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Introduction

The problem of closing the existing crack in a medium is of great interest in fracture theory. It is known
[1-3] that stiffening ribs help to slow down the growth of a crack and even achieve its closure. Reducing defor-
mation in the direction perpendicular to the crack, stiffening ribs reduce the stress intensity factor in the vicinity
of the crack end. As a result, a zone of compressive stresses may appear, sufficient for crack faces to come into
contact. Problems of deformation of infinite plates reinforced by a regular system of ribs, whose cross-sections
are very narrow rectangles, is dealt with in extensive literature [4-9]. Considerable attention is paid to the inves-
tigation of plate destruction, strengthened by a regular stringer system [10—15]. In the papers mentioned, the
Griffiths fracture (model) is considered, i.e. a crack with non-interacting edges. At that, it is found that the stress
intensity factors under the combined action of the tensile stress and reinforcement elements can have a negative
value. This means the emergence of compressive stress zones in the vicinity of crack vertices, in which (in some
areas) the crack faces come into contact, which leads to the appearance of contact stresses.

The problems of the partial contacting of slit faces in a reinforced plate have by now been little studied.
The contacting of crack faces, taking account their width variability, was considered in [16-25]. The main task
of this paper is to construct a mathematical model of a partial closure of variable width slits in a perforated iso-
tropic plate reinforced by stiffening ribs.

Formulation of the problem

We consider an elastic isotropic medium with a system of foreign transverse rectilinear inclusions
and circular holes. Such a medium can be considered as an infinite perforated unrestricted plate, reinforced
by a system of stringers of very narrow cross-sections.

It is considered that the stringers are riveted to the plate at discrete points at a fixed pitch along the
entire length of the stringer, symmetrically relative to the plate surface (Fig. 1). The material of the stiffening
ribs is assumed to be elastic. At infinity, the reinforced plate is subject to uniform stretching along the string-

ers by the stress 67 =6, . The contours of the circular holes are free from external forces. From the contours

of the holes, variable width symmetrical rectilinear slits emanate. It is assumed that slit widths are compara-
ble with elastic deformations.
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Fig. 1. Calculation scheme of the problem

With regard to stringers, the one-dimensional continuum hypothesis is accepted, i.e. the thickness of a
stringer under deformation is considered unchanged, and its stress state is considered uniaxial. Stringers are not
subject to bending and only work in tension. The following assumptions are accepted: a) in a medium (plate), a
plane stress state is realized; b) neither the stringer truss reinforcing system nor the weakening of stringers due
to the mounting of attachment points is taken into account; c) the plate and stringers interact with each other in
the same plane and only at the attachment points; d) all attachment points are identical and have the radius ay
(clutch platform) which is small in comparison with their pitch and other characteristic dimensions. The action of
the attachment points is replaced by the action of the equivalent unknown concentrated forces applied at the
points corresponding to the centers of the attachment points.

Let there be a reinforced isotropic medium with a periodic system of circular holes with a radius 4
(A<1) and centers:

P,=mo (m==1,£,..), o=2.
Under the action of the external tensile load O 0 and unknown concentrated forces F,,, (m, n=+1,%2,...),

the slit faces will come into contact in some areas of the compressive stress region, where contact stresses will arise.
Outside these areas, the slit faces will be free of loads. The contact area between the slit faces is unknown in ad-
vance, but it is obvious that it will always start from the end points of the slits in the compressive stress region. It is
believed that the unknown size of the contact areas is comparable with the slit lengths. Thus, the problem set is an
elasticity theory problem with an unknown boundary, which must be determined in the course of the solution.

The problem under consideration consists in developing a mathematical model that makes it possible
to determine the contact areas, contact stresses in the contact areas, magnitude of concentrated forces, and
the medium stress-strain state outside circular holes and slits.

The boundary conditions on slit faces have the form

o, =0, Ty =0 in L', o, = p(x), Ty =0, v (x,00—v (x,00=—h(x) in L", (1)
on the contours of circular holes
C,—iT,y=0.
Here, L'is the set of load free slit zones; L" is the set of contact edge zones; v (x,0)— v~ (x,0) is the opening

of slit faces; h(x) is the width of slits; ©,, ©,, T,, are the stress tensor components; u, V are the vector dis-
placement components along the x, y axes, respectively; i* = —1.
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Because of the symmetry of the boundary conditions and geometry of the domain D occupied by the me-
dium, the stresses are periodic functions with the fundamental period ®. Based on the Kolosov-Muskhelishvili
formulas [26] and the boundary conditions on the contours of circular holes and slit faces, the problem reduces to
the determination (in the D domain) of two analytic functions ®(z) and W(z) from the conditions

P (1) + D(1) - [T®' (1) + ¥ (D) =0, D(xX)+D(x)+xD' () +¥(x) = f, Q)

where T=2Ae® + mm (m= £1, £2,...); x is the affix of the points of slit faces; =0 in L’ and f=p(x) in L".

Solution to the boundary value problem
We seek the solution to the boundary value problem (1) —2) in the form

D(z) = Dp(z) + D1(z) + Da(2), ¥(2) = Yo(2) + ¥i(2) + ¥a(2). (3)
Here, the complex potentials ®y(z) and ¥y(z) determine the stress and strain field in a solid rein-

forced plate under the action of the tensile stress 6, and the concentrated forces F,,,, and they can be deter-
mined by the following formulas:

1 i 11
®,(1)=—6y————— S 'F, | ———|, 4
() =7 2nh*(1+1<)Z "’"(Cl CZJ )

m,n

TO(Z)zlGO_LZva v +;Zva C_;_% _
20 2, (1+ %) ¢, G ) 2mh(+x) cz

m,n m,n
where £, is the plate thickness; k=(3—-Vv)/(1+Vv) is the plate material Poisson's ratio; C, =z—mL+iny,;
C, =z-mL—iny,; C; =mL+iny,. The summation symbol with a prime indicates that the summation ex-

cludes the index m=n=0.
The functions ®,(z) and ¥,(z), corresponding to the unknown normal displacements along the slit,
are sought in the explicit form

1
®,(2)=—— [ g(etg = (1-2)dr 5)
2(1)[4 ®

W) =5 [g@ysin? Zt-2)dr, L= [ A+ L]
2000 5 ®

1

The required function g(x) describes the derivative of the opening of slit faces
2u 9 [ . _
xX)=———" (x,00—v (x,0){,
g =2 (w0 - (x0)]
where L is the shear modulus of the reinforced plate material.
To find the complex potentials @,(z) and ¥»(z), we represent the first of the boundary conditions (2)
@, (1) + @, (1) - [T, (T) + ¥, (1) |*® = £,(8) + if, (8) + ©,(8) +i(,(0) , (6)
where f,(0) +if, (0) = —®, (1) — @, (1) + [TD], (7) + ¥, (7)|*®,
P,(0) +ip, (8) =~ (1)~ @, (1) + [T} (1) + ¥, (1]
To solve the boundary value problem (6), we seek the complex potentials @,(z) and W»(z) in the form

D,(z)=0y+ ) Oy, @)
2 0 ; 2k+2 (2k+1)!
) }\’2k+2p(2k) (Z) oo 7\.2k+2S(2k+1) (Z)
¥, (z)= £ P A 0 D
(0 Z:;B W2 op g AT o))
2 2
. 2z 1
Here p(z)=| = 2| T j_l(ﬁj Cs(=S w22 1
P (m) o [mz 30) " oW Z z-P) P P,
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From the symmetry conditions with respect to the coordinate axes, we find that
Ima2k+2=0, ImB2k+2=0 k=0,1,2,....
The relations (3) — (5), (7) define a class of symmetric problems with periodic stress distribution. From

the condition for the constancy of the principal vector of all the forces acting on the arc joining two congruent
points in the domain D, it follows that

2
s 5
o, =—/,A".
0 2432

The unknown coefficients ay;, B must be determined from the boundary condition (6). With respect
to the functions f(0) + if5(0) u @1(0) + ip(0), we assume that on the contour Itl=A they expand into Fourier
series, which in view of the symmetry of the problem have the form

LO)+if,(0)= D Ay e, Im Ay =0, ®)

k=—o0

2n
Ay, = 2—175 [l@+iF, @8 (k=0,21,22, ..,
0

0,(8) +i(,(8) = > B, e**, Im By, =0, )

k=—c0
2n
By, =2Ln [lo@+ig,@]e™d0  (k=0,£1,%2,...).
0

The unknown function g (x) and the coefficients oy, o of the functions ®@,(z), W,(z) must be determined
from the boundary conditions (2) and (6). Since the problem is periodic, the boundary conditions (6) degenerate
into one functional equation, for example, on the contour t=Ae", and the system of conditions (2) — to the bound-
ary condition in the basic period. To form the equations for the coefficients oy, Px, we expand the functions
D,(z), W4(z) into Laurent series in the neighborhood of the point z=0. W substitute the functions ®,(z), ¥1(z) in
the left-hand part of the boundary condition (6) on the contour z=Aexp(if) by their expansions into the Laurent
series in the neighborhood of the zero point, and the functions fi(0)+if»(0) and ¢;(0)+ip,(0) in the right-hand part
of said condition — by the Fourier series (8) and (9), respectively. Comparing the coefficients of the same powers
of exp(iB), we obtain two infinite systems of algebraic equations with respect to the coefficients oy, Pay. After
some transformations, we arrive at an infinite system of linear algebraic equations with respect to oy . »

Ogjin = D A0y +b; G =0,1,2,.), (10)
k=0
}\«2k+4
by =M, z k+§k+4 —~2k=2"
k=0 2

7\‘2j+2k+4

—2k=2>

(2j+DM g, N7 z (2j+2k+3)8 1112

b.=M, ., ,— ‘
2j+2 K122j+2 — (2])!(2k+3)!22j+2k+4

J

2 j42k+2
A ,

A =Q2j+DY,,

mlm

3 = (2i+1) gl A
Yoo = 3 &N + Z—H )

24i+4
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(2j+2k+2)!g;, i (2j+2k+4)!g, N
27+ D12k +1)1227+252 (2 j 4 2)1(2k +2) 127772k +
i (2j+2+ DIk +2i+ D18 i1 8prinh ™
27+ D)2k +1)1(25+1)1(24) 1222k 44

' 22 292\
boy =0, by=0, b, =28 (1—’”‘} Gok=1,2,..),

Yie =

+bj,k,

2 /+2k+A 12
M, = Ay + By,

The constants By . are determined from the following relations:

TCZ)\,Z B ial 2k+2
Bo=|1-=-| |-M +2Z +2k+2 Oysn | (11)

)2i+2k+d

(2 +2k+3)18 1440
=2 +3)0, ., + S
B21+4 ( J ) 2j+2 ; (2j+2)!(2k+1)!22/+2k+4

Requiring that the functions (3) satisfy the boundary condition (1), after some transformations, we
obtain a singular integral equation with respect to the function g(x)

ljg(l)ctg£(t—x)dt+H(x) = f(x). (12)
() (O]

Olopyin =M ;5.

Here H (x) =@ (x)+ D, (x)+ D (x)+ D, (x)+ xP[ (x) + xP’, (x) + ¥ (x) + P, (x) .

The singular integral equation (12), as well as the algebraic systems (10), (11) contain the unknown
values of the concentrated forces F,,,(m=1,2,...; n=1,2,...). To determine them, we use Hooke's law and the
method of pasting together two asymptotic forms of the desired solution. According to Hooke's law, the
magnitude of the concentrated force F,,, acting on each attachment point from the side of the stringer

F, = Es A —Av,, (m=1,2,...; n=1,2,...),
2y,n
where Ej is the Young's modulus of the stringer material; Ag is the cross-sectional area of the stringer; 2yon is
the distance between the attachment points; Av,,, is the mutual displacement of the considered attachment
points, equal to the elongation of the corresponding stringer section.

We assume that the mutual elastic displacement of the points z=mL+i(ny,—a,) and z=mL—i(ny,—ay) is
equal to the mutual displacement of the attachment points Av,,,. This additional displacement compatibility
condition makes it possible to find an effective solution to the problem set. Using the complex potentials (3)
— (5), (7) and the Kolosov-Muskhelishvili formula for displacements [26], after performing the elementary
calculations, we find the mutual displacement Av,, , in the following form:

Av,, =AY + AV + AV (13)
In view of some cumbersomeness, the values AV, Av'’ , and Av'?) are not given.
The required value of the force F,, is determined using the formulas (13) from the infinite system
EGA
F,= SAD p=12,..5r=12,..), (14)
2y,n

degenerating into one infinite algebraic system because of the periodicity of the problem.

The resulting equation (14), the algebraic systems (10), (11), and the singular integral equation (12)
are connected and they must be solved jointly. Solving them together on condition that there is no opening of
the slit faces in the contact edge zone and taking into account the condition of the limitedness of contact
stresses, we find the required function p(x), the values F,,,, and the contact zone of the slit faces.
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Numerical solution and its analysis

2j+1
Using the expansion —ctg— 7=—- Z 8jn 2y e bring equation (12) to the usual form
Jj=0
g(t) 2j+1
e EAC R jg(t)K(t Xdi+H(x) = f(x), K(t)= z 8im (15)
Jj=0

Taking into account that g(x)=—g(—x) and changing the variables, we bring the equation (15) to the
standard form

g*(r)
T T

8.(M =g, H.M=HE,), f0=/r(E),

-2 < LY
B(T]aT)=_ 9 lzgjﬂ(zz) u({AJ ’
=0

2j+DEHERj=Dfu ) 2j+D2H2j-D..[@j+D-2j+1-D]( u :
1-2:3 u, ) 1-2:3...(2j+1) uy )

To construct the solution to the singular integral equation (16), the method of direct solution of such
equations is used [27, 28]. The singular integral equation (16), in addition to the singularity in the Cauchy ker-
nel, has a fixed singularity at the exit point of the slit to the surface of a circular hole. At such points the func-
tion g (x) has the singularity x=+\ that differs from the root one. The character of this singularity can be estab-
lished from the analysis of the integral equation (16) [29].

dr+—jg*(r>B<n Ddt+H.() = £, (16)

Aj:(2j+1)+

The integral I g(t)dt , unlike the case of an internal slit, is equal to a non-zero constant, which is ex-

pressed through the opening of the slip on the surface of a circular hole and which must be determined after
solving the singular integral equation (16).
Because of the awkwardness of the expressions for the functions included into the singular integral

equation, it is difficult to establish the true singularity of the function g,(TM) at the end (16). Therefore, for its
numerical solution, a simplified numerical method is used [27, 28, 30]. We represent the solution in the form

g =gyMmy1-n",
where go(1) is an unknown regular function.

Using quadrature formulas, the equation (16) can be reduced to the system of M+1 algebraic equations

M
go(t,) ., Tm 1
sin +B(T,, =7lf.(m,)—-H.Mm,)]. 17
vae M+1Lm—n, wn»} [f.n)-H.,)] (17
m 2r—1
Here, t,, =cos =12,...M), n, = —n (r=12,...M + 1).
1 (m M), n, =cos M 1D) (r )

The obtained algebraic system (17) satisfies the additional condition under which there exists a solu-
tion in the class of everywhere bounded functions [29]. The right-hand sides of the system (17) include the
unknown values of the contact stresses f,(n,,) at the node points belonging to the contact edge zone.

The condition that determines the unknown contact stresses arising on the slit faces in the contact edge
zones is the absence of slit opening in these zones (the second condition on L"). In the problem under considera-
tion, this additional condition can be more conveniently written for the derivative of the slit face opening dis-
placements
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2u 9 2 ,
g0 = 2ot (x0)-v (0= K, (18)
1+ ¥ ox 1+x

where x is the affix of the slit contact edge zone face points (/;,/).
Requiring that the conditions (18) be fulfilled at the node points contained in the contact edge zone (I, L),
we obtain the missing equations for determining the approximate values of the contact stresses p(z,, ) at the

nodal points.
g, ) ==X Wa)  m=12 ..M. (19)
! I+x !
Due to the unknown size of the contact edge zone, the combined algebraic system consisting of (10),
(11), (14), (17), (19) is nonlinear. The obtained systems of equations with respect to oy, Py, g ,? s Fos p(tml ) ,and
I, make it possible, at a given external tensile load, to find the stress-strain state of the perforated stringer plate in
the presence of slits with partially contacting faces, contact stresses, as well as the size of the contact edge zone.

The algebraic systems (10), (11), (14), (17), (19) were solved by the method of successive approximations in the
following way. The system was solved from the equations (10), (11), (14), (19) and the M equations of the system

(17) with respect to the unknowns oy, By, g 10 , gg yeve g,% s P> P2sees Py, and N;xN, and unknown concen-

trated forces N,xN, at some value [ o+ - Further, the found values [,, were substituted into the unused equation of

the combined system, i.e. into the M+1 equation of the system (17). Since the chosen parameter value /,, , the
corresponding values oy, B, glo , gg yees g1?4 2Dl P2y Py, M N;xN, the values of concentrated forces will not

generally satisfy this equation, then, selecting new parameter /,, values, the calculations are repeated until this

equation is not satisfied with a given accuracy.

Calculations were performed depending on the geometric parameters of the problem at v=0,3;
e1=ay/L=0,01; e=y/L=0,25; E=7.1-10*MPa (V95/B95 alloy); Es =11,5-10' MPa (Al-steel composite),
Aglyoh=1. The number of stringers and attachment points was assumed to be finite: 6, 10, 14. A parametric
analysis of the contact stress p(x) dependence on the size of the slits and other geometric parameters of the
problem was performed. The results of calculating the contact stresses p/c, for different values of the slip
lengths along the edge zone are shown in figure 2. Curve 1 corresponds to the value of the hole radius A=0.3;
curve 2-A=0.5. In the calculations, the dimensionless coordinates of x' were used:

L+l L=l
x=—2—142 Ly,
2 2
The greatest values of contact stresses are in the middle part of the contact zone, where the slit faces close.

A /G
0.6 T Ll
1
/ A p/G()
0471
1
/’-—\\(/
///7\
’ 021
// AN
2
L
-1.0 -0.5 0 0.5 1.0 -1.0 0.5 0
a b
Fig. 2. Dependence of contact stresses along the contact zone at different values of the relative sizes of the slits:
a—L/L=0,5b-1L/L=0,7
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Conclusions

The analysis of the partial closure model of the varied width slit in a perforated isotropic plate rein-
forced by stringers is reduced to a parametric joint study of the algebraic systems (10), (11), (14), (17), (19)
at various geometric and physical parameters of the plate. The relations obtained make it possible to solve
the inverse problem, i.e. determine the characteristics of the perforated plate reinforcement and its stress
state, at which a given contact region of the slit faces is reached.
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MopenoBaHHSI YACTKOBOI'0 3AKPHUTTS CHCTEMH IIIJIMH y epdopoBaHOMY i30TPOIIHOMY cepeoBHINLi,
10 MiAKpinieHe CTPUHTePAMH

Mip-Canim-3ane M. B.

Incruryt Matemariku Ta Mexaniku HAH AzepOaiimkany,
Azepbaiimkan, AZ1141, m. baky, Byn. @. Araesa, 9

Ha ocnoei memoodie meopii npysxcnocmi npogedeno mamemamuyHuii Onuc Mooeni 4acmro8020 3aKpumms cu-
cmemu WinuH y nepgoposaromy i3omponHomy cepedosuwyi 3i CopoHHiMU nonepeyHumu exkmovenHamu. Taxe cepedo-
sUUle MOXCHA po32120amu K nepghoposany HeobMednceny NIACMUHY, NIOCUIEHY CUCTNEMOI0 CIMPUH2ePi8 HAOMO 8)3bKO-
20 nonepeuno2o nepepizy. Bsasxcacmuvca, wo cepedosuuye nocrabdiene nepioouyHoO CUCMEMON KPY208Ux Omeopis i
NPAMONTHIUHUX WIAUH 3MIHHOT WUpUHU. 3MIHHY WUPUHY WITUH MOJICHA NOPIGHAMU 3 NPYJICHUMU Oeopmayiamu. B po-
b60mi 3acmoco8ami Memoo po38’3anHs nepioOUyHOL NPYICHOT 3a0aui ma memood nooyoosu 6 a6Hil Popmi KOMNIEKCHUX
nomenyianis, wo 8ion08i0aOMs HeGIOOMUM HOPMATLHUM ZMIUEHHAM 830084C NPAMONIHIHUX Witun. Byoylombca 3aea-
JIbHI NOOAHHA PO38 A3Ki6, WO ONUCYIOMb KIAC 3A0ay 3 NepioOUUHUM PO3NOOIIOM HANPYHCEHb NO3A KPY2OB8UMU OME0pa-
MU ma WiAuH 3 KOHMAKMHUMY 30Hamu. A 8USHAYeHHs He8iOOMUX KOHMAKMHUX HANPYHCEHb Md PO3MIPI6 30H KOHMA-
KMy OMmpUuMAaHo CuHeyisapHe iHmezpanvhe PiBHAHHA, W0 3600UmMbCs 00 cucmemu HeniHeluHux anreeopaiunux pieusans. Cu-
cmema aneeopaiyHux pieHaHb P0o36’A3VEMbCs MEMOOOM NOCTIO0BHUX HADIUICEHb. B pe3yribmami 3uaiioeno KoHmaxmui
HANpYsHCeHHs Ma PO3MIpU 30H KOHMAKIMY.

Kniouosi cnosa: nepgoposana niacmuna, cmpuneepu, NPAMOIIHIUHI WITUHU 3MIHHOT WUPUHU, KOHMAKMHI
HanpystCenHsl, KOHMAaxKmui 30HU.
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