indykatoriv otsinky natsionalnoho rivnia tsyfrovizatsii ta kiberbezpeky derzhav svitu"] Cybersecurity: education, science, technology, 2(18), Р. 73–85.

Gearharta, A., Booth, D. T., Sedivec, K., Schauer, C. (2013), "Use of Kendall’s coefficient of concordance to assess agreement among observers of very high resolution imagery". Geocarto International, № 28(6), Р. 517–526. DOI: 10.1080/10106049.2012.725775

Buriachok, V. L., Tolubko, V. B., Khoroshko, V. O., Toliupa, S. V. (2015), "Information and cybersecurity: sociotechnical aspect". [Informatsiina ta kiberbezpeka: sotsiotekhnichnyi aspekt]. Kyiv: DUT. 288 р.

Dziuba, L. F., Chmyr, O. Yu. (2022), "Assessment of information security risks using methods of mathematical statistics". ["Otsiniuvannia ryzykiv informatsiinoi bezpeky z vykorystanniam metodiv matematychnoi statystyky"]. Bulletin of Lviv State University of Life Safety, № 26, Р. 47–54. available at: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vldubzh_2022_26_8

Olietskyi, O. V. (2022), "Improving the Consistency of Pairwise Comparison Matrices in the Analytic Hierarchy Process Based on Solutions of Systems of Linear Algebraic Equations". Scientific Notes of NaUKMA. Computer Sciences. Vol. 5. P. 85–91. DOI: 10.18523/2617-3808.2022.5.85-91

Wilson, Simon, De Persis, Cristina, Bosque, José Luis, Huertas, Irene, Sillero, Denamiel, Maria, Remedios "Quantitative System Risk Assessment from Incomplete Data with Belief Networks and Pairwise Comparison Elicitation". available at: https://ssrn.com/abstract=4577878 (last accessed 01.07.2025)

"CRAMM Version 5.1 User Guide". available at: https://pdfcoffee.com/cramm-version-51-user-guide-pdf-free.html (last accessed 01.07.2025

Smirnova, T. V., Konstantinova, L. V., Konoplitska-Slobodeniuk, O. K., Kozlov, Y. O., Kravchuk, O. V., Kozirova, N. L., Smirnov, O. A. (2024), "Research on the Current State of SIEM Systems". Cybersecurity: Education, Science, Technology, 1(25). Р. 6-18. DOI: https://doi.org/10.28925/2663-4023.2024.25.618

"Ankur Ankan, Abinash Panda. pgmpy: Probabilistic Graphical Models using Python". 2015. available at: https://www.researchgate.net/publication/328778465_pgmpy_Probabilistic_Graphical_Models_using_Python (last accessed 01.07.2025)

Saaty, T. L. (1980), "The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation". McGraw-Hill. available at: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1895817

Fenton, N., Neil, M. (2012), "Risk Assessment and Decision Analysis with Bayesian Networks". CRC Press. 4 р. DOI: https://doi.org/10.1080/15598608.2014.847770

Khakzad, N., Khan, F., Amyotte, P. (2013), "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches". Reliability Engineering & System Safety, № 111, Р. 81–92. DOI: https://doi.org/10.1016/j.ress.2012.10.015

Borg, A., Feldt, R., & Hansson, K. (2014), "Cyber security risk assessments: Systematic development of a risk assessment process using the ISO". IEC 27005 standard. Computers & Security, № 47, Р. 128–143. DOI: https://doi.org/10.1016/j.cose.2014.07.003

Sharma, S., Singh, S., & Sharma, A. (2020), "A hybrid framework for cyber risk assessment using fuzzy AHP and Bayesian networks". Journal of Information Security and Applications, № 52, 102492 р. DOI: https://doi.org/10.1016/j.jisa.2020.102492

Cherdantseva, Y., Hilton, J. (2013), "A reference model of information security risk management". Proceedings of the 2013 9th International Conference on Availability, Reliability and Security (ARES), Р. 546–555. DOI: https://doi.org/10.1109/ARES.2013.72

Onwuegbuzie, A. J., Collins, K. M. T., Jiao, Q. G. (2010), "The role of theory in advanced mixed research designs". International Journal of Multiple Research Approaches, № 4(1), Р. 8–22. DOI: https://doi.org/10.5172/mra.4.1.8

Akhgar, B., Chalkidis, G., Hessami, A. G. (2020), "Cybersecurity Big Data Analytics: Governance and strategic decision making in cyberspace". Springer. DOI: https://doi.org/10.1007/978-3-030-43541-7

Zargar, S. T., Joshi, J., & Tipper, D. (2013), A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials, № 15(4), Р. 2046–2069. DOI: https://doi.org/10.1109/SURV.2013.031413.00127

Wilson, S. P., De Persis, C. (2022), "Quantitative system risk assessment from incomplete data with belief networks and pairwise comparison elicitation". Risk Analysis, № 42(8), Р. 1683–1702. DOI: https://doi.org/10.1111/risa.13878

Published

2025-09-25

How to Cite

Timoshyn, A., Kalienichenko, L., Gnusov, Y., Khavina, I., Tsuranov, M., & Dovhan, I. (2025). Integrated information security risk management model based on ahp and bayesian networks. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (3(33), 166–179. https://doi.org/10.30837/2522-9818.2025.3.166