Первая основная задача теории упругости в полупространстве с несколькими параллельными круговыми цилиндрическими пустотами

Авторы

  • V. Yu. Miroshnikov Харьковский национальный университет строительства и архитектуры, г. Харьков, Ukraine

Ключевые слова:

цилиндрические полости в полупространстве, уравнения Ламе, обобщенный метод Фурье

Аннотация

При проектировании различного рода конструкций, прогнозировании прочности горных выработок в механике горных пород и геотехнической механике встречаются задачи, в которых необходимо знать напряженно-деформированное состояние полупространства с цилиндрическими полостями и учитывать взаимное влияние полостей и границы полупространства. В статье приведено аналитико-численное решение первой основной пространственной задачи теории упругости (на границах заданы напряжения) для однородного полупространства с несколькими параллельными между собой и границей полупространства круговых цилиндрических полостей. Заданные напряжения считаются быстро убывающими до нуля на границах полостей по координатам z, на границе полупространства по координатам z и x на дальних расстояниях от начала координат. Для решения задачи использован обобщенный метод Фурье относительно системы уравнений Ламе в цилиндрических координатах, связанных с цилиндрами, и декартовых координатах, связанных с полупространством. Для перехода между базисными решениями уравнения Ламе были использованы особые формулы перехода между локальными цилиндрическими системами координат и между декартовой и цилиндрическими системами координат. Бесконечные системы линейных алгебраических уравнений, к которым сведена проблема, решены методом срезки. В результате были определены перемещения и напряжения в упругом теле. В качестве примера приведен подробный численный анализ напряженно-деформированного состояния для двух параллельных цилиндрических полостей в полупространстве при различных значениях геометрических параметров задачи. Приведенные графики дают картину распределения напряжений в теле в самых интересных зонах, представление о взаимном влиянии цилиндрических полостей и взаимное влияние границы полупространства и цилиндрических полостей в зависимости от геометрических параметров задачи.

Биография автора

V. Yu. Miroshnikov, Харьковский национальный университет строительства и архитектуры, г. Харьков

канд. техн. наук

Библиографические ссылки

Podil'chuk, Yu.N. (1979). Prostranstvennye zadachi teorii uprugosti [Spatial Problems in the Theory of Elasticity]. Kyiv: Nauk. Dumka Publishers (in Russian).

Grinchenko, V. T. and Ulitko, A. F. (1985). Prostranstvennye zadachi teorii uprugosti i plastichnosti. Ravnovesie uprugikh tel kanonicheskoy formy [Spatial Problems in the Theory of Elasticity and Plasticity. Equilibrium of Elastic Bodies of Canonical Form]. Kyiv: Nauk. Dumka Publishers (in Russian).

Ulitko, A. F. (1979). Metod sobstvennykh vektornykh funktsiy v prostranstvennykh zadachakh teorii uprugosti [Method of Vector Eigen Functions in Spatial Problems in the Theory of Elasticity]. Kyiv: Nauk. Dumka Publishers (in Russian).

Ufliand, Ya.S. (1967). Integralnye preobrazovaniya v zadachakh teorii uprugosti [Integral Transforms in the Problems in the Theory of Elasticity].Leningrad: Nauka Publishers (in Russian).

Huz', A. N., Chernyshenko,I.S. and Shnerenko, K. I. (1970). Sfericheskie dnishcha, oslablennye otverstiyami [Spherical Bottoms Weakened by Holes]. Kyiv: Nauk. Dumka Publishers (in Russian).

Huz', A. N. and Golovchan, V. T. (1972). Difraktsiya uprugikh voln v mnogosvyaznykh telakh [Diffraction of Elastic Waves in Multiply-Connected Bodies]. Kyiv: Nauk. Dumka Publishers (in Russian).

Nikolayev, O. G. (1997). Uzahalnenyi metod Furie v prostorovykh zadachakh teorii pruzhnosti dlia kanonichnykh bahatozviazkovykh til [The Generalised Fourier Method for Spatial Problems in the Theory of Elasticity for Canonical Multiply-Connected Bodies] (Author's Abstract. Diss. Doc. Phys.-Math. Sci.), Dnipropetrovsk.Ukraine(in Ukrainian).

Nikolayev, A. G. and Protsenko, V. S. (2011). Obobshchennyy metod Fourier v prostranstvennykh zadachakh teorii uprugosti [The Generalised Fourier Method for Spatial Problems in the Theory of Elasticity]. Kharkiv. N.Ye. Zhukovskii National Aerospace University 'KhAI' (in Russian).

Miroshnikov, V.Yu. (2017). Persha osnovna zadacha teorii pruzhnosti v prostori z N paralelnymy kruhovymy tsylindrychnymy porozhnynamy. Problemy Mashynostroyenia [The First Basic Problem in the Theory of Elasticity in Space with N Parallel Round Cylindrical Cavities. Mechanical Engineering Problems]. Vol. 20, No. 4. pp. 45–52 (in Ukrainian).

Miroshnikov, V. Yu. (2017). On Computation of the Stress-StrainStateof a Space Weakened by a System of Parallel Circular Cylindrical Cavities with Different Edge Conditions. Science and Practice: A New Level of Integration in the Modern World. 4th Intern. Conf. Proc. Scope Academic House. Sheffield, (pp. 77–83),UK.

Shcherbakova, Yu. A., Shekhvatova, Ye. M. (2015). Sravnitelnyy analiz NDS mnogosvyaznykh transversalno-izotropnykh tel s razlichnymi uprugimi kharakteristikami [Comparative Analysis of the Stress-Strain State of Multiply-Connected Transverse-Isotropic Bodies with Different Elastic Characteristics]. Visnyk Zaporizhskoho Natsional'noho Universytetu [Bull. ofZaporizhiaNationalUniversity]. Zaporizhia. Issue 2, pp. 253–261 (in Russian).

Nikolayev, A. G., Shcherbakova, Yu. A. (2009). Apparat i prilozheniya obobshchennogo metoda Fure dlya transversalno- izotropnykh tel, ogranichennykh ploskostyu i paraboloidom vrashcheniy. Mat. metodi ta fіz.-mekh. polya. [Apparatus and Applications of the Generalised Fourier Method for Transverse-Isotropic Bodies Bounded by a Plane and a Paraboloid of Revolution. [Math. Methods and Phys.-Mech. of a Field], Vol. 52, No. 3, pp. 160–169 (in Russian).

Nikolayev, A. G., Shcherbakova, Yu. A. (2010). Obosnovanie metoda Fure v osesimmet-richnykh zadachakh teorii uprugosti dlya transversalno-izotropnykh tel, ogranichennykh poverkhnostyu paraboloida. Otkrytye informatsionnye i kompyuternye integri-rovannye tekhnologii [Substantiation of the Fourier Method in Asymmetrical Problems in the Theory of Elasticity for Transverse-Isotropic Bodies Bounded by a Paraboloid Surface. Open Informational and Computer-Aided Integrated Technologies]: Proc. Kharkiv. N.Ye. Zhukovskii National Aerospace University 'KhAI', Issue 48, pp. 180–190 (in Russian).

Nikolayev, A. G., Shcherbakova, A. Yu, and Yukhno, A. I. (2006). Deystvie sosredotochennoy sily na transversalno-izotropnoe poluprostranstvo s paraboloidalnym vklyucheniem. Voprosy proektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov [Action of a Lumped Force on a Transverse-Isotropic Half-Space with a Paraboloid Containment. Design and Production of Aircraft Constructions]. Proc. N.Ye. Zhukovskii National Aerospace University 'KhAI'. Kharkiv. NAKU, Issue 2 (45), pp. 47–51 (in Russian).

Nikolayev, A. G., Orlov, Ye. M. (2012). Reshenie pervoy osesimmetrichnoy termouprugoy kraevoy zadachi dlya transversalno-izotropnogo poluprostranstva so sferoidalnoy polostyu. Problemi obchislyuvalnoї mekhanіki і mіtsnostі konstruktsіy [Solution of the first Axisymmetric Thermal Elasticity Boundary Value Problem for a Transverse-Isotropic Half-Space with a Spheroidal Cavity. Computational Mechanics and Strength of Constructions]. Dnipro. O.HoncharaDnipropetrovskNationalUniversity, Issue 20, pp. 253–259 (in Russian).

Protsenko, V. S., Ukrainets, N. A. (2015). Primenenie obobshchennogo metoda Fourier k resheniyu pervoy osnovnoy zadachi teorii uprugosti v poluprostranstve s tsilindricheskoy polostyu. Visnyk Zaporizhskoho Natsional'noho Universytetu [Application of the Generalised Fourier Method to Solving the First Basic Problem in the Theory of Elasticity in a Half-Space with a Cylindrical Cavity. Bull. of Zaporizhia National University]. Zaporizhia, Issue 2, pp. 193–202 (in Russian).

Опубликован

2018-06-26

Выпуск

Раздел

Динамика и прочность машин