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ROLLER FORMING UNIT DYNAMIC 
ANALYSIS WITH ENERGY BALANCED 
DRIVE DISSIPATIVE PROPERTIES 

TAKEN INTO ACCOUNT  

In order to increase the reliability and durability of a roller form-
ing unit with an energy-balanced drive, loads in its  structure ele-

ments and drive are calculated, the function of changing the re-

quired moment for ensuring the process of compacting   products 

from building mixtures is determined, taking into account drive 

dissipation. Dependence of the drive clutch torque on the dissipa-

tion coefficient value is established. The recommended values of 

rigidity and dissipation coefficient for a roller forming unit with an 

energy-balanced drive are determined. Keywords: roll forming unit, drive, force, moment, 

rigidity, dissipation. 

Problem formulation 

During the operation of roller forming units designed for forming reinforced concrete products, con-

siderable dynamic loads appear both in drive and forming trolley elements [1–14]. Despite a rather extensive 
research into the technological process of forming reinforced concrete products by the non-vibration roller 

forming method [1–4], the dynamics of a forming trolley movement and its influence on the formation pro-

cess have not been investigated yet. Little attention has been paid to the modes of a forming trolley move-
ment and the forces arising in drive elements.  

Analysis of recent research and publications 

In the existing theoretical and experimental studies of roller forming units designed for forming rein-

forced concrete products, the design parameters and productivity of the units are substantiated [1–4]. At the 
same time, insufficient attention is paid to the study of the existing dynamic loads and movement modes, 

which greatly affect both the operation of the units and the quality of the finished products. During continu-

ous start-stop modes, considerable dynamic loads appear both in the drive and forming trolley elements, 
which may lead to the premature failure of the units [1–6]. Therefore, the task of studying dynamic loads in 

the elements of the units is actual. In [15–19], loads in the roll forming unit elements were determined, how-

ever, the rigidity and dissipation coefficients of the drive were not taken into account. 

Purpose of the paper 

The purpose of this paper is to determine the loads in the elements of a roll forming unit with an en-

ergy-balanced drive, taking into account the drive rigidity and  dissipation coefficient.  

Statement of the research problem 
In order to reduce energy consumption in roller forming machines, a design of a roller forming unit [20, 21] 

was proposed to provide the compaction of reinforced concrete products on a single technological line. It consists of 

three forming trolleys, located parallel to each other on one side of the drive shaft, which are set in reciprocating 
movement from one drive. It is composed of three slider-crank mechanisms, whose cranks are tightly fixed on one 

drive shaft and shifted to each other at the angle 0120 . Fig. 1 shows a roller forming unit with an energy-

balanced drive. Each of the forming trolleys 11, 8 and 15 (Fig. 1, a) is mounted on the gantry 14 and performs recipro-

cating movement in the guide rails 9 over the cavity of the form 10. The forming trolley 11 consists of the feeding 

hopper 12 and coaxial sections of the compaction rollers 13. The other two trolleys have the same design. The trolleys 
11, 8, and 15 with distribution hoppers are set into reciprocating movement by a drive made in the form of three slider-

crank mechanisms, whose cranks 5, 3, and 2 are rigidly fixed on one drive shaft 4 and shifted to each other at the angle 
0120 . The connecting rods 7, 6 and, 1 are hinged to the forming trolleys 11, 8, and 15 while their other ends are 

                                                   
 V. S. Loveikin, K. I. Pochka, Yu. O. Romasevych, 2018 

mailto:lovvs@ukr.net
mailto:romasevichyuriy@ukr.net
mailto:shanovniy@ukr.net


DYNAMICS AND STRENGTH OF MACHINES 

ISSN 0131–2928. Journal of Mechanical Engineering, 2018, Vol. 21, No. 2 33 

connected to the cranks 5, 3, and 2. Such a design of a roller forming unit makes it possible to reduce the dynamic 

loads in the drive elements, extra devastating loads on the frame structure and, accordingly, increase the unit durability 
as a whole. Fig. 1, b shows a kinematic scheme of a roller forming unit with an energy-balanced drive for compacting 

reinforced concrete products on a single technological line. In this kinematic scheme, r  is the radius of the cranks 5, 

3, and 2; l  is the length of the connecting rods 7, 6, and 1;   is the angular coordinate of the first trolley crank posi-

tion;   is the displacement angle of the cranks 5 and 3, 3 and 2, and 2 and 5 with respect to each other; 
1В

x , 
2В

x , 

and 
3В

x  are the coordinates of the mass centers of the trolleys 11, 8, and 15 respectively; 1 , 2 , and 3  are the an-

gular coordinates determining the positions of the connecting rods 7, 6 and 1 relative to the horizontal.  

 

 

a b 

Fig. 1. Roller forming unit with an energy-balanced drive: 

a – general view; b – kinematic scheme  

During the operation of a roller forming unit with an energy-balanced drive, there arise significant dy-

namic loads in the elements of the transfer mechanism from the electric motor to the cranks, leading to the prema-

ture destruction of the drive structural elements. To study these loads, we use a two-mass dynamic model of a 

roller forming unit (Fig. 2). In this model, the following symbols are used: 1drM  is the driving moment on the 

driving electric motor shaft, reduced to the crank rotation axis; 2drM  is the moment from the movement resistant 

forces of the forming trolleys with compaction rollers, reduced to the crank rotation axis; 1drJ  is the inertia moment  

of the electric motor rotor and drive elements, reduced to the 

crank rotation axis; 2drJ  is the inertia moment of the forming 

trolleys and crank-and-rod mechanisms, reduced to the crank 

rotation axis; с  is the drive mechanism rigidity, reduced to the 

crank rotation axis; 1  and 2  are the generalized coordinates 

of the reduced masses 1drJ  and 2drJ , respectively. 

 

Fig. 2. Dynamic model of a roller forming unit 

The drive mechanism reduced moment of inertia can be determined by the following dependence: 

   2
1 u cthrtrdr JJJ ,  (1) 

where rtrJ  and cthJ  are the moments of inertia of the engine and clutch, connecting the motor shaft and the 

reducer input shaft, respectively;   is the coefficient taking into account the moments of inertia of the reduc-

er elements, reduced to the rotor shaft; u  is the reducer transmission ratio.  

The reduced moment of inertia 2drJ  can be determined from the second part of the mechanism 

(Fig. 3), which includes crank-and-rod mechanisms with forming trolleys. In this case, we divide the mass of 

the connecting rods 7, 6, and 1 conrodm  in equal parts in the points 1A  and 1B , 2A  and 2B , and 3A  and 3B . 

Then the moment of inertia of the cranks can be determined by the dependence  

 







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2
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and the trolley masses will have the look  
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In the expressions (3) conrodm  is the mass of each of the connecting rods; 
1Bm , 

2Bm , 
3Bm  are the 

masses of the forming trolleys 11, 8 and 15, respectively (Fig. 1, b); crankJ   is the moment of inertia of each 

of the cranks relative to their own rotation axes; r is the radius of each of the cranks; crankJ  is the moment of 

inertia of each of the cranks with half the mass of the connecting rod relative to their own rotation axes; 
1Bm , 

2Bm , 
3Bm  are the masses of the trolleys 11, 8, and 15 with half the mass of the connecting rod.  

The reduced moment of inertia 2drJ  can be determined from the condition of equality of the kinetic 

energies of the crank-and-rod mechanisms with the trolleys rT  (Fig. 3) and the second disk of the dynamic 

model (Fig. 2) mT , ie. mr TT  . 

  
a b 

Fig. 3. Calculation scheme of the loads on the elements of a roller forming  unit with an energy-balanced drive:  

a – load on the forming trolley; b – load on the drive mechanism  

We find the kinetic energy of crank-and-rod mechanisms with trolleys  

 2222
2 332211 2

1

2

1

2

1

2

1
SBSBSBcrankr xmxmxmJT   ,  (4) 

where 
1Sx , 

2Sx , and 
3Sx  are the velocities of the mass centers of the first, second and third forming trolleys, respectively. 

Since the three trolleys move progressively, all their points have the same velocity. Therefore, we can 

accept that 
11 BS xx   , 

22 BS xx   , and 
33 BS xx   . We express the velocities of the points 1B , 2B  та 3B  through 

the coordinates of the cranks and their derivatives in time. In order to do this, we use the dependencies  
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Then, taking into account (5), the dependence (4) will have the form  
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The kinetic energy of the second disk in figure 2 is expressed by the dependence  

 2
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Equating the dependences (6) and (7), we have  
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From the equation (8) we obtain  
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To determine the reduced moment of the resistance forces 2drM  we use figure 3, on which the fol-

lowing symbols are used: 1F , 2F , and 3F  are the forces in the connecting rods necessary for overcoming the 

resistance forces acting on the trolleys; 1 , 2 , and 3  are the angular coordinates determining the positions 

of the connecting rods of the first, second and third trolleys relative to the horizontal; 011F  and 012F  are  the 

horizontal forces of interaction of  the compaction rollers with a concrete mixture for the first forming trol-

ley; 011R and 012R  are the vertical forces of interaction of the compaction rollers with a concrete mixture; 

11N  and 12N  are the normal reactions of the forming trolley guide rails  to the guide rollers; redf fNF  1111 , 

redf fNF  1212  are the friction forces of the guide rollers by the forming trolley guide rails; redf  is the re-

duced friction coefficient of the guide rollers by the forming trolley guide rails; G  is the forming trolley 

gravity force; a , b , p , e  are the geometric dimensions of the forming trolley; D  is the pressure roller di-

ameter; d  is the guide roller diameter; l  is the connecting rod length. For the second and third forming trol-

leys, the force parameters 021F , 022F , 031F , 032F , 021R , 022R , 031R , 032R , 21N , 22N , 31N , 32N , 21fF , 22fF , 

31fF , 32fF , redf , G  and the geometric characteristics a , b , p , e , D , d , l  will be identical.  

To determine the reactions of the guide rollers 11N , 12N , 21N , 22N , 31N , and 32N  as well as the 

forces in the connecting rods 1F , 2F , and 3F , let us consider the static equilibrium of the first, second and 

third forming trolleys. We design all the forces acting on each of the trolleys on the coordinate axes x  and 

y , and compute the sum of the moments of these forces relative to the points, 1B , 2B , and 3B  (Fig. 3). As a 

result, for the first forming trolley we obtain 
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for the second forming trolley we obtain  
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for the third forming trolley we obtain  

 
     

     


























.0aa-

2
bb-

;0sin

;0cos

032031032031

32313231B

032031323133

032031323133

3

pRpReFF

d
fNNpGpNpNM

RRGNNFY

FFfNfNFX

red

redred

   (12) 

Having solved the systems of equations (10) – (12), we find  
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 GNFRRN  121101201111 sin ;   (19) 

 GNFRRN  222202202121 sin ;   (20) 

 GNFRRN  323303203131 sin .   (21) 

On the basis of the dependences (13)–(15) we find the moments of the resistance forces Mres1, Mres2 and Mres3 

from each of the forming trolleys and the total moment of the resistance forces Mdr2, reduced to the crank rotation axis 
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The magnitude of the angles β1, β2, аnd β3 can be determined from the ratios  
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From here  
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Using the Lagrange equation of the second kind, we make differential equations of the motion of a 

roller forming unit with an energy-balanced drive, represented by a two-mass dynamic model  
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where t  is the time; T  is the system kinetic energy; 
1

Q , 
2

Q are the generalized forces corresponding to the 

coordinates φ1 and φ2; П  is the system potential energy that has the form 
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The system kinetic energy, taking into account the expression (9), is expressed by the dependence  
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The generalized forces have the form  

 11 drMQ  ;      22 drMQ  ,   (31) 

where 1drM  is the driving moment on the electric motor drive shaft, reduced to the  crank rotation axis, 

which is determined by the Kloss formula  
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Here critM  is the critical (maximum) moment on the electric motor shaft; u is the drive mechanism 

transmission ratio; dr  is the drive mechanism efficiency coefficient; 0  is the synchronous angular speed 

of the electric motor rotor; crits  is the electric motor critical slip determined by the dependence 






  12

nomcrit ss , 

where   is the electric motor maximum ratio (electric motor overload capacity); noms  is the electric motor nomi-

nal slip determined as follows: 

0

1
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Here nom  is the nominal angular speed of the driving electric motor rotor. Taking the derivatives of 

the system kinetic energy expression (30), we obtain 
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After substituting the expressions (29), (31)–(33), (13)–(15) and (25) into the system of equations 

(28) we have 
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   (34) 

Results of the solution  

For a roller forming unit with the parameters 4 to be given below, the functions are determined and the 

graphs are built, expressing the changes in the reactions of the guide rollers 11N , 12N , 21N , 22N , 31N , and 32N  

(Fig. 4), forces in the connecting rods 1F , 2F , and 3F  (Fig. 5), and moments of the resistance forces 1resM , 

2resM , 3resM  and 2drM  (Fig. 6), depending on the rotation angle of the cranks. These parameters are the follow-

ing: mr 2.0 ; ml 8.0 ; horizontal interaction forces NFFFFFF 7962032031022021012011   be-

tween the compaction rollers and a concrete mixture during the process of  its being compacted by a roller form-

ing trolley with two mR 11.0  compaction rollers, the mixture having the following characteristics: product 

height mh 22.00  ; product width mB 164.1 ; type of compacted mixture is fine-grained; concrete mixture 

humidity %10W ; required product compactness 98.0compk ; value of the maximum contact pressure provid-

ing 98.0compk  at %10W , according to experimental data kPap 625 ; 

NRRRRRR 9740032031022021012011  ; kgmconrod 64 ; kgmmm BBB 1000
321
 ; 

008.0redf ; mD 22.0 ; m046.0d  ; mа 27.0 ; mb 37.0 ; mр 52.0 ; mе 21.0 ; trolley mass with 

half the mass of the connecting rod kgmmm BBB 1032
321
 ; NG 9.10124  by the expressions (13)-(25), 

taking into account (27).  
The nominal rated power of the electric motor is determined by the mean value of the reduced mo-

ment of resistance for one crank rotation cycle [22, 23]. According to these data, a 4A series 4А160М6У3 

basic-version asynchronous electric motor with a short-circuit rotor was chosen, having the following pa-

rameters: engine rotor synchronous speed srado /72.104 ; engine rotor nominal speed 
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sradnom /1.102 ; engine rotor critical speed sradcrit /95.94 ; engine rotor moment of inertia 

2183.0 mkgJrtr  ; starting moment mNМ start  3.176 ; nominal moment mNМ nom  915.146 ; critical 

moment mNМcrit  83.293 ; overload capacity 0.2
nom

crit

М
М

; nominal slip 025.0noms ; critical 

slip 0933.0crits . In addition, the PF (pin flexible) claw clutch [25] having the nominal transfer torque 

mNМ nom  500  and moment of inertia 232.0 mkgJcth   as well as the C2-400 reducer [25] with the 

transmission ratio 8.9u   and moment of inertia 2046.0 mkgJred   were selected. 

  

Fig. 4. Charts of the reaction changes of the guide rollers 

N11 (1), N12 (2), N21 (3), N22 (4), N31 (5), and N32 (6), 

depending on the rotation angle of the cranks 

Fig. 5. Chart of the force changes in the connecting rods 

F1 (1), F2 (2), F3 (3) depending on the rotation angle of 

the cranks 

 

Fig. 6. Chart of the resistance force changes Mres1 (1), Mres2 (1), Mres3 (3) and Mdr2 (4)  

depending on the rotation angle of the cranks 

The values of the first and second transfer functions of the trolleys are determined from the expres-

sions of the functions of changing the coordinates of the first, second and third forming trolleys in accord-

ance with (Fig. 1, b) [5, 15, 22, 23] 

 12 coscos
1

 lrxB ;   (35) 

   22 coscos
2

 lrxB ;   (36) 

   32 cos2cos
3

 lrxB .   (37) 

From the equations (26) we can obtain  
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The expressions 1cos , 2cos , and 3cos  in the expressions (38)–(40), can be expanded into series by 

Newton's binomial formula  
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The ratios 
l

r
 for roller forming units with crank-and-rod drive mechanisms do not exceed ⅓, and the 

series (41)–(43) converge fairly quickly, so, with satisfactory for the practice accuracy, the third and subse-

quent members of the series (41)–(43) can be thrown away. Then the dependencies (35)–(37) will look as 
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The values of the first and second transfer functions of all three forming trolleys are determined from 

the expressions (44)–(46) by the following dependencies: 
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As a result of the numerical experiment, it has been established that the optimal value of the rigidity, re-

duced to the crank rotation axis, of the drive of a roller forming unit with an energy-balanced drive with the above 

parameters equals 
m

Nс 150000 . The determination of the optimal value of the drive rigidity was carried out 

according to the method described in papers [26, 27]. At this rigidity value, minimum loads are observed in the 
drive clutches. This rigidity value is used in the following calculations.  

To study the movement dynamics of a roller forming unit with one taking into account the dissipation 

during the start-stop movement modes of forming trolleys, the system of equations (34) was supplemented by the 

drive dissipation value k  
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  (49) 

Having solved the system of equations (49), taking into account the expressions (2), (27), (47) and (48), a 

graphical dependency of the change of the maximum maxcthМ  (Fig. 7) and the mean square thМ c

~
 (Fig. 8) torques in 

the  clutch was determined and built, depending on the dissipation coefficient. The analysis of the graphs shows that 

at all the values of the dissipation coefficient in the range from 
m

N
k

sec
100


  up to 

m

N
k

sec
15000


  the maxi-

mum and the mean square torques decrease, however, a in the range from 
m

N
k

sec
100


  up to 

m

N
k

sec
8000


  

they change sharply, and then stabilize smoothly, which almost does not affect the dynamics of the unit movement. 

Proceeding from the system of equations (49), the graphs of the torque change in the clutch cthМ  (Fig. 9) 

were calculated and built for the steady movement section, depending on the time at the values of the dissipation 

coefficient 
m

N
k

sec
2000


  (position 1) and  dissipation coefficient 

m

N
k

sec
10000


  (position 2). The analy-
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sis of these graphs shows that when the drive dissipation coefficient 
m

N
k

sec
2000


 , the torque value in the 

clutch in the steady movement mode changes in the range from mNМcth  1450min  to 

mNМcth 1330max . At the drive dissipation coefficient 
m

N
k

sec
10000


 , the torque value in the clutch in 

the steady movement mode changes in the range from mNМcth  600min  to mNМcth  580max .  

 

Fig. 7. Chart of the maximum torque maxcthМ  changes in the 

clutch, depending on the dissipation coefficient  

 

Fig. 8. Chart of the mean square torque cthМ
~

 change in 

the clutch, depending on the dissipation coefficient  

 

Fig. 9. Chart of the torque in the clutch cthМ , depending 

on the time  

 

Fig. 10. Graphic dependence     2121 ,    

 

 

Fig. 11. Graphic dependence     2121 ,    

 

Fig. 12. Graphic dependence     2121 ,    
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Fig. 10–12 show the graphic dependencies     2121 ,   ,     2121 ,   , and 

    2121 ,    at the dissipation coefficient values 
m

N
k

sec
2000


  (position 1) and 

m

N
k

sec
10000


  

(position 2), respectively. The analysis of these graphs shows the identical nature of their changes, but at the drive 

dissipation coefficient value 
m

N
k

sec
2000


  their amplitude along the abscissa and ordinate axes is more im-

portant than at 
m

N
k

sec
10000


 . 

Conclusions 

1. As a result of the research carried out in order to increase the reliability and durability of a roller 
forming unit with an energy-balanced drive, the loads in both its elements and drive were calculated, and the 

function of changing the required torque on the crank drive shaft was determined to ensure the compaction of 

products from building mixtures, taking into account the rigidity and dissipation of the drive.  
2. For a roller forming unit with an energy-balanced drive, the drive rigidity value, reduced to the 

crank rotation axis, is determined, at which the minimum loads are observed in the drive clutches.  

3. The dependence of the torque in the drive clutch on the dissipation coefficient values is analyzed.  
4. For a roller molding unit with an energy-balanced drive with the above parameters, the recom-

mended value of the dissipation coefficient is in the range from 
m

N
k

sec
8000


  to 

m

N
k

sec
10000


 . In-

creasing the dissipation coefficient value will not significantly affect the unit dynamics, but will require more 

precision in the manufacture of the drive.  
5. The results of the work may in the future be useful to refine and improve the existing engineering 

methods for estimating the drives of roller forming units, both at design stages and in practical use. 
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