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Mooenell CKiIHYeHHUX elleMenmi6 i 3pooumu npoyec po3paxyHKy Ol NPAGULLHUM | KOMRAKMHUM. [{ia supiulenHs nocma-
671€HO20 3a60aHHA OYIA CKIAOEHA CUCIMEMA MAMPUYHUX DIGHAHb. BoHa 2pyHmyemvcs Ha GUKOPUCTAHHI 3a1eHCHOCTEN eHe-
Ppeemuuno2o 6anancy nio 4ac MexaHiuHoi KOHMaKmuoi 63acMo0ii enemMeHmie pomopa, a maKodic menio6o2o 6aiaHcy y pasi
BNIUBY HECTNAYIOHAPHO20 MENN06020 NOMOKY. I1i0 uac cmeopenHs YucenbHo20 anrzopummy po3e’si3aHts NOCMAGIEeHOT 3a-
0aui 6UKOPUCMO8YBAN0CS npsMe posKiadanns Xoaeyvkoeo. /st 000ans po3e’sa3Ky 6inbuiol KOMIAKMHOCHI 3ACMOco8y6a-
nacs cxema Lllepmana. Bei pospaxynku nonieé nepemiwensb i memnepamyp npogedeti 0Jisi 060X WUPOKO NOUWUPEHUX MUNie
3'€OHamb, K GUKOPUCOBYIOMbCS OISl CMEOPEHHS MAKUX POMOpIB, a came: 3'€0HAHb 3 3a30POM Md HAMALOM.

Knrouosi cnosa: mpusumipui CKiHUeHHI eleMenmu, pomopu 2a3o8ux mypOiH, nojs nepemiujenv i memnepa-
myp, 3a0aua KOHMAKMHOL MePMONPYI’CHOCI, 3A30D, HAMSLe.
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Introduction

The work of structures in corrosive environments leads to their corrosive wear. In this case, it should not
be forgotten that when constructing mathematical models of corrosive wear of structures, it is also necessary to
take into account the work of protective coatings and determine the duration of the incubation period, which is
the durability of the applied protective coatings. Constructive elements with damaged protective coatings are
able to continue to be subjected to acting loads for a considerable period of time, and their accelerated corrosion
wear should be taken into account in zones with damaged areas of coatings. Consequently, the work of the struc-
tures protected by coatings consists of two periods: with a protective coating (during which this coating loses its
protective properties and collapses) and with a damaged protective coating (when there is a severe corrosive
wear of unprotected structure sections).

To date, a number of models have been built, that take into account the reduction in the protective prop-
erties of polymer coatings, and models of deforming structures with protective polymer coatings, for example
[1-3]. This work is a continuation of research in the field of optimal design of structures under a combined ap-
proach to taking into account corrosion and the corrosion resistance of coatings, carried out in [4]. The proposed
(and implemented on the example of optimization of rectangular flexible elements in [4] model allows taking
into account the smooth transition of the work of structures both with and without a protective coating.

This paper considers a solution to a more complicated problem (due to its multi-extremity) than that in
[4]. It is the problem of optimization (finding the optimal form) of I-section flexible structural elements under a
fuzzy approach to taking into account corrosion and the protective properties of anticorrosive coating.

Problem statement
We choose, as the basic equation of corrosion, the model proposed by V.M. Dolinsky [5], which takes
into account the effect of stresses on the corrosive wear of structures (Fig. 1)

as 0, whenr<t,,
dr | -20o+ [3|(5m|), whent 21, ’

ey

where o and B are constant coefficients; Sy and S are the _
initial and current thicknesses of an I-beam flange (Fig. 1); i
G, tink are the maximum stresses and time during which the
structure completely loses its anticorrosive properties in the So | SEEER e,  —
current section, respectively. 5 H2

It is assumed that the upper and lower faces of the f ;
section are susceptible to corrosion and the following fuzzy H)2
model of corrosion wear is proposed, taking into account Se | Feeecdbeenes = 5
the decrease in coating protective properties [4]

ds {— 2(c+Blo, |1~ D). when 0< D <1 o B

dt - 2(0( +B |G’"|)’ when D =0, Fig.1. Cross-section of a flexible I-beam element

where D is the parameter characterizing the protective properties of the coating under consideration (at the
initial moment of time it is taken to be unity, and at the moment of loosing protective properties D=D),) it is
determined from the equation [4]

dD/dt =-A(1+mo), (3)

where A is the coefficient that takes into account the effect of the type of protective coating and the nature of
the corrosive environment; m is the coefficient that takes into account the effect of stress state level on the
kinetics of the decrease in the protective properties of the coating; ¢ is equivalent stresses.

2. Solving equations of corrosion and determining the time for which a structure completely loses its
corrosion protection coating
We now turn to the solution to the equations (2). From the equation (3) we have
dD

dt =—m . 4
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Substituting (4) into the upper part of the equation (2) and dividing the variables, we obtain
All + m|o|)dS
-+ il =(1-D)dD (5)
200+ Blo] )

Assuming that the bending of an I-section structure occurs in the x z plane and that, in the case of
bending, mainly the I-section flanges operate, we find its geometric characteristics.
The moment of inertia of an I-section

1,~2BS(H/2+S/2) =2BS(H? 14+ HS 12+ 5%/ 4)=~ 2BS(H? 14+ HS 12)= HBS(H 12+ )

Then the moment of resistance of an I-section and the maximum stresses in it are determined respectively as

I,
L _HBS(H/2+S)_ oo o=lon=d - M ©)
H/2+S H/2+S W, HBS
Substituting (6) into (5) and proceeding to integration, we have
0 s
At Ul+mM/BSH
J.(l—D)dD=—J‘MdS. (7
1 2/ (a+PBM/BSH)
After integrating (7), we obtain the following solution to the upper part of the equation (2):
S —S+(a—b)nSetl_& )
S+b A

where a=mM /BH; b =M / BHo.

Before proceeding to the solution of the lower part of the equation (2), we find the time 7. for

which the an I-section structure completely loses its anticorrosion coating (the upper and lower faces of the I-
section flanges are meant). The derivation of the expression is carried out in a similar manner, as in [4].

Taking the upper limit of the integral on the right-hand side of the equation (7) for D, after integrat-
ing, we obtain an equation analogous to (8)

D2—2D+1+é{S—SO+(a—b)ln S”’}:o.

0] S,+b
Hence
D=1+ -2l s—5 +(a=p)n>F2 ] )
o S,+b

Differentiating the left and right sides of the equation (9), we have

ot Alo[-1+(b—-a)s +b)] s 10)

2\/2[(50—S)+(a—b)lnif+b}

+b

Substituting (10) into (4), after integrating, we obtain the following integral expression for 7, :
1 1+ (a=b)/(S +b)
T=—|
20,

S(14ar8) 2] s, =5 +(a—b)inSetb
o S+b

The approximate value 7. can be found from (4) (at D, =0) by the formula

1

T, = ;
All+M /BHS,,)

ds.

where S.,=(S, +5)/2.
To solve the lower part of the equation (2), we divide the variables in it
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Sk

T,
jd—5=—2ocjdz, (11)
J 1+pM /BHSo 0

where S, is the critical thickness of an I-beam, determined from the principle of equal stress of a structure at the
final moment of its operation 7" by the formula S, =M / [G]BH ; [o] is the maximum permissible structural
stresses; 7} is the structure operating time after a complete loss of corrosion protection, determined (as in [4]) by
the formula 7, =7 -T..

After integrating (11), we finally have
M M /[o]BH +b

+S+bln
[c]BH S+b

After solving the equations (2), as well as determining the time 7. during which the upper and lower

faces of I-section flanges completely lose the anticorrosive coating, it is possible to directly proceed to the optimi-
zation process.

20T -T.). (12)

3. Step-by-step solution to an optimization problem

Accepting (as in [4]) as the goal function the initial weight (or volume) of the construction, it should be
noted that the process of its (goal function) minimization is more complicated than in the case of optimizing a rec-
tangular cross-section. Preliminary calculations, using the algorithm of the random search method [6], showed
that if all the dimensions of an I-beam are included in the vector of variable parameters, i.e. for each fixed value

ofx X = {xl 3 Xy, Xgy Xgs Xs }T = {S 0.5, H,B, S}T is taken as the vector of variable parameters, then the optimization

problem is multi-extremal (has a lot of local minima) and is difficult to solve. In this case, the optimization prob-
lem was divided into 2 stages.

3.1. The first stage of optimization
Let's consider the first optimization stage. Here, the vector of variable parameters, for each fixed
value of x, includes the initial flange thickness, the flange thickness at the time 7., the B flange width, and

the I-beam wall thickness 9, i.e.,
)?:{xl,xz,x3,x4}T :{SO,S,B,S}T

The value of the I-beam depth H along the structure length is assumed to be fixed.

As a numerical implementation (as in [4]), we consider the optimization of a cantilever beam with a force
F at the end. The initial data of the problem: F=10 kN; length of the beam L=1 m; m=0.005 MPa'; o=1 mm/year;
A=0.732 year; P=1x10" mm/(MPaxyear); [6]=210 MPa; T'=5 years.

The following constructive limitations were accepted: 1) B/S;<24; 2) H/6<60; 3) 6>3 mm;
4) B>3 mm; 5) S;<30 mm. During the optimization, three variants of different values of the I-beam depth H:
a) H;=80 mm; b) H,=100 mm; c¢) H3=120 mm.

The optimal dimensions of the initial thickness of I-beam flanges Sy(x), their appearance at the time 7', —

S(x) and at the final moment of the structure operating time Sy(x) are shown in figure 2. The optimal dimensions of
flange widths and the wall thickness of an I-section cantilever beam in all its points are shown in figure 3. De-
pendences of change in the cross-sectional area Ay(x) long the entire length of the beam (for variants a, b and c)
are shown in figure 4.

As can be seen from figure 2, in all three cases, the optimum thickness S, reaches its maximum (30 mm)
practically along the entire length of a cantilever beam, that is, restriction 5 is active in the process of searching for
optimal solutions. The exception is the cantilever beam area, close to the support (x<100 mm), starting from
which there is a sharp decrease in the initial thickness, its final value at x=0 being Sy=0(27-1/A)=8.63 mm. This
analytic expression can be easily obtained from the system of equations (8) and (12) taken at x=0

{SO—Sz(x/A

S=20(T-T.), (13

where T, =1/A.
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The tendency to a sharp decrease
after an equal section (similarly to Sp(x)) is
retained for the curves S(x) and Si(x), the
value S being little different from the value
of S along the entire length of a cantilever
beam (practically by the thickness of the
protective anticorrosive layer, as was also
noted for a rectangular beam). From (13) it
can be seen that for x=0 the difference
So—S=0/A=1.37 mm.

The optimal value of the I-section
wall reaches its minimum along the entire
length of the cantilever beam, that is,
0=3 mm, and in all calculation variants (see
Figure 3).

As regards the curves B(x), it is evi-
dent that the optimum flange width in the
corresponding points is inversely propor-
tional to the corresponding I-beam wall
height H: a) H,=80 mm; b) H,=100 mm;
¢) H=120 mm.

So, at H=80 mm, we have the flange
width B (practically along the entire length
of the cantilever) greater than in variant b,
where H=100 mm. The same pattern is obvi-
ous when comparing variants b and c.

This tendency is typical for all the
points of a cantilever beam, again except for
the area at x<100 mm, where the curves B(x)
asymptotically approach their minimum
value (B=30 mm), which explains the sharp
decrease of the curves Sy(x), S(x) and Si(x) in
this area, and the resulting optimization
(minimization) of the cross-section Ay.

Comparing the dependence curves
of a cantilever cross-section along its length
Ay(x) for all the variants (Fig. 4), it can be
concluded that for x>200 mm the cross-
sectional area is inversely proportional to the
given wall depth H, at x=200 mm they are
practically equal (A~60 mMm) — the curves
intersect, and at x<200 mm there is a direct
dependence of Ay on H.

As a result of optimization of the
first stage, in all the variants there is a
smooth transition from the I-section (in the
area 100 mm=<x<1000 mm) to the rectangular
one (at x<100 mm), figure 3.
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3.2. The second stage of optimization _

Taking into account the results ob- om —
tained above, we proceed to the second stage. |
Since both the initial thickness of the flange
and the wall thickness & do not change in the
area of 100 mm=<x<1000 mm during the op-
timization process, they are taken here as
fixed wvalues, namely, S;=30mm and
0=3 mm. In this case, the vector of variable
parameters in this area is taken as

X ={H,B}' . At x<100 mm, the widths of

the flanges and the I-beam wall remain un-
changed. In this area, they can be assumed to
be fixed, namely, B=5=3 mm. Here, the vec-
tor of variable parameters is taken as S

X = {SO,S,H}T . ° ‘h_""\@“*«::\_ ____Z IJ stage
The results of the second stage of |'° ‘K».,\, ,,,,,,, c ‘ )

optimization, obtained as above, using the | 5 h\"““, —- e Istage

algorithm of the random search method [6], 0 % < )

are shown in figures 5, 6. The optimal can- | 100 90 8 70 60 50 40 30 20 10 0

tilever beam shape is shown in figure 7.
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Fig. 8. Analysis of the two-stage optimization

Conclusions

The model of the combined approach to the calculation of corrosion and protective properties of anticor-
rosion coatings proposed in [4] was realized when determining the optimal dimensions (Fig. 5, 6) and the shape
(Fig. 7) of the I-section flexible elements in the example of a cantilever beam. As can be seen from figure 7, as a
result of the stage-by-stage optimization, it was established that the I-section of a beam (along its entire length,
that is, at 0<x<1000 mm) smoothly transforms into a rectangular one, which is the case for x=0.

A comparative analysis of the two optimization stages is shown in figure 8.

From figure 8 it can be seen that at all the points x of a cantilever beam the optimal cross-sectional
areas obtained in the second stage are less (or at least equal to) the corresponding cross-sectional areas ob-

tained in the first stage, that is, 4" (x) <Al (x) This is the proof that only as a result of a stage-by-stage opti-

mization is the construction of the minimum weight. In conclusion, it should be noted that the proposed
model (2), implemented in the optimization of structural elements of rectangular [4] and I-sections, operating
under corrosion conditions, can be used both in analytical solutions and with the help of numerical methods.
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IHoeTanmHa onTUMi3anisi 3SrHHHUX eJIEMEHTIB IBOTABPOBOIO Nepepisy NpH HeYiTKOMY IiaAXoAi 10
BpaxyBaHHsI KOPO3ii Ta 3aXHCHHUX BJIACTHBOCTEl AHTHKOPO3iiHOT0 MOKPUTTS

®piaman M. M.

KpuBopi3bkuii Metanypriitauii inctutyT HarionanbHoi MetanypriitHoi akagemii YKpainy,
50006, Ykpaina, [lainporeTpoBchka 00:1., M. Kpusnii Pir, Byn. Crenana Tineru, 5

L7 poboma € npooosaicenuam 00CniONHCeHHA 8 00IACMI ONMUMATLHO2O NPOEKMYBAHHA KOHCIMPYKYIl npu
KOMOIHOB8AHOMY NiOX00i 00 00NIKY KOPO3ii i AHMUKOPOZIUHUX 3AXUCHUX élacmugocmell nokpummis. Ak 3asnaya-
J0cA paniule, Maxi NOKpUmMms A6aA10MmMeb cob0i0 6ap'epui wapu, wo ympyoHaioms NPOHUKHEHHS a2peCusHo2o cepe-
008uUwa 00 NOBEPXHI KOHCMPYKYIi i 8i0CY8AIOMb NOYAMOK Npoyecy iHMeHCU8Hoi Kopo3ii. ¥V ybomy eunaoxy easic-
JIUBO 8pAX08YBAMU He MINbKU KOPO3IUHUL 8NIUE HA KOHCMPYKYIIO, dlle MAKoXdC eMimu oyiHumu yac, 3a aKuil aH-
MUKOpO3iliHe NOKpUmms empadac c8oi zaxuchi eracmugocmi. OCKinbKy KOHCMPYKMUGHI eleMeHmu 3i 3pyuHosa-
HUM 3AXUCHUM NOKPUMMAM MOHCEe NPOO0BICY8AMU CAPULMAMU Oit0Yi HABAHMANCEHHA NPOMALOM 3HAYHO20 NPO-
MICKY "acy, nompioHo 8paxoeyeamu ixXuiti NPUCKOPEHUU KOPO3IUHUL 3HOC 8 30HAX 3i 3PYUHOBAHUMU OLNAHKAMU
nokpummis. Omoice, poboma 3axuyenux ROKPUMmMAMU KOHCMPYKYIl CKIA0AEMbCA 3 080X Nepiodig: i3 3aXUCHUM
NOKpUmMmsaAmM (RpoOmaA20M AKO20 ye NOKPUMMs 6Mpaiac 3axXucHi 81acmueocmi i pyuHyemoscsa) ma 3i 3pyuHOBAHUM
3aXUCHUM ROKpummam (Koau mae micye iHmeHCUSHULl KOPO3IUHUL 3HOC He3axuujeHux OLIAHOK KoHcmpyKkyii). 3a-
NPONOHOBAHA 8 NONEPEOHbOMY 00CIIONCEHHT MOOenb (i peanizo8ana HaA NPUKAAO] ONMUMIZAYIT 32UHHUX eleMeHmis
NPAMOKYMHO20 nepepizy) 00380.1A€ 8paAxo8y8amu nIA6HUl nepexio pooomu KOHCMPYKYIll i3 3aXUCHUM NOKPUMMAM
i uacom pobomu KOHCMPYKYii, KOAU 3AXUCHI 8AACMUBOCMIT AHMUKOPO3IUHO20 NOKPUMMS NPAKMUYHO He Ollomb. Y
yitl pobomi po32ns10acmvpcs po36 30K CKAAOHIWOL (Yepe3 c8olo bazamoexcmpemalvbHicmy) 3a0aui onmumizayii
(3Hax00CenHsT ONMUMATLHOL POPMU) 3CUHHUX elleMeHmi8 KOHCmPYKYil [-20 (06omagposo2o) nepepizy npu Heui-
mromy nioxo0i 00 00Ky KOpO3ii i 3aXUCHUX BAACMUBOCMEN AHMUKOPO3IUHO20 ROKPUIMAL.

Kniouosi cnosa: xoposis, anmuxopo3iini nOKpummsi, Onmumizayis.
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